CHAPTER 1 CONCEPT CHECK ANSWERS

1. (a) What is a function? What are its domain and range?

A function f is a rule that assigns to each element x in a set D exactly one element, called $f(x)$, in a set E. The domain is the set D and the range is the set of all possible values of $f(x)$ as x varies throughout the domain.
(b) What is the graph of a function?

The graph of a function f consists of all points (x, y) such that $y=f(x)$ and x is in the domain of f.
(c) How can you tell whether a given curve is the graph of a function?
Use the Vertical Line Test: a curve in the $x y$-plane is the graph of a function of x if and only if no vertical line intersects the curve more than once.
2. Discuss four ways of representing a function. Illustrate your discussion with examples.
A function can be represented verbally, numerically, visually, or algebraically. An example of each is given below.

Verbally: An assignment of students to chairs in a classroom (a description in words)

Numerically: A tax table that assigns an amount of tax to an income (a table of values)
Visually: A graphical history of the Dow Jones average (a graph)

Algebraically: A relationship between the area A and side length s of a square: $A=s^{2}$ (an explicit formula)
3. (a) What is an even function? How can you tell if a function is even by looking at its graph? Give three examples of an even function.
A function f is even if it satisfies $f(-x)=f(x)$ for every number x in its domain. If the graph of a function is symmetric with respect to the y-axis, then f is even. Examples are $f(x)=x^{2}, f(x)=\cos x, f(x)=|x|$.
(b) What is an odd function? How can you tell if a function is odd by looking at its graph? Give three examples of an odd function.
A function f is odd if it satisfies $f(-x)=-f(x)$ for every number x in its domain. If the graph of a function is symmetric with respect to the origin, then f is odd. Examples are $f(x)=x^{3}, f(x)=\sin x, f(x)=1 / x$.
4. What is an increasing function?

A function f is increasing on an interval I if $f\left(x_{1}\right)<f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$ in I.
5. What is a mathematical model?

A mathematical model is a mathematical description (often by means of a function or an equation) of a real-world phenomenon. (See the discussion on pages 23-24.)
6. Give an example of each type of function.
(a) Linear function: () =
() =
(b) Power function: $f(x)=x^{2}, f(x)=x^{n}$
(c) Exponential function: $f(x)=2^{x}, f(x)=b^{x}$
(d) Quadratic function: $f(x)=x^{2}+x+1$, $f(x)=a x^{2}+b x+c$
(e) Polynomial of degree 5: $f(x)=x^{5}+2 x^{4}-3 x^{2}+7$
(f) Rational function: $f(x)=\frac{x}{x+2}, f(x)=\frac{P(x)}{Q(x)}$ where $P(x)$ and $Q(x)$ are polynomials
7. Sketch by hand, on the same axes, the graphs of the following functions.
(a) $f(x)=x$
(b) $g(x)=x^{2}$
(c) $h(x)=x^{3}$
(d) $j(x)=x^{4}$

8. Draw, by hand, a rough sketch of the graph of each function.
(a) $y=\sin x$

(b) $y=\cos x$

(c) $y=\tan x$

CHAPTER 1 CONCEPT CHECK ANSWERS

(d) $y=1 / x$

(f) $y=\sqrt{x}$
(e) $y=|x|$

9. Suppose that f has domain A and g has domain B.
(a) What is the domain of $f+g$?

The domain of $f+g$ is the intersection of the domain of f and the domain of g; that is, $A \cap B$.
(b) What is the domain of $f g$?

The domain of $f g$ is also $A \cap B$.
(c) What is the domain of f / g ?

The domain of f / g must exclude values of x that make g equal to 0 ; that is, $\{x \in A \cap B \mid g(x) \neq 0\}$.
10. How is the composite function $f \circ g$ defined? What is its domain?
The composition of f and g is defined by $(f \circ g)(x)=f(g(x))$. The domain is the set of all x in the domain of g such that $g(x)$ is in the domain of f.
11. Suppose the graph of f is given. Write an equation for each of the graphs that are obtained from the graph of f as follows.
(a) Shift 2 units upward: $y=f(x)+2$
(b) Shift 2 units downward: $y=f(x)-2$
(c) Shift 2 units to the right: $y=f(x-2)$
(d) Shift 2 units to the left: $y=f(x+2)$
(e) Reflect about the x-axis: $y=-f(x)$
(f) Reflect about the y-axis: $y=f(-x)$
(g) Stretch vertically by a factor of 2: $y=2 f(x)$
(h) Shrink vertically by a factor of 2: $\quad y=\frac{1}{2} f(x)$
(i) Stretch horizontally by a factor of 2: $y=f\left(\frac{1}{2} x\right)$
(j) Shrink horizontally by a factor of $2 \quad y=f(2 x)$
12. Explain what each of the following means and illustrate with a sketch.
(a) $\lim _{x \rightarrow a} f(x)=L$ means that the values of $f(x)$ approach L as the values of x approach a (but $x \neq a$).

(b) $\lim _{x \rightarrow a^{+}} f(x)=L$ means that the values of $f(x)$ approach L as the values of x approach a through values greater than a.

(c) $\lim _{x \rightarrow a^{-}} f(x)=L$ means that the values of $f(x)$ approach L as the values of x approach a through values less than a.

(d) $\lim _{x \rightarrow a} f(x)=\infty$ means that the values of $f(x)$ can be made arbitrarily large by taking x sufficiently close to a (but not equal to a).

(e) $\lim _{x \rightarrow a} f(x)=-\infty$ means that the values of $f(x)$ can be made arbitrarily large negative by taking x sufficiently close to a (but not equal to a).

CHAPTER 1 CONCEPT CHECK ANSWERS (continued)

13. Describe several ways in which a limit can fail to exist. Illustrate with sketches.

In general, the limit of a function fails to exist when the function values do not approach a fixed number. For each of the following functions, the limit fails to exist at $x=2$.

The left and right limits are not equal.

There is an infinite discontinuity.

The function values oscillate between 1 and -1 infinitely often.
14. What does it mean to say that the line $x=a$ is a vertical asymptote of the curve $y=f(x)$? Draw curves to illustrate the various possibilities.
It means that the limit of $f(x)$ as x approaches a from one or both sides is positive or negative infinity.

15. State the following Limit Laws.
(a) Sum Law

The limit of a sum is the sum of the limits:
$\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$
(b) Difference Law

The limit of a difference is the difference of the limits:
$\lim _{x \rightarrow a}[f(x)-g(x)]=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)$
(c) Constant Multiple Law

The limit of a constant times a function is the constant times the limit of the function: $\quad \lim _{x \rightarrow a}[c f(x)]=c \lim _{x \rightarrow a} f(x)$
(d) Product Law

The limit of a product is the product of the limits:
$\lim _{x \rightarrow a}[f(x) g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$
(e) Quotient Law

The limit of a quotient is the quotient of the limits, provided that the limit of the denominator is not 0 :
$\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)} \quad$ if $\lim _{x \rightarrow a} g(x) \neq 0$
(f) Power Law

The limit of a power is the power of the limit:
$\lim _{x \rightarrow a}[f(x)]^{n}=\left[\lim _{x \rightarrow a} f(x)\right]^{n} \quad$ (for n a positive integer)
(g) Root Law

The limit of a root is the root of the limit: $\lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow a} f(x)} \quad$ (for n a positive integer)
16. What does the Squeeze Theorem say?

If $f(x) \leqslant g(x) \leqslant h(x)$ when x is near a (except possibly at a) and $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L$, then $\lim _{x \rightarrow a} g(x)=L$. In other words, if $g(x)$ is squeezed between $f(x)$ and $h(x)$ near a, and if f and h have the same limit L at a, then g is forced to have the same limit L at a.
17. (a) What does it mean for f to be continuous at a ?

A function f is continuous at a number a if the value of the function at $x=a$ is the same as the limit when x approaches a; that is, $\lim _{x \rightarrow a} f(x)=f(a)$.
(b) What does it mean for f to be continuous on the interval $(-\infty, \infty)$? What can you say about the graph of such a function?

A function f is continuous on the interval $(-\infty, \infty)$ if it is continuous at every real number a.
The graph of such a function has no hole or break in it.

CHAPTER 1 CONCEPT CHECK ANSWERS (continued)

18. (a) Give examples of functions that are continuous on $[-1,1]$.
$f(x)=x^{3}-x, g(x)=\sqrt{x+2}, y=\sin x, y=\tan x$, $y=1 /(x-3)$, and $h(x)=|x|$ are all continuous on $[-1,1]$.
(b) Give an example of a function that is not continuous on $[0,1]$.

$$
f(x)=\frac{1}{x-\frac{1}{2}} \quad\left[f(x) \text { is not defined at } x=\frac{1}{2}\right]
$$

19. What does the Intermediate Value Theorem say?

If f is continuous on $[a, b]$ and N is any number between $f(a)$ and $f(b)[f(a) \neq f(b)]$, Then there exists a number c in (a, b) such that $f(c)=N$. In other words, a continuous function takes on every intermediate value between the function values $f(a)$ and $f(b)$.

CHAPTER 2 CONCEPT CHECK ANSWERS

1. Write an expression for the slope of the tangent line to the curve $y=f(x)$ at the point $(a, f(a))$.
The slope of the tangent line is given by

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \quad \text { or } \quad \lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

2. Suppose an object moves along a straight line with position $f(t)$ at time t. Write an expression for the instantaneous velocity of the object at time $t=a$. How can you interpret this velocity in terms of the graph of f ?

The instantaneous velocity at time $t=a$ is

$$
v(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

It is equal to the slope of the tangent line to the graph of f at the point $P(a, f(a))$.
3. If $y=f(x)$ and x changes from x_{1} to x_{2}, write expressions for the following.
(a) The average rate of change of y with respect to x over the interval $\left[x_{1}, x_{2}\right]$:

$$
\frac{\Delta y}{\Delta x}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

(b) The instantaneous rate of change of y with respect to x at $x=x_{1}$:

$$
\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{x_{2} \rightarrow x_{1}} \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

4. Define the derivative $f^{\prime}(a)$. Discuss two ways of interpreting this number.

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

or, equivalently,

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

The derivative $f^{\prime}(a)$ is the instantaneous rate of change of $y=f(x)$ (with respect to x) when $x=a$ and also represents the slope of the tangent line to the graph of f at the point $P(a, f(a))$.
5. (a) What does it mean for f to be differentiable at a ?
f is differentiable at a if the derivative $f^{\prime}(a)$ exists.
(b) What is the relation between the differentiability and continuity of a function?
If f is differentiable at a, then f is continuous at a.
(c) Sketch the graph of a function that is continuous but not differentiable at $a=2$.

The graph of f changes direction abruptly at $x=2$, so f has no tangent line there.
6. Describe several ways in which a function can fail to be differentiable. Illustrate with sketches.

A function is not differentiable at any value where the graph has a "corner," where the graph has a discontinuity, or where it has a vertical tangent line.

A corner

A discontinuity

A vertical tangent
7. What are the second and third derivatives of a function f ? If f is the position function of an object, how can you interpret $f^{\prime \prime}$ and $f^{\prime \prime \prime}$?
The second derivative $f^{\prime \prime}$ is the derivative of f^{\prime}, and the third derivative $f^{\prime \prime \prime}$ is the derivative of $f^{\prime \prime}$.
If f is the postition function of an object, then f^{\prime} is the velocity function of the object, $f^{\prime \prime}$ is the acceleration function, and $f^{\prime \prime \prime}$ is the jerk function (the rate of change of acceleration).

CHAPTER 2 CONCEPT CHECK ANSWERS (continued)

8. State each differentiation rule both in symbols and in words.
(a) The Power Rule

If n is any real number, then $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$.
To find the derivative of a variable raised to a constant power, we multiply the expression by the exponent and then subtract one from the exponent.
(b) The Constant Multiple Rule

If c is a constant and f is a differentiable function, then

$$
\frac{d}{d x}[c f(x)]=c \frac{d}{d x} f(x)
$$

The derivative of a constant times a function is the constant times the derivative of the function.
(c) The Sum Rule

If f and g are both differentiable, then

$$
\frac{d}{d x}[f(x)+g(x)]=\frac{d}{d x} f(x)+\frac{d}{d x} g(x)
$$

The derivative of a sum of functions is the sum of the derivatives.
(d) The Difference Rule

If f and g are both differentiable, then

$$
\frac{d}{d x}[f(x)-g(x)]=\frac{d}{d x} f(x)-\frac{d}{d x} g(x)
$$

The derivative of a difference of functions is the difference of the derivatives.
(e) The Product Rule

If f and g are both differentiable, then

$$
\frac{d}{d x}[f(x) g(x)]=f(x) \frac{d}{d x}[g(x)]+g(x) \frac{d}{d x}[f(x)]
$$

The derivative of a product of two functions is the first function times the derivative of the second function plus the second function times the derivative of the first function.
(f) The Quotient Rule

If f and g are both differentiable, then

$$
\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) \frac{d}{d x}[f(x)]-f(x) \frac{d}{d x}[g(x)]}{[g(x)]^{2}}
$$

The derivative of a quotient of functions is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the square of the denominator.
(g) The Chain Rule

If g is differentiable then the composite f
differentiable at x and F^{\prime} is given by the product

$$
F^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)
$$

The derivative of a composite function is the derivative of the outer function evaluated at the inner function times the derivative of the inner function.
9. State the derivative of each function.
(a) $y=x^{n}: \quad y^{\prime}=n x^{n-1}$
(b) $y=\sin x: \quad y^{\prime}=\cos x$
(c) $y=\cos x: \quad y^{\prime}=-\sin x$
(d) $y=\tan x: \quad y^{\prime}=\sec ^{2} x$
(e) $y=\csc x: \quad y^{\prime}=-\csc x \cot x$
(f) $y=\sec x: \quad y^{\prime}=\sec x \tan x$
(g) $y=\cot x: \quad y^{\prime}=-\csc ^{2} x$
10. Explain how implicit differentiation works.

Implicit differentiation consists of differentiating both sides of an equation with respect to x, treating y as a function of x. Then we solve the resulting equation for y^{\prime}.
11. Give several examples of how the derivative can be interpreted as a rate of change in physics, chemistry, biology, economics, or other sciences.

In physics, interpretations of the derivative include velocity, linear density, electrical current, power (the rate of change of work), and the rate of radioactive decay. Chemists can use derivatives to measure reaction rates and the compressibility of a substance under pressure. In biology the derivative measures rates of population growth and blood flow. In economics, the derivative measures marginal cost (the rate of change of cost as more items are produced) and marginal profit. Other examples include the rate of heat flow in geology, the rate of performance improvement in psychology, and the rate at which a rumor spreads in sociology.
12. (a) Write an expression for the linearization of f at a.

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

(b) If $y=f(x)$, write an expression for the differential $d y$.

$$
d y=f^{\prime}(x) d x
$$

(c) If $d x=\Delta x$, draw a picture showing the geometric meanings of Δy and $d y$.

CHAPTER 3 CONCEPT CHECK ANSWERS

1. Explain the difference between an absolute maximum and a local maximum. Illustrate with a sketch.
The function value $f(c)$ is the absolute maximum value of f if $f(c)$ is the largest function value on the entire domain of f, whereas $f(c)$ is a local maximum value if it is the largest function value when x is near c.

2. (a) What does the Extreme Value Theorem say?

If f is a continuous function on a closed interval $[a, b]$, then it always attains an absolute maximum and an absolute mini-mum value on that interval.
(b) Explain how the Closed Interval Method works.

To find the absolute maximum and minimum values of a continuous function f on a closed interval $[a, b]$, we follow these three steps:

- Find the critical numbers of f in the interval (a, b) and compute the values of f at these numbers.
- Find the values of f at the endpoints of the interval.
- The largest of the values from the previous two steps is the absolute maximum value; the smallest of these values is the absolute minimum value.

3. (a) State Fermat's Theorem.

If f has a local maximum or minimum at c, and if $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$.
(b) Define a critical number of f.

A critical number of a function f is a number c in the domain of f such that either $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist.
4. (a) State Rolle's Theorem.

Let f be a function that satisfies the following three hypotheses:

- f is continuous on the closed interval $[a, b]$.
- f is differentiable on the open interval (a, b).
- $f(a)=f(b)$

Then there is a number c in (a, b) such that $f^{\prime}(c)=0$.
(b) State the Mean Value Theorem and give a geometric interpretation.
If f is continuous on the interval $[a, b]$ and differentiable on (a, b), then there exists a number c between a and b such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Geometrically, the theorem says that there is a point $P(c, f(c))$, where $a<c<b$, on the graph of f where the tangent line is parallel to the secant line that connects $(a, f(a))$ and $(b, f(b))$.

5. (a) State the Increasing/Decreasing Test.

If $f^{\prime}(x)>0$ on an interval, then f is increasing on that interval.
If $f^{\prime}(x)<0$ on an interval, then f is decreasing on that interval.
(b) What does it mean to say that f is concave upward on an interval I ?
f is concave upward on an interval if the graph of f lies above all of its tangents on that interval.
(c) State the Concavity Test.

If $f^{\prime \prime}(x)>0$ on an interval, then the graph of f is concave upward on that interval.
If $f^{\prime \prime}(x)<0$ on an interval, then the graph of f is concave downward on that interval.
(d) What are inflection points? How do you find them?

Inflection points on the graph of a continuous function f are points where the curve changes from concave upward to concave downward or from concave downward to concave upward. They can be found by determining the values at which the second derivative changes sign.
6. (a) State the First Derivative Test.

Suppose that c is a critical number of a continuous function f.

- If f^{\prime} changes from positive to negative at c, then f has a local maximum at c.
- If f^{\prime} changes from negative to positive at c, then f has a local minimum at c.
- If f^{\prime} is positive to the left and right of c, or negative to the left and right of c, then f has no local maximum or minimum at c.
(b) State the Second Derivative Test.

Suppose $f^{\prime \prime}$ is continuous near c.

- If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$, then f has a local minimum at c.
- If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then f has a local maximum at c.

CHAPTER 3 CONCEPT CHECK ANSWERS (continued)

(c) What are the relative advantages and disadvantages of these tests?

The Second Derivative Test is sometimes easier to use, but it is inconclusive when $f^{\prime \prime}(c)=0$ and fails if $f^{\prime \prime}(c)$ does not exist. In either case the First Derivative Test must be used.
7. Explain the meaning of each of the following statements.
(a) $\lim _{x \rightarrow \infty} f(x)=L$ means that the values of $f(x)$ can be made arbitrarily close to L by requiring x to be sufficiently large.
(b) $\lim _{x \rightarrow-\infty} f(x)=L$ means that the values of $f(x)$ can be made arbitrarily close to L by requiring x to be sufficiently large negative.
(c) $\lim _{x \rightarrow \infty} f(x)=\infty$ means that the values of $f(x)$ can be made arbitrarily large by requiring x to be sufficiently large.
(d) The curve $y=f(x)$ has the horizontal asymptote $y=L$.

The line $y=L$ is called a horizontal asymptote of the curve $y=f(x)$ if either $\lim _{x \rightarrow \infty} f(x)=L$ or $\lim _{x \rightarrow-\infty} f(x)=L$.
8. If you have a graphing calculator or computer, why do you need calculus to graph a function?
Calculus reveals all the important aspects of a graph, such as local extreme values and inflection points, that can be missed when relying solely on technology. In many cases we can find exact locations of these key points rather than approximations. Using derivatives to identify the behavior of the graph also helps us choose an appropriate viewing window and alerts us to where we may wish to zoom in on a graph.
9. (a) Given an initial approximation x_{1} to a root of the equation $f(x)=0$, explain geometrically, with a diagram, how the second approximation x_{2} in Newton's method is obtained.

We find the tangent line L to the graph of $y=f(x)$ at the point $\left(x_{1}, f\left(x_{1}\right)\right)$. Then x_{2} is the x-intercept of L.

(b) Write an expression for x_{2} in terms of $x_{1}, f\left(x_{1}\right)$, and $f^{\prime}\left(x_{1}\right)$.

$$
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}
$$

(c) Write an expression for x_{n+1} in terms of $x_{n}, f\left(x_{n}\right)$, and $f^{\prime}\left(x_{n}\right)$.

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

(d) Under what circumstances is Newton's method likely to fail or to work very slowly?

Newton's method is likely to fail or to work very slowly when $f^{\prime}\left(x_{1}\right)$ is close to 0 . It also fails when $f^{\prime}\left(x_{i}\right)$ is undefined.
10. (a) What is an antiderivative of a function f ?

A function F is an antiderivative of f if $F^{\prime}(x)=f(x)$.
(b) Suppose F_{1} and F_{2} are both antiderivatives of f on an interval I. How are F_{1} and F_{2} related?

They are identical or they differ by a constant.

CHAPTER 4 CONCEPT CHECK ANSWERS

1. (a) Write an expression for a Riemann sum of a function f on an interval $[a, b]$. Explain the meaning of the notation that you use.
If f is defined for $a \leqslant x \leqslant b$ and we divide the interval $[a, b]$ into n subintervals of equal width Δx, then a Riemann sum of f is

$$
\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

where x_{i}^{*} is a point in the i th subinterval.
(b) If $f(x) \geqslant 0$, what is the geometric interpretation of a Riemann sum? Illustrate with a diagram.
If f is positive, then a Riemann sum can be interpreted as the sum of areas of approximating rectangles, as shown in the figure.

(c) If $f(x)$ takes on both positive and negative values, what is the geometric interpretation of a Riemann sum? Illustrate with a diagram.
If f takes on both positive and negative values then the Riemann sum is the sum of the areas of the rectangles that lie above the x-axis and the negatives of the areas of the rectangles that lie below the x-axis (the areas of the blue rectangles minus the areas of the gray rectangles).

2. (a) Write the definition of the definite integral of a continuous function from a to b.
If f is a continuous function on the interval $[a, b]$, then we divide $[a, b]$ into n subintervals of equal width $\Delta x=(b-a) / n$. We let $x_{0}(=a), x_{1}, x_{2}, \ldots$, $x_{n}(=b)$ be the endpoints of these subintervals. Then

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

where x_{i}^{*} is any sample point in the i th subinterval $\left[x_{i-1}, x_{i}\right]$.
(b) What is the geometric interpretation of $\int_{a}^{b} f(x) d x$ if $f(x) \geqslant 0$?
If f is positive, then $\int_{a}^{b} f(x) d x$ can be interpreted as the area under the graph of $y=f(x)$ and above the x-axis for $a \leqslant x \leqslant b$.
(c) What is the geometric interpretation of $\int_{a}^{b} f(x) d x$ if $f(x)$ takes on both positive and negative values? Illustrate with a diagram.
In this case $\int_{a}^{b} f(x) d x$ can be interpreted as a "net area," that is, the area of the region above the x-axis and below the graph of f (labeled " + " in the figure) minus the area of the region below the x-axis and above the graph of f (labeled "-").

3. State the Midpoint Rule.

If f is a continuous function on the interval $[a, b]$ and we divide $[a, b]$ into n subintervals of equal width $\Delta x=(b-a) / n$, then

$$
\int_{a}^{b} f(x) d x \approx \sum_{i=1}^{n} f\left(\bar{x}_{i}\right) \Delta x
$$

where $\bar{x}_{i}=$ midpoint of $\left[x_{i-1}, x_{i}\right]=\frac{1}{2}\left(x_{i-1}+x_{i}\right)$.
4. State both parts of the Fundamental Theorem of Calculus.

Suppose f is continuous on $[a, b]$.
Part 1. If $g(x)=\int_{a}^{x} f(t) d t$, then $g^{\prime}(x)=f(x)$.
Part 2. $\int_{a}^{b} f(x) d x=F(b)-F(a)$, where F is any antiderivative of f, that is, $F^{\prime}=f$.
5. (a) State the Net Change Theorem.

The integral of a rate of change is the net change:

$$
\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a)
$$

(b) If $r(t)$ is the rate at which water flows into a reservoir, what does $\int_{t_{1}}^{t_{2}} r(t) d t$ represent?
$\int_{t_{1}}^{t_{2}} r(t) d t$ represents the change in the amount of water in the reservoir between time t_{1} and time t_{2}.

CHAPTER 4 CONCEPT CHECK ANSWERS (continued)

6. Suppose a particle moves back and forth along a straight line with velocity $v(t)$, measured in feet per second, and acceleration $a(t)$.
(a) What is the meaning of $\int_{60}^{120} v(t) d t$?
$\int_{60}^{120} v(t) d t$ represents the net change in position (the displacement) of the particle from $t=60 \mathrm{~s}$ to $t=120 \mathrm{~s}$, in other words, in the second minute.
(b) What is the meaning of $\int_{60}^{120}|v(t)| d t$?
$\int_{60}^{120}|v(t)| d t$ represents the total distance traveled by the particle in the second minute.
(c) What is the meaning of $\int_{60}^{120} a(t) d t$?
$\int_{60}^{120} a(t) d t$ represents the change in velocity of the particle in the second minute.
7. (a) Explain the meaning of the indefinite integral $\int f(x) d x$.

The indefinite integral $\int f(x) d x$ is another name for an antiderivative of f, so $\int f(x) d x=F(x)$ means that $F^{\prime}(x)=f(x)$.
(b) What is the connection between the definite integral $\int_{a}^{b} f(x) d x$ and the indefinite integral $\int f(x) d x$?
The connection is given by Part 2 of the Fundamental Theorem:

$$
\left.\int_{a}^{b} f(x) d x=\int f(x) d x\right]_{a}^{b}
$$

if f is continuous on $[a, b]$.
8. Explain exactly what is meant by the statement that "differentiation and integration are inverse processes."
Part 1 of the Fundamental Theorem of Calculus can be rewritten as

$$
\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

which says that if f is integrated and then the result is differentiated, we arrive back at the original function f.
Since $F^{\prime}(x)=f(x)$, Part 2 of the theorem (or, equivalently, the Net Change Theorem) states that

$$
\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a)
$$

This says that if we take a function F, first differentiate it, and then integrate the result, we arrive back at the original function, but in the form $F(b)-F(a)$.
Also, the indefinite integral $\int f(x) d x$ represents an antiderivative of f, so

$$
\frac{d}{d x} \int f(x) d x=f(x)
$$

9. State the Substitution Rule. In practice, how do you use it? If $u=g(x)$ is a differentiable function and f is continuous on the range of g, then

$$
\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u
$$

In practice, we make the substitutions $u=g(x)$ and $d u=g^{\prime}(x) d x$ in the integrand in order to make the integral simpler to evaluate.

1. (a) Draw two typical curves $y=f(x)$ and $y=g(x)$, where $f(x) \geqslant g(x)$ for $a \leqslant x \leqslant b$. Show how to approximate the area between these curves by a Riemann sum and sketch the corresponding approximating rectangles. Then write an expression for the exact area.

A Riemann sum that approximates the area between these curves is $\sum_{i=1}^{n}\left[f\left(x_{i}^{*}\right)-g\left(x_{i}^{*}\right)\right] \Delta x$. A sketch of the corresponding approximating rectangles:

An expression for the exact area is

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[f\left(x_{i}^{*}\right)-g\left(x_{i}^{*}\right)\right] \Delta x=\int_{a}^{b}[f(x)-g(x)] d x
$$

(b) Explain how the situation changes if the curves have equations $x=f(y)$ and $x=g(y)$, where $f(y) \geqslant g(y)$ for $c \leqslant y \leqslant d$.
Instead of using "top minus bottom" and integrating from left to right, we use "right minus left" and integrate from bottom to top: $A=\int_{c}^{d}[f(y)-g(y)] d y$

2. Suppose that Sue runs faster than Kathy throughout a 1500 -meter race. What is the physical meaning of the area between their velocity curves for the first minute of the race?
It represents the number of meters by which Sue is ahead of Kathy after 1 minute.
3. (a) Suppose S is a solid with known cross-sectional areas. Explain how to approximate the volume of S by a

Riemann sum. Then write an expression for the exact volume.
We slice S into n "slabs" of equal width Δx. The volume of the i th slab is approximately $A\left(x_{i}^{*}\right) \Delta x$, where x_{i}^{*} is a sample point in the i th slab and $A\left(x_{i}^{*}\right)$ is the crosssectional area of S at x_{i}^{*}. Then the volume of S is approximately $\sum_{i=1}^{n} A\left(x_{i}^{*}\right) \Delta x$ and the exact volume is

$$
V=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} A\left(x_{i}^{*}\right) \Delta x=\int_{a}^{b} A(x) d x
$$

(b) If S is a solid of revolution, how do you find the crosssectional areas?
If the cross-section is a disk, find the radius in terms of x or y and use $A=\pi$ (radius) ${ }^{2}$. If the cross-section is a washer, find the inner radius $r_{\text {in }}$ and outer radius $r_{\text {out }}$ and use $A=\pi\left(r_{\text {out }}^{2}\right)-\pi\left(r_{\text {in }}^{2}\right)$.
4. (a) What is the volume of a cylindrical shell?

$$
V=2 \pi r h \Delta r=(\text { circumference })(\text { height })(\text { thickness })
$$

(b) Explain how to use cylindrical shells to find the volume of a solid of revolution.
We approximate the region to be revolved by rectangles, oriented so that revolution forms cylindrical shells rather than disks or washers. For a typical shell, find the circumference and height in terms of x or y and calculate

$$
V=\int_{a}^{b}(\text { circumference })(\text { height })(d x \text { or } d y)
$$

(c) Why might you want to use the shell method instead of slicing?
Sometimes slicing produces washers or disks whose radii are difficult (or impossible) to find explicitly. On other occasions, the cylindrical shell method leads to an easier integral than slicing does.
5. Suppose that you push a book across a 6-meter-long table by exerting a force $f(x)$ at each point from $x=0$ to $x=6$. What does $\int_{0}^{6} f(x) d x$ represent? If $f(x)$ is measured in newtons, what are the units for the integral?
$\int_{0}^{6} f(x) d x$ represents the amount of work done. Its units are newton-meters, or joules.
6. (a) What is the average value of a function f on an interval $[a, b]$?

$$
f_{\mathrm{ave}}=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

(b) What does the Mean Value Theorem for Integrals say? What is its geometric interpretation?
If f is continuous on $[a, b]$, then there is a number c in $[a, b]$ at which the value of f is exactly equal to the average value of the function, that is, $f(c)=f_{\text {ave }}$. This means that for positive functions f, there is a number c such that the rectangle with base $[a, b]$ and height $f(c)$ has the same area as the region under the graph of f from a to b.

CHAPTER 6 CONCEPT CHECK ANSWERS

1. (a) What is a one-to-one function? How can you tell if a function is one-to-one by looking at its graph?
A function f is one-to-one if it never takes on the same value twice; that is, $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ whenever $x_{1} \neq x_{2}$. When looking at a graph, use the Horizontal Line Test: a function is one-to-one if and only if no horizontal line intersects its graph more than once.
(b) If f is a one-to-one function, how is its inverse function f^{-1} defined? How do you obtain the graph of f^{-1} from the graph of f ?
If f is a one-to-one function with domain A and range B, then its inverse function f^{-1} has domain B and range A and is defined by

$$
f^{-1}(y)=x \quad \Longleftrightarrow \quad f(x)=y
$$

for any y in B.
The graph of f^{-1} is obtained by reflecting the graph of f about the line $y=x$.
(c) If f is a one-to-one function and $f^{\prime}\left(f^{-1}(a)\right) \neq 0$, write a formula for $\left(f^{-1}\right)^{\prime}(a)$.

$$
\left(f^{-1}\right)^{\prime}(a)=\frac{1}{f^{\prime}\left(f^{-1}(a)\right)}
$$

2. (a) What are the domain and range of the natural exponential function $f(x)=e^{x}$?
Domain: \mathbb{R}
Range: $(0, \infty)$
(b) What are the domain and range of the natural logarithmic function $g(x)=\ln x$?
Domain: $(0, \infty) \quad$ Range: \mathbb{R}
(c) How are the functions $f(x)=e^{x}$ and $g(x)=\ln x$ related?

They are inverses of each other.
(d) How are the graphs of these functions related? Sketch these graphs by hand, using the same axes.
The graphs are reflections of one another about the line $y=x$.

(e) If b is a positive number, $b \neq 1$, write an equation that expresses $\log _{b} x$ in terms of $\ln x$.

$$
\log _{b} x=\frac{\ln x}{\ln b}
$$

3. (a) How is the inverse sine function $f(x)=\sin ^{-1} x$ defined? What are its domain and range?
The inverse sine function $f(x)=\sin ^{-1} x$ is defined as

$$
\begin{gathered}
\sin ^{-1} x=y \Longleftrightarrow \sin y=x \\
-\pi / 2 \leqslant y \leqslant \pi / 2
\end{gathered}
$$

and
Its domain is $-1 \leqslant x \leqslant 1$ and its range is $-\pi / 2 \leqslant y \leqslant \pi / 2$.
(b) How is the inverse cosine function $f(x)=\cos ^{-1} x$ defined? What are its domain and range?
The inverse cosine function $f(x)=\cos ^{-1} x$ is defined as

$$
\begin{gathered}
\cos ^{-1} x=y \Longleftrightarrow \cos y=x \\
0 \leqslant y \leqslant \pi
\end{gathered}
$$

and

Its domain is $-1 \leqslant x \leqslant 1$ and its range is $0 \leqslant y \leqslant \pi$.
(c) How is the inverse tangent function $f(x)=\tan ^{-1} x$ defined? What are its domain and range? Sketch its graph.
The inverse tangent function $f(x)=\tan ^{-1} x$ is defined as

$$
\begin{gathered}
\tan ^{-1} x=y \Longleftrightarrow \tan y=x \\
-\pi / 2<y<\pi / 2
\end{gathered}
$$

and
Its domain is \mathbb{R} and its range is $-\pi / 2<y<\pi / 2$.

4. Write the definitions of the hyperbolic functions $\sinh x$, $\cosh x$, and $\tanh x$.

$$
\begin{aligned}
\sinh x= & \frac{e^{x}-e^{-x}}{2} \quad \cosh x=\frac{e^{x}+e^{-x}}{2} \\
& \tanh x=\frac{\sinh x}{\cosh x}=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}
\end{aligned}
$$

5. State the derivative of each function.
(a) $y=e^{x}: \quad y^{\prime}=e^{x}$
(b) $y=b^{x}: \quad y^{\prime}=b^{x} \ln b$
(c) $y=\ln x: \quad y^{\prime}=1 / x$
(d) $y=\log _{b} x: \quad y^{\prime}=1 /(x \ln b)$
(e) $y=\sin ^{-1} x: \quad y^{\prime}=1 / \sqrt{1-x^{2}}$
(f) $y=\cos ^{-1} x: \quad y^{\prime}=-1 / \sqrt{1-x^{2}}$

CHAPTER 6 CONCEPT CHECK ANSWERS (continued)

(g) $y=\tan ^{-1} x: \quad y^{\prime}=1 /\left(1+x^{2}\right)$
(h) $y=\sinh x: \quad y^{\prime}=\cosh x$
(i) $y=\cosh x: \quad y^{\prime}=\sinh x$
(j) $y=\tanh x: \quad y^{\prime}=\operatorname{sech}^{2} x$
(k) $y=\sinh ^{-1} x: \quad y^{\prime}=1 / \sqrt{1+x^{2}}$
(l) $y=\cosh ^{-1} x: \quad y^{\prime}=1 / \sqrt{x^{2}-1}$
(m) $y=\tanh ^{-1} x: \quad y^{\prime}=1 /\left(1-x^{2}\right)$
6. (a) How is the number e defined? e is the number such that $\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1$.
(b) Express e as a limit.

$$
e=\lim _{x \rightarrow 0}(1+x)^{1 / x}
$$

(c) Why is the natural exponential function $y=e^{x}$ used more often in calculus than the other exponential functions $y=b^{x}$?
The differentiation formula for $y=b^{x} \quad\left[d y / d x=b^{x} \ln b\right]$ is simplest when $b=e$ because $\ln e=1$.
(d) Why is the natural logarithmic function $y=\ln x$ used more often in calculus than the other logarithmic functions $y=\log _{b} x$?
The differentiation formula for $y=\log _{b} x$
$[d y / d x=1 /(x \ln b)]$ is simplest when $b=e$ because $\ln e=1$.
7. (a) Write a differential equation that expresses the law of natural growth.
If $y(t)$ is the value of a quantity y at time t, then

$$
\frac{d y}{d t}=k y \quad \text { where } k>0 \text { is a constant }
$$

(b) Under what circumstances is this an appropriate model for population growth?

The equation in part (a) is an appropriate model when there is enough room and nutrition to support growth.
(c) What are the solutions of this equation?

If $y(0)=y_{0}$, then the solutions are $y(t)=y_{0} e^{k t}$.
8. (a) What does l'Hospital's Rule say?

L'Hospital's Rule says that if the limit of a quotient of functions is an indeterminate form of type $0 / 0$ or ∞ / ∞, then the limit is equal to the limit of the quotient of their derivatives:

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

(b) How can you use l'Hospital's Rule if you have a product $f(x) g(x)$, where $f(x) \rightarrow 0$ and $g(x) \rightarrow \infty$ as $x \rightarrow a$? Write $f g$ as $\frac{f}{1 / g}$ or $\frac{g}{1 / f}$ so that the limit becomes an indeterminate form of type $0 / 0$ or ∞ / ∞.
(c) How can you use l'Hospital's Rule if you have a difference $f(x)-g(x)$, where $f(x) \rightarrow \infty$ and $g(x) \rightarrow \infty$ as $x \rightarrow a$?
Convert the difference into a quotient by using a common denominator, rationalizing, factoring, or by some other method.
(d) How can you use l'Hospital's Rule if you have a power $[f(x)]^{g(x)}$ where $f(x) \rightarrow 0$ and $g(x) \rightarrow 0$ as $x \rightarrow a$?
By taking the natural logarithm of both sides of $y=[f(x)]^{g(x)}$, we can convert the power to a product by writing $\ln y=g(x) \ln f(x)$. Alternatively, we can write the function as an exponential: $[f(x)]^{g(x)}=e^{g(x) \ln f(x)}$.
9. State whether each of the following limit forms is indeterminate. Where possible, state the limit.
(a) $\frac{0}{0}$: indeterminate. L'Hospital's Rule can be applied to this form. Note that every derivative is a limit of this form.
(b) $\frac{\infty}{\infty}$: indeterminate. L'Hospital's Rule can be applied to this form.
(c) $\frac{0}{\infty}$: not indeterminate. A limit of this form has value 0 .
(d) $\frac{\infty}{0}$: not indeterminate. A limit of this form could equal $\infty,-\infty$, or may not exist (but it cannot equal a finite value).
(e) $\infty+\infty$: not indeterminate. A limit of this form is equal to ∞.
(f) $\infty-\infty$: indeterminate
(g) $\infty \cdot \infty$: not indeterminate. A limit of this form is equal to ∞.
(h) $\infty \cdot 0$: indeterminate
(i) 0^{0} : indeterminate
(j) 0^{∞} : not indeterminate. A limit of this form has value 0 .
(k) ∞^{0} : indeterminate
(1) 1^{∞} : indeterminate

CHAPTER 7 CONCEPT CHECK ANSWERS

1. State the rule for integration by parts. In practice, how do you use it?

To integrate $\int f(x) g^{\prime}(x) d x$, let $u=f(x)$ and $v=g(x)$.
Then $\int u d v=u v-\int v d u$.
In practice, try to choose $u=f(x)$ to be a function that becomes simpler when differentiated (or at least not more complicated) at long as $d v=g^{\prime}(x) d x$ can be readily integrated to give v.
2. How do you evaluate $\int \sin ^{m} x \cos ^{n} x d x$ if m is odd? What if n is odd? What if m and n are both even?

If m is odd, use $\sin ^{2} x=1-\cos ^{2} x$ to write all sine factors except one in terms of cosine. Then substitute $u=\cos x$.

If n is odd, use $\cos ^{2} x=1-\sin ^{2} x$ to write all cosine factors except one in terms of sine. Then substitute $u=\sin x$.

If m and n are even, use the half-angle identities

$$
\sin ^{2} x=\frac{1}{2}(1-\cos 2 x) \quad \cos ^{2} x=\frac{1}{2}(1+\cos 2 x)
$$

3. If the expression $\sqrt{a^{2}-x^{2}}$ occurs in an integral, what substitution might you try? What if $\sqrt{a^{2}+x^{2}}$ occurs? What if $\sqrt{x^{2}-a^{2}}$ occurs?
If $\sqrt{a^{2}-x^{2}}$ occurs, try $x=a \sin \theta$; if $\sqrt{a^{2}+x^{2}}$ occurs, try $x=a \tan \theta$, and if $\sqrt{x^{2}-a^{2}}$ occurs, try $x=a \sec \theta$.
4. What is the form of the partial fraction decomposition of a rational function $P(x) / Q(x)$ if the degree of P is less than the degree of Q and $Q(x)$ has only distinct linear factors? What if a linear factor is repeated? What if $Q(x)$ has an irreducible quadratic factor (not repeated)? What if the quadratic factor is repeated?

For distinct linear factors,

$$
\frac{P(x)}{Q(x)}=\frac{A_{1}}{a_{1} x+b_{1}}+\frac{A_{2}}{a_{2} x+b_{2}}+\cdots+\frac{A_{k}}{a_{k} x+b_{k}}
$$

If the linear factor $a_{1} x+b_{1}$ is repeated r times, then we must include all the terms

$$
\frac{B_{1}}{a_{1} x+b_{1}}+\frac{B_{2}}{\left(a_{1} x+b_{1}\right)^{2}}+\cdots+\frac{B_{r}}{\left(a_{1} x+b_{1}\right)^{r}}
$$

If $Q(x)$ has an irreducible quadratic factor (not repeated), then we include a term of the form

$$
\frac{A x+B}{a x^{2}+b x+c}
$$

If the irreducible quadratic factor is repeated r times, then we include all the terms
$\frac{A_{1} x+B_{1}}{a x^{2}+b x+c}+\frac{A_{2} x+B_{2}}{\left(a x^{2}+b x+c\right)^{2}}+\cdots+\frac{A_{r} x+B_{r}}{\left(a x^{2}+b x+c\right)^{r}}$
5. State the rules for approximating the definite integral
$\int_{a}^{b} f(x) d x$ with the Midpoint Rule, the Trapezoidal Rule, and Simpson's Rule. Which would you expect to give the best estimate? How do you approximate the error for each rule? Let $a \leqslant x \leqslant b, I=\int_{a}^{b} f(x) d x$, and $\Delta x=(b-a) / n$.
Midpoint Rule:

$$
I \approx M_{n}=\Delta x\left[f\left(\bar{x}_{1}\right)+f\left(\bar{x}_{2}\right)+\cdots+f\left(\bar{x}_{n}\right)\right]
$$

where \bar{x}_{i} is the midpoint of $\left[x_{i-1}, x_{i}\right]$.

Trapezoidal Rule:

$I \approx T_{n}$
$=\frac{\Delta x}{2}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]$
where $x_{i}=a+i \Delta x$.

Simpson's Rule:

$I \approx S_{n}$

$$
\begin{aligned}
=\frac{\Delta x}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+\right. & 2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+\cdots \\
& \left.+2 f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]
\end{aligned}
$$

where n is even.
We would expect the best estimate to be given by Simpson's Rule.
Suppose $\left|f^{\prime \prime}(x)\right| \leqslant K$ and $\left|f^{(4)}(x)\right| \leqslant L$ for $a \leqslant x \leqslant b$. The errors in the Midpoint, Trapezoidal, and Simpson's Rules are given by, respectively,

$$
\begin{gathered}
\left|E_{M}\right| \leqslant \frac{K(b-a)^{3}}{24 n^{2}} \quad\left|E_{T}\right| \leqslant \frac{K(b-a)^{3}}{12 n^{2}} \\
\left|E_{S}\right| \leqslant \frac{L(b-a)^{5}}{180 n^{4}}
\end{gathered}
$$

6. Define the following improper integrals.
(a) $\int_{a}^{\infty} f(x) d x=\lim _{t \rightarrow \infty} \int_{a}^{t} f(x) d x$
(b) $\int_{-\infty}^{b} f(x) d x=\lim _{t \rightarrow-\infty} \int_{t}^{b} f(x) d x$
(c) $\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{a} f(x) d x+\int_{a}^{\infty} f(x) d x$, where a is any real number (assuming that both integrals are convergent)
7. Define the improper integral $\int_{a}^{b} f(x) d x$ for each of the following cases.
(a) f has an infinite discontinuity at a.

If f is continuous on $(a, b]$, then

$$
\int_{a}^{b} f(x) d x=\lim _{t \rightarrow a^{+}} \int_{t}^{b} f(x) d x
$$

if this limit exists (as a finite number).
(b) f has an infinite discontinuity at b.

If f is continuous on $[a, b)$, then

$$
\int_{a}^{b} f(x) d x=\lim _{t \rightarrow b^{-}} \int_{a}^{t} f(x) d x
$$

if this limit exists (as a finite number).
(c) f has an infinite discontinuity at c, where $a<c<b$. If both $\int_{a}^{c} f(x) d x$ and $\int_{c}^{b} f(x) d x$ are convergent, then

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

8. State the Comparison Theorem for improper integrals.

Suppose that f and g are continuous functions with $f(x) \geqslant g(x) \geqslant 0$ for $x \geqslant a$.
(a) If $\int_{a}^{\infty} f(x) d x$ is convergent, then $\int_{a}^{\infty} g(x) d x$ is convergent.
(b) If $\int_{a}^{\infty} g(x) d x$ is divergent, then $\int_{a}^{\infty} f(x) d x$ is divergent.

CHAPTER 8 CONCEPT CHECK ANSWERS

1. (a) How is the length of a curve defined?

We can approximate a curve C by a polygon with vertices P_{i} along C. The length L of C is defined to be the limit of the lengths of these inscribed polygons:

$$
L=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left|P_{i-1} P_{i}\right|
$$

(b) Write an expression for the length of a smooth curve given by $y=f(x), a \leqslant x \leqslant b$.

$$
L=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

(c) What if x is given as a function of y ?

If $x=g(y), c \leqslant y \leqslant d$, then $L=\int_{c}^{d} \sqrt{1+\left[g^{\prime}(y)\right]^{2}} d y$.
2. (a) Write an expression for the surface area of the surface obtained by rotating the curve $y=f(x), a \leqslant x \leqslant b$, about the x-axis.

$$
S=\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

(b) What if x is given as a function of y ?

If $x=g(y), c \leqslant y \leqslant d$, then $S=\int_{c}^{d} 2 \pi y \sqrt{1+\left[g^{\prime}(y)\right]^{2}} d y$.
(c) What if the curve is rotated about the y-axis?
or

$$
\begin{aligned}
& S=\int_{a}^{b} 2 \pi x \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x \\
& S=\int_{c}^{d} 2 \pi g(y) \sqrt{1+\left[g^{\prime}(y)\right]^{2}} d y
\end{aligned}
$$

3. Describe how we can find the hydrostatic force against a vertical wall submersed in a fluid.
We divide the wall into horizontal strips of equal height Δx and approximate each by a rectangle with horizontal length $f\left(x_{i}\right)$ at depth x_{i}. If δ is the weight density of the fluid, then the hydrostatic force is

$$
F=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \delta x_{i} f\left(x_{i}\right) \Delta x=\int_{a}^{b} \delta x f(x) d x
$$

4. (a) What is the physical significance of the center of mass of a thin plate?
The center of mass is the point at which the plate balances horizontally.
(b) If the plate lies between $y=f(x)$ and $y=0$, where $a \leqslant x \leqslant b$, write expressions for the coordinates of the center of mass.

$$
\bar{x}=\frac{1}{A} \int_{a}^{b} x f(x) d x \quad \text { and } \quad \bar{y}=\frac{1}{A} \int_{a}^{b} \frac{1}{2}[f(x)]^{2} d x
$$

where $A=\int_{a}^{b} f(x) d x$.
5. What does the Theorem of Pappus say?

If a plane region \mathscr{R} that lies entirely on one side of a line ℓ in its plane is rotated about ℓ, then the volume of the resulting solid is the product of the area of \mathscr{R} and the distance traveled by the centroid of \mathscr{R}.
6. Given a demand function $p(x)$, explain what is meant by the consumer surplus when the amount of a commodity currently available is X and the current selling price is P. Illustrate with a sketch.

The consumer surplus represents the amount of money saved by consumers in purchasing the commodity at price P [when they were willing to purchase it at price $p(x)$], corresponding to an amount demanded of X.

7. (a) What is cardiac output?

It is the volume of blood pumped by the heart per unit time, that is, the rate of flow into the aorta.
(b) Explain how the cardiac output can be measured by the dye dilution method.
An amount A of dye is injected into part of the heart and its concentration $c(t)$ leaving the heart is measured over a time interval $[0, T]$ until the dye has cleared. The cardiac output is given by $A / \int_{0}^{T} c(t) d t$.
8. What is a probability density function? What properties does such a function have?
Given a random variable X, its probability density function f is a function such that $\int_{a}^{b} f(x) d x$ gives the probability that X lies between a and b. The function f has the properties that $f(x) \geqslant 0$ for all x, and $\int_{-\infty}^{\infty} f(x) d x=1$.
9. Suppose $f(x)$ is the probability density function for the weight of a female college student, where x is measured in pounds.
(a) What is the meaning of the integral $\int_{0}^{130} f(x) d x$?

It represents the probability that a randomly chosen female college student weighs less than 130 pounds.
(b) Write an expression for the mean of this density function.

$$
\mu=\int_{-\infty}^{\infty} x f(x) d x=\int_{0}^{\infty} x f(x) d x
$$

[since $f(x)=0$ for $x<0$]
(c) How can we find the median of this density function?

The median of f is the number m such that

$$
\int_{m}^{\infty} f(x) d x=\frac{1}{2}
$$

10. What is a normal distribution? What is the significance of the standard deviation?
A normal distribution corresponds to a random variable X that has a probability density function with a bell-shaped graph and equation given by

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)}
$$

where μ is the mean and the positive constant σ is the standard deviation. σ measures how spread out the values of X are.

1. (a) What is a differential equation?

It is an equation that contains an unknown function and one or more of its derivatives.
(b) What is the order of a differential equation?

It is the order of the highest derivative that occurs in the equation.
(c) What is an initial condition?

It is a condition of the form $y\left(t_{0}\right)=y_{0}$.
2. What can you say about the solutions of the equation $y^{\prime}=x^{2}+y^{2}$ just by looking at the differential equation? The equation tells us that the slope of a solution curve at any point (x, y) is $x^{2}+y^{2}$. Note that $x^{2}+y^{2}$ is always positive except at the origin, where $y^{\prime}=x^{2}+y^{2}=0$. Thus there is a horizontal tangent at $(0,0)$ but nowhere else and the solution curves are increasing everywhere.
3. What is a direction field for the differential equation $y^{\prime}=F(x, y)$?
A direction field (or slope field) for the differential equation $y^{\prime}=F(x, y)$ is a two-dimensional graph consisting of short line segments with slope $F(x, y)$ at point (x, y).
4. Explain how Euler's method works.

Euler's method says to start at the point given by the initial value and proceed in the direction indicated by the direction field. Stop after a short time, look at the slope at the new location, and proceed in that direction. Keep stopping and changing direction according to the direction field until the approximation is complete.
5. What is a separable differential equation? How do you solve it?
It is a differential equation in which the expression for $d y / d x$ can be factored as a function of x times a function of y, that is, $d y / d x=g(x) f(y)$. We can solve the equation by rewriting it as $[1 / f(y)] d y=g(x) d x$, integrating both sides, and solving for y.
6. What is a first-order linear differential equation? How do you solve it?
A first-order linear differential equation is a differential equation that can be put in the form

$$
\frac{d y}{d x}+P(x) y=Q(x)
$$

where P and Q are continuous functions on a given interval. To solve such an equation, we multiply both sides by the integrating factor $I(x)=e^{\int P(x) d x}$ to put it in the form
$(I(x) y)^{\prime}=I(x) Q(x)$. We then integrate both sides and solve for y.
7. (a) Write a differential equation that expresses the law of natural growth. What does it say in terms of relative growth rate?
If $P(t)$ is the value of a quantity y at time t and if the rate of change of P with respect to t is proportional to its size
$P(t)$ at any time, then $\frac{d P}{d t}=k P$.
In this case the relative growth rate, $\frac{1}{P} \frac{d P}{d t}$, is constant.
(b) Under what circumstances is this an appropriate model for population growth?
It is an appropriate model under ideal conditions: unlimited environment, adequate nutrition, absence of predators and disease.
(c) What are the solutions of this equation?

If $P(0)=P_{0}$, the initial value, then the solutions are $P(t)=P_{0} e^{k t}$.
8. (a) Write the logistic differential equation.

The logistic differential equation is

$$
\frac{d P}{d t}=k P\left(1-\frac{P}{M}\right)
$$

where M is the carrying capacity.
(b) Under what circumstances is this an appropriate model for population growth?
It is an appropriate model for population growth if the population grows at a rate proportional to the size of the population in the beginning, but eventually levels off and approaches its carrying capacity because of limited resources.
9. (a) Write Lotka-Volterra equations to model populations of food-fish (F) and sharks (S).

$$
\frac{d F}{d t}=k F-a F S \quad \text { and } \quad \frac{d S}{d t}=-r S+b F S
$$

(b) What do these equations say about each population in the absence of the other?

In the absence of sharks, an ample food supply would support exponential growth of the fish population, that is, $d F / d t=k F$, where k is a positive constant. In the absence of fish, we assume that the shark population would decline at a rate proportional to itself, that is $d S / d t=-r S$, where r is a positive constant.

CHAPTER 10 CONCEPT CHECK ANSWERS

1. (a) What is a parametric curve?

A parametric curve is a set of points of the form $(x, y)=(f(t), g(t))$, where f and g are functions of a variable t, the parameter.
(b) How do you sketch a parametric curve?

Sketching a parametric curve, like sketching the graph of a function, is difficult to do in general. We can plot points on the curve by finding $f(t)$ and $g(t)$ for various values of t, either by hand or with a calculator or computer. Sometimes, when f and g are given by formulas, we can eliminate t from the equations $x=f(t)$ and $y=g(t)$ to get a Cartesian equation relating x and y. It may be easier to graph that equation than to work with the original formulas for x and y in terms of t.
2. (a) How do you find the slope of a tangent to a parametric curve?
You can find $d y / d x$ as a function of t by calculating

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t} \quad \text { if } d x / d t \neq 0
$$

(b) How do you find the area under a parametric curve?

If the curve is traced out once by the parametric equations $x=f(t), y=g(t), \alpha \leqslant t \leqslant \beta$, then the area is

$$
A=\int_{a}^{b} y d x=\int_{\alpha}^{\beta} g(t) f^{\prime}(t) d t
$$

[or $\int_{\beta}^{\alpha} g(t) f^{\prime}(t) d t$ if the leftmost point is $(f(\beta), g(\beta))$ rather than $(f(\alpha), g(\alpha))]$.
3. Write an expression for each of the following:
(a) The length of a parametric curve

If the curve is traced out once by the parametric equations $x=f(t), y=g(t), \alpha \leqslant t \leqslant \beta$, then the length is

$$
\begin{aligned}
L & =\int_{\alpha}^{\beta} \sqrt{(d x / d t)^{2}+(d y / d t)^{2}} d t \\
& =\int_{\alpha}^{\beta} \sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}} d t
\end{aligned}
$$

(b) The area of the surface obtained by rotating a parametric curve about the x-axis

$$
\begin{aligned}
S & =\int_{\alpha}^{\beta} 2 \pi y \sqrt{(d x / d t)^{2}+(d y / d t)^{2}} d t \\
& =\int_{\alpha}^{\beta} 2 \pi g(t) \sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}} d t
\end{aligned}
$$

(c) The speed of a particle traveling along a parametric curve

$$
v(t)=s^{\prime}(t)=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}
$$

4. (a) Use a diagram to explain the meaning of the polar coordinates (r, θ) of a point.

(b) Write equations that express the Cartesian coordinates (x, y) of a point in terms of the polar coordinates.

$$
x=r \cos \theta \quad y=r \sin \theta
$$

(c) What equations would you use to find the polar coordinates of a point if you knew the Cartesian coordinates?
To find a polar representation (r, θ) with $r \geqslant 0$ and $0 \leqslant \theta<2 \pi$, first calculate $r=\sqrt{ } x^{2}+y^{2}$. Then θ is specified by $\tan \theta=y / x$. Be sure to choose θ so that (r, θ) lies in the correct quadrant.
5. (a) How do you find the area of a region bounded by a polar curve?

$$
A=\int_{a}^{b} \frac{1}{2} r^{2} d \theta=\int_{a}^{b} \frac{1}{2}[f(\theta)]^{2} d \theta
$$

(b) How do you find the length of a polar curve?

$$
\begin{aligned}
L & =\int_{a}^{b} \sqrt{(d x / d \theta)^{2}+(d y / d \theta)^{2}} d \theta \\
& =\int_{a}^{b} \sqrt{r^{2}+(d r / d \theta)^{2}} d \theta \\
& =\int_{a}^{b} \sqrt{[f(\theta)]^{2}+\left[f^{\prime}(\theta)\right]^{2}} d \theta
\end{aligned}
$$

(c) How do you find the slope of a tangent line to a polar curve?

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{\frac{d}{d \theta}(y)}{\frac{d}{d \theta}(x)}=\frac{\frac{d}{d \theta}(r \sin \theta)}{\frac{d}{d \theta}(r \cos \theta)} \\
& =\frac{\left(\frac{d r}{d \theta}\right) \sin \theta+r \cos \theta}{\left(\frac{d r}{d \theta}\right) \cos \theta-r \sin \theta} \quad \text { where } r=f(\theta)
\end{aligned}
$$

6. (a) Give a geometric definition of a parabola.

A parabola is a set of points in a plane whose distances from a fixed point F (the focus) and a fixed line l (the directrix) are equal.
(b) Write an equation of a parabola with focus $(0, p)$ and directrix $y=-p$. What if the focus is $(p, 0)$ and the directrix is $x=-p$?
In the first case an equation is $x^{2}=4 p y$ and in the second case, $y^{2}=4 p x$.
(continued)

CHAPTER 10 CONCEPT CHECK ANSWERS (continued)

7. (a) Give a definition of an ellipse in terms of foci.

An ellipse is a set of points in a plane the sum of whose distances from two fixed points (the foci) is a constant.
(b) Write an equation for the ellipse with foci $(\pm c, 0)$ and vertices ($\pm a, 0)$.

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

where $a \geqslant b>0$ and $c^{2}=a^{2}-b^{2}$.
8. (a) Give a definition of a hyperbola in terms of foci.

A hyperbola is a set of points in a plane the difference of whose distances from two fixed points (the foci) is a constant. This difference should be interpreted as the larger distance minus the smaller distance.
(b) Write an equation for the hyperbola with foci $(\pm c, 0)$ and vertices $(\pm a, 0)$.

$$
\begin{aligned}
& x^{2} \\
& a^{2}
\end{aligned}-\frac{y^{2}}{b^{2}}=1
$$

where $c^{2}=a^{2}+b^{2}$.
(c) Write equations for the asymptotes of the hyperbola in part (b).

$$
y= \pm \frac{b}{a} x
$$

9. (a) What is the eccentricity of a conic section?

If a conic section has focus F and corresponding directrix l, then the eccentricity e is the fixed ratio $|P F| /|P l|$ for points P of the conic section.
(b) What can you say about the eccentricity if the conic section is an ellipse? A hyperbola? A parabola?
$e<1$ for an ellipse; $e>1$ for a hyperbola; $e=1$ for a parabola
(c) Write a polar equation for a conic section with eccentricity e and directrix $x=d$. What if the directrix is $x=-d ? y=d ? y=-d ?$

$$
\begin{array}{r}
\text { directrix } x=d: \quad r=\frac{e d}{1+e \cos \theta} \\
x=-d: \quad r=\frac{e d}{1-e \cos \theta} \\
y=d: \quad r=\frac{e d}{1+e \sin \theta} \\
y=-d: \quad r=\frac{e d}{1-e \sin \theta}
\end{array}
$$

CHAPTER 11 CONCEPT CHECK ANSWERS

1. (a) What is a convergent sequence?

A convergent sequence $\left\{a_{n}\right\}$ is an ordered list of numbers where $\lim _{n \rightarrow \infty} a_{n}$ exists.
(b) What is a convergent series?

A series $\sum a_{n}$ is the sum of a sequence of numbers. It is convergent if the partial sums $s_{n}=\sum_{i=1}^{n} a_{n}$ approach a finite value, that is, $\lim _{n \rightarrow \infty} s_{n}$ exists as a real number.
(c) What does $\lim _{n \rightarrow \infty} a_{n}=3$ mean?

The terms of the sequence $\left\{a_{n}\right\}$ approach 3 as n becomes large.
(d) What does $\sum_{n=1}^{\infty} a_{n}=3$ mean?

By adding sufficiently many terms of the series, we can make the partial sums as close to 3 as we like.
2. (a) What is a bounded sequence?

A sequence $\left\{a_{n}\right\}$ is bounded if there are numbers m and M such that $m \leqslant a_{n} \leqslant M$ for all $n \geqslant 1$.
(b) What is a monotonic sequence?

A sequence is monotonic if it is either increasing or decreasing for all $n \geqslant 1$.
(c) What can you say about a bounded monotonic sequence? Every bounded, monotonic sequence is convergent.
3. (a) What is a geometric series? Under what circumstances is it convergent? What is its sum?

A geometric series is of the form

$$
\sum_{n=1}^{\infty} a r^{n-1}=a+a r+a r^{2}+\cdots
$$

It is convergent if $|r|<1$ and its sum is $\frac{a}{1-r}$.
(b) What is a p-series? Under what circumstances is it convergent?
A p-series is of the form $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$. It is convergent if $p>1$.
4. Suppose $\sum a_{n}=3$ and s_{n} is the nth partial sum of the series.

What is $\lim _{n \rightarrow \infty} a_{n}$? What is $\lim _{n \rightarrow \infty} s_{n}$?
If $\sum a_{n}=3$, then $\lim _{n \rightarrow \infty} a_{n}=0$ and $\lim _{n \rightarrow \infty} s_{n}=3$.
5. State the following.
(a) The Test for Divergence

If $\lim _{n \rightarrow \infty} a_{n}$ does not exist or if $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.
(b) The Integral Test

Suppose f is a continuous, positive, decreasing function on $[1, \infty)$ and let $a_{n}=f(n)$.

- If $\int_{1}^{\infty} f(x) d x$ is convergent, then $\sum_{n=1}^{\infty} a_{n}$ is convergent.
- If $\int_{1}^{\infty} f(x) d x$ is divergent, then $\sum_{n=1}^{\infty} a_{n}$ is divergent.
(c) The Direct Comparison Test

Suppose that Σa_{n} and Σb_{n} are series with positive terms.

- If $\sum b_{n}$ is convergent and $a_{n} \leqslant b_{n}$ for all n, then $\sum a_{n}$ is also convergent.
- If $\sum b_{n}$ is divergent and $a_{n} \geqslant b_{n}$ for all n, then $\sum a_{n}$ is also divergent.
(d) The Limit Comparison Test

Suppose that Σa_{n} and Σb_{n} are series with positive terms. If $\lim _{n \rightarrow \infty} a_{n} / b_{n}=c$, where c is a finite number and $c>0$, then either both series converge or both diverge.
(e) The Alternating Series Test

If the alternating series

$$
\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}=b_{1}-b_{2}+b_{3}-b_{4}+b_{5}-b_{6}+\cdots
$$

where $b_{n}>0$ satisfies (i) $b_{n+1} \leqslant b_{n}$ for all n and (ii) $\lim _{n \rightarrow \infty} b_{n}=0$, then the series is convergent.
(f) The Ratio Test

- If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent (and therefore convergent).
- If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L>1$ or $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\infty$, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.
- If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=1$, the Ratio Test is inconclusive.
(g) The Root Test
- If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent (and therefore convergent).
- If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L>1$ or $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\infty$, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.
- If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=1$, the Root Test is inconclusive.

6. (a) What is an absolutely convergent series?

A series $\sum a_{n}$ is called absolutely convergent if the series of absolute values $\Sigma\left|a_{n}\right|$ is convergent.
(b) What can you say about such a series?

If a series $\sum a_{n}$ is absolutely convergent, then it is convergent.
(c) What is a conditionally convergent series?

A series $\sum a_{n}$ is called conditionally convergent if it is convergent but not absolutely convergent.

CHAPTER 11 CONCEPT CHECK ANSWERS (continued)

7. (a) If a series is convergent by the Integral Test, how do you estimate its sum?

The sum s can be estimated by the inequality

$$
s_{n}+\int_{n+1}^{\infty} f(x) d x \leqslant s \leqslant s_{n}+\int_{n}^{\infty} f(x) d x
$$

where s_{n} is the nth partial sum.
(b) If a series is convergent by the Direct Comparison Test, how do you estimate its sum?
We first estimate the remainder for the comparison series. This gives an upper bound for the remainder of the original series (as in Example 11.4.5).
(c) If a series is convergent by the Alternating Series Test, how do you estimate its sum?
We can use a partial sum s_{n} of an alternating series as an approximation to the total sum. The size of the error is guaranteed to be no more than $\left|a_{n+1}\right|$, the absolute value of the first neglected term.
8. (a) Write the general form of a power series.

A power series centered at a is

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}
$$

(b) What is the radius of convergence of a power series?

Given the power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$, the radius of convergence is:
(i) 0 if the series converges only when $x=a$,
(ii) ∞ if the series converges for all x, or
(iii) a positive number R such that the series converges if $|x-a|<R$ and diverges if $|x-a|>R$.
(c) What is the interval of convergence of a power series?

The interval of convergence of a power series is the interval that consists of all values of x for which the series converges. Corresponding to the cases in part (b), the interval of convergence is (i) the single point $\{a\}$, (ii) $(-\infty, \infty)$, or (iii) an interval with endpoints $a-R$ and $a+R$ that can contain neither, either, or both of the endpoints.
9. Suppose $f(x)$ is the sum of a power series with radius of convergence R.
(a) How do you differentiate f ? What is the radius of convergence of the series for f^{\prime} ?
If $f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$, then $f^{\prime}(x)=\sum_{n=1}^{\infty} n c_{n}(x-a)^{n-1}$ with radius of convergence R.
(b) How do you integrate f ? What is the radius of convergence of the series for $\int f(x) d x$?
$\int f(x) d x=C+\sum_{n=0}^{\infty} c_{n} \frac{(x-a)^{n+1}}{n+1}$ with radius of convergence R.
10. (a) Write an expression for the n th-degree Taylor polynomial of f centered at a.

$$
T_{n}(x)=\sum_{i=0}^{n} \frac{f^{(i)}(a)}{i!}(x-a)^{i}
$$

(b) Write an expression for the Taylor series of f centered at a.

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

(c) Write an expression for the Maclaurin series of f.

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n} \quad[a=0 \text { in part }(\mathrm{b})]
$$

(d) How do you show that $f(x)$ is equal to the sum of its Taylor series?
If $f(x)=T_{n}(x)+R_{n}(x)$, where $T_{n}(x)$ is the n th-degree Taylor polynomial of f and $R_{n}(x)$ is the remainder of the Taylor series, then we must show that

$$
\lim _{n \rightarrow \infty} R_{n}(x)=0
$$

(e) State Taylor's Inequality.

If $\left|f^{(n+1)}(x)\right| \leqslant M$ for $|x-a| \leqslant d$, then the remainder $R_{n}(x)$ of the Taylor series satisfies the inequality

$$
\left|R_{n}(x)\right| \leqslant \frac{M}{(n+1)!}|x-a|^{n+1} \quad \text { for }|x-a| \leqslant d
$$

11. Write the Maclaurin series and the interval of convergence for each of the following functions.
(a) $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}, \quad R=1$
(b) $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}, \quad R=\infty$
(c) $\sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}, \quad R=\infty$
(d) $\cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}, \quad R=\infty$
(e) $\tan ^{-1} x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}, \quad R=1$
(f) $\ln (1+x)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}, \quad R=1$
12. Write the binomial series expansion of $(1+x)^{k}$. What is the radius of convergence of this series?
If k is any real number and $|x|<1$, then

$$
\begin{aligned}
(1+x)^{k} & =\sum_{n=0}^{\infty}\binom{k}{n} x^{n} \\
& =1+k x+\frac{k(k-1)}{2!} x^{2}+\frac{k(k-1)(k-2)}{3!} x^{3}+\cdots
\end{aligned}
$$

The radius of convergence for the binomial series is 1 .

CHAPTER 12 CONCEPT CHECK ANSWERS

1. What is the difference between a vector and a scalar?

A scalar is a real number, whereas a vector is a quantity that has both a real-valued magnitude and a direction.
2. How do you add two vectors geometrically? How do you add them algebraically?
To add two vectors geometrically, we can use either the Triangle Law or the Parallelogram Law:

Triangle Law

Parallelogram Law

Algebraically, we add the corresponding components of the vectors.
3. If \mathbf{a} is a vector and c is a scalar, how is $c \mathbf{a}$ related to a geometrically? How do you find c a algebraically?
For $c>0, c \mathbf{a}$ is a vector with the same direction as \mathbf{a} and length c times the length of \mathbf{a}. If $c<0, c \mathbf{a}$ points in the direction opposite to a and has length $|c|$ times the length of \mathbf{a}. Algebraically, to find $c \mathbf{a}$ we multiply each component of a by c.
4. How do you find the vector from one point to another?

The vector from point $A\left(x_{1}, y_{1}, z_{1}\right)$ to point $B\left(x_{2}, y_{2}, z_{2}\right)$ is given by

$$
\left\langle x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right\rangle
$$

5. How do you find the dot product $\mathbf{a} \cdot \mathbf{b}$ of two vectors if you know their lengths and the angle between them? What if you know their components?
If θ is the angle between the vectors \mathbf{a} and \mathbf{b}, then

$$
\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta
$$

If $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$, then

$$
\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

6. How are dot products useful?

The dot product can be used to find the angle between two vectors. In particular, it can be used to determine whether two vectors are orthogonal. We can also use the dot product to find the scalar projection of one vector onto another. Additionally, if a constant force moves an object, the work done is the dot product of the force and displacement vectors.
7. Write expressions for the scalar and vector projections of \mathbf{b} onto a. Illustrate with diagrams.

Scalar projection of \mathbf{b} onto $\mathbf{a}: \quad \operatorname{comp}_{\mathbf{a}} \mathbf{b}=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}$

Vector projection of \mathbf{b} onto \mathbf{a} :

$$
\operatorname{proj}_{\mathbf{a}} \mathbf{b}=\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}\right) \frac{\mathbf{a}}{|\mathbf{a}|}=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^{2}} \mathbf{a}
$$

8. How do you find the cross product $\mathbf{a} \times \mathbf{b}$ of two vectors if you know their lengths and the angle between them? What if you know their components?
If θ is the angle between \mathbf{a} and $\mathbf{b}(0 \leqslant \theta \leqslant \pi)$, then $\mathbf{a} \times \mathbf{b}$ is the vector with length $|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}||\mathbf{b}| \sin \theta$ and direction orthogonal to both \mathbf{a} and \mathbf{b}, as given by the right-hand rule. If

$$
\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle \quad \text { and } \quad \mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle
$$

then

$$
\begin{aligned}
\mathbf{a} \times \mathbf{b} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| \\
& =\left\langle a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}\right\rangle
\end{aligned}
$$

9. How are cross products useful?

The cross product can be used to create a vector orthogonal to two given vectors and it can be used to compute the area of a parallelogram determined by two vectors. Two nonzero vectors are parallel if and only if their cross product is $\mathbf{0}$. In addition, if a force acts on a rigid body, then the torque vector is the cross product of the position and force vectors.

CHAPTER 12 CONCEPT CHECK ANSWERS (continued)

10. (a) How do you find the area of the parallelogram determined by \mathbf{a} and \mathbf{b} ?
The area of the parallelogram determined by \mathbf{a} and \mathbf{b} is the length of the cross product: $|\mathbf{a} \times \mathbf{b}|$.
(b) How do you find the volume of the parallelepiped determined by \mathbf{a}, \mathbf{b}, and \mathbf{c} ?
The volume of the parallelepiped determined by \mathbf{a}, \mathbf{b}, and \mathbf{c} is the magnitude of their scalar triple product: $|\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})|$.
11. How do you find a vector perpendicular to a plane?

If an equation of the plane is known, it can be written in the form $a x+b y+c z+d=0$. A normal vector, which is perpendicular to the plane, is $\langle a, b, c\rangle$ (or any nonzero scalar multiple of $\langle a, b, c\rangle$). If an equation is not known, we can use points on the plane to find two nonparallel vectors that lie in the plane. The cross product of these vectors is a vector perpendicular to the plane.
12. How do you find the angle between two intersecting planes?

The angle between two intersecting planes is defined as the acute angle θ between their normal vectors. If \mathbf{n}_{1} and \mathbf{n}_{2} are the normal vectors, then

$$
\cos \theta=\frac{\mathbf{n}_{1} \cdot \mathbf{n}_{2}}{\left|\mathbf{n}_{1}\right|\left|\mathbf{n}_{2}\right|}
$$

13. Write a vector equation, parametric equations, and symmetric equations for a line.
A vector equation for a line that is parallel to a vector \mathbf{v} and that passes through a point with position vector \mathbf{r}_{0} is $\mathbf{r}=\mathbf{r}_{0}+t \mathbf{v}$. Parametric equations for a line through the point $\left(x_{0}, y_{0}, z_{0}\right)$ and parallel to the vector $\langle a, b, c\rangle$ are

$$
x=x_{0}+a t \quad y=y_{0}+b t \quad z=z_{0}+c t
$$

while symmetric equations are

$$
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}
$$

14. Write a vector equation and a scalar equation for a plane.

A vector equation of a plane that passes through a point with position vector \mathbf{r}_{0} and that has normal vector \mathbf{n} (meaning \mathbf{n} is orthogonal to the plane) is $\mathbf{n} \cdot\left(\mathbf{r}-\mathbf{r}_{0}\right)=0$ or, equivalently, $\mathbf{n} \cdot \mathbf{r}=\mathbf{n} \cdot \mathbf{r}_{0}$.

A scalar equation of a plane through a point $\left(x_{0}, y_{0}, z_{0}\right)$ with normal vector $\mathbf{n}=\langle a, b, c\rangle$ is

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
$$

15. (a) How do you tell if two vectors are parallel?

Two (nonzero) vectors are parallel if and only if one is a scalar multiple of the other. In addition, two nonzero vectors are parallel if and only if their cross product is $\mathbf{0}$.
(b) How do you tell if two vectors are perpendicular?

Two vectors are perpendicular if and only if their dot product is 0 .
(c) How do you tell if two planes are parallel?

Two planes are parallel if and only if their normal vectors are parallel.
16. (a) Describe a method for determining whether three points P, Q, and R lie on the same line.
Determine the vectors $\overrightarrow{P Q}=\mathbf{a}$ and $\overrightarrow{P R}=\mathbf{b}$. If there is a scalar t such that $\mathbf{a}=t \mathbf{b}$, then the vectors are parallel and the points must all lie on the same line.
Alternatively, if $\overrightarrow{P Q} \times \overrightarrow{P R}=\mathbf{0}$, then $\overrightarrow{P Q}$ and $\overrightarrow{P R}$ are parallel, so P, Q, and R are collinear.
An algebraic method is to determine an equation of the line joining two of the points, and then check whether or not the third point satisfies this equation.
(b) Describe a method for determining whether four points P, Q, R, and S lie in the same plane.
Find the vectors $\overrightarrow{P Q}=\mathbf{a}, \overrightarrow{P R}=\mathbf{b}, \overrightarrow{P S}=\mathbf{c}$. Then $\mathbf{a} \times \mathbf{b}$ is normal to the plane formed by P, Q, and R, and so S lies on this plane if $\mathbf{a} \times \mathbf{b}$ and \mathbf{c} are orthogonal, that is, if $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}=0$.
Alternatively, we can check if the volume of the parallelepiped determined by \mathbf{a}, \mathbf{b}, and \mathbf{c} is 0 (see Example 12.4.5).

An algebraic method is to find an equation of the plane determined by three of the points, and then check whether or not the fourth point satisfies this equation.
17. (a) How do you find the distance from a point to a line? Let P be a point not on the line L that passes through the points Q and R and let $\mathbf{a}=\overrightarrow{Q R}, \mathbf{b}=\overrightarrow{Q P}$. The distance from the point P to the line L is

$$
d=\frac{|\mathbf{a} \times \mathbf{b}|}{|\mathbf{a}|}
$$

(b) How do you find the distance from a point to a plane? Let $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ be any point in the plane $a x+b y+c z+d=0$ and let $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ be a point not in the plane. If $\mathbf{b}=\overrightarrow{P_{0} P_{1}}=\left\langle x_{1}-x_{0}, y_{1}-y_{0}, z_{1}-z_{0}\right\rangle$, then the distance D from P_{1} to the plane is equal to the absolute value of the scalar projection of \mathbf{b} onto the plane's normal vector $\mathbf{n}=\langle a, b, c\rangle$:
$D=\left|\operatorname{comp}_{\mathbf{n}} \mathbf{b}\right|=\frac{|\mathbf{n} \cdot \mathbf{b}|}{|\mathbf{n}|}=\frac{\left|a x_{1}+b y_{1}+c z_{1}+d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}$
(c) How do you find the distance between two lines?

Two skew lines L_{1} and L_{2} can be viewed as lying on two parallel planes, each with normal vector $\mathbf{n}=\mathbf{v}_{1} \times \mathbf{v}_{2}$, where \mathbf{v}_{1} and \mathbf{v}_{2} are the direction vectors of L_{1} and L_{2}. After choosing one point on L_{1} and determining the equation of the plane containing L_{2}, we can proceed as in part (b). (See Example 12.5.9.)

CHAPTER 12 CONCEPT CHECK ANSWERS (continued)

18. What are the traces of a surface? How do you find them? The traces of a surface are the curves of intersection of the surface with planes parallel to the coordinate planes. We can find the trace in the plane $x=k$ (parallel to the $y z$-plane) by setting $x=k$ and determining the curve represented by the resulting equation. Traces in the planes $y=k$ (parallel to the $x z$-plane) and $z=k$ (parallel to the $x y$-plane) are found similarly.
19. Write equations in standard form of the six types of quadric surfaces.
Equations for the quadric surfaces symmetric with respect to the z-axis are as follows.

$$
\begin{array}{ll}
\text { Ellipsoid: } & \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 \\
\text { Cone: } & \frac{z^{2}}{c^{2}}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}
\end{array}
$$

Elliptic paraboloid: $\frac{z}{c}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$

Hyperboloid of one sheet: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1$

Hyperboloid of two sheets: $-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$

Hyperbolic paraboloid: $\frac{z}{c}=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}$

CHAPTER 13 CONCEPT CHECK ANSWERS

1. What is a vector function? How do you find its derivative and its integral?
A vector function is a function whose domain is a set of real numbers and whose range is a set of vectors. To find the derivative or integral, we can differentiate or integrate each component function of the vector function.
2. What is the connection between vector functions and space curves?
A continuous vector function \mathbf{r} defines a space curve that is traced out by the tip of the moving position vector $\mathbf{r}(t)$.
3. How do you find the tangent vector to a smooth curve at a point? How do you find the tangent line? The unit tangent vector?

The tangent vector to a smooth curve at a point P with position vector $\mathbf{r}(t)$ is the vector $\mathbf{r}^{\prime}(t)$. The tangent line at P is the line through P parallel to the tangent vector $\mathbf{r}^{\prime}(t)$. The unit tangent vector is $\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}$.
4. If \mathbf{u} and \mathbf{v} are differentiable vector functions, c is a scalar, and f is a real-valued function, write the rules for differentiating the following vector functions.
(a) $\mathbf{u}(t)+\mathbf{v}(t)$

$$
\frac{d}{d t}[\mathbf{u}(t)+\mathbf{v}(t)]=\mathbf{u}^{\prime}(t)+\mathbf{v}^{\prime}(t)
$$

(b) $c \mathbf{u}(t)$

$$
\frac{d}{d t}[c \mathbf{u}(t)]=c \mathbf{u}^{\prime}(t)
$$

(c) $f(t) \mathbf{u}(t)$

$$
\frac{d}{d t}[f(t) \mathbf{u}(t)]=f^{\prime}(t) \mathbf{u}(t)+f(t) \mathbf{u}^{\prime}(t)
$$

(d) $\mathbf{u}(t) \cdot \mathbf{v}(t)$

$$
\frac{d}{d t}[\mathbf{u}(t) \cdot \mathbf{v}(t)]=\mathbf{u}^{\prime}(t) \cdot \mathbf{v}(t)+\mathbf{u}(t) \cdot \mathbf{v}^{\prime}(t)
$$

(e) $\mathbf{u}(t) \times \mathbf{v}(t)$

$$
\frac{d}{d t}[\mathbf{u}(t) \times \mathbf{v}(t)]=\mathbf{u}^{\prime}(t) \times \mathbf{v}(t)+\mathbf{u}(t) \times \mathbf{v}^{\prime}(t)
$$

(f) $\mathbf{u}(f(t))$

$$
\frac{d}{d t}[\mathbf{u}(f(t))]=f^{\prime}(t) \mathbf{u}^{\prime}(f(t))
$$

5. How do you find the length of a space curve given by a vector function $\mathbf{r}(t)$?
If $\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle, a \leqslant t \leqslant b$, and the curve is traversed exactly once as t increases from a to b, then the length is

$$
L=\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t=\int_{a}^{b} \sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}+\left[h^{\prime}(t)\right]^{2}} d t
$$

6. (a) What is the definition of curvature?

The curvature of a curve is $\kappa=\left|\frac{d \mathbf{T}}{d s}\right|$ where \mathbf{T} is the
unit tangent vector.
(b) Write a formula for curvature in terms of $\mathbf{r}^{\prime}(t)$ and $\mathbf{T}^{\prime}(t)$.

$$
\kappa(t)=\frac{\left|\mathbf{T}^{\prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|}
$$

(c) Write a formula for curvature in terms of $\mathbf{r}^{\prime}(t)$ and $\mathbf{r}^{\prime \prime}(t)$.

$$
\kappa(t)=\frac{\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|^{3}}
$$

(d) Write a formula for the curvature of a plane curve with equation $y=f(x)$.

$$
\kappa(x)=\frac{\left|f^{\prime \prime}(x)\right|}{\left[1+\left(f^{\prime}(x)\right)^{2}\right]^{3 / 2}}
$$

7. (a) Write formulas for the unit normal and binormal vectors of a smooth space curve $\mathbf{r}(t)$.
Unit normal vector: $\mathbf{N}(t)=\frac{\mathbf{T}^{\prime}(t)}{\left|\mathbf{T}^{\prime}(t)\right|}$
Binormal vector: $\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$
(b) What is the normal plane of a curve at a point? What is the osculating plane? What is the osculating circle?

The normal plane of a curve at a point P is the plane determined by the normal and binormal vectors \mathbf{N} and \mathbf{B} at P. The tangent vector \mathbf{T} is orthogonal to the normal plane.
The osculating plane at P is the plane determined by the vectors \mathbf{T} and \mathbf{N}. It is the plane that comes closest to containing the part of the curve near P.
The osculating circle at P is the circle that lies in the osculating plane of C at P, has the same tangent as C at P, lies on the concave side of C (toward which \mathbf{N} points), and has radius $\rho=1 / \kappa$ (the reciprocal of the curvature). It is the circle that best describes how C behaves near P; it shares the same tangent, normal, and curvature at P.

CHAPTER 13 CONCEPT CHECK ANSWERS (continued)

8. (a) How do you find the velocity, speed, and acceleration of a particle that moves along a space curve?
If $\mathbf{r}(t)$ is the position vector of the particle on the space curve, the velocity vector is $\mathbf{v}(t)=\mathbf{r}^{\prime}(t)$, the speed is given by $|\mathbf{v}(t)|$, and the acceleration is $\mathbf{a}(t)=\mathbf{v}^{\prime}(t)=\mathbf{r}^{\prime \prime}(t)$.
(b) Write the acceleration in terms of its tangential and normal components.
$\mathbf{a}=a_{T} \mathbf{T}+a_{N} \mathbf{N}$, where $a_{T}=v^{\prime}$ and $a_{N}=\kappa v^{2}(v=|\mathbf{v}|$ is speed and κ is the curvature).
9. State Kepler's Laws.

- A planet revolves around the sun in an elliptical orbit with the sun at one focus.
- The line joining the sun to a planet sweeps out equal areas in equal times.
- The square of the period of revolution of a planet is proportional to the cube of the length of the major axis of its orbit.

CHAPTER 14 CONCEPT CHECK ANSWERS

1. (a) What is a function of two variables?

A function f of two variables is a rule that assigns to each ordered pair (x, y) of real numbers in its domain a unique real number denoted by $f(x, y)$.
(b) Describe three methods for visualizing a function of two variables.

One way to visualize a function of two variables is by graphing it, resulting in the surface $z=f(x, y)$. Another method is a contour map, consisting of level curves $f(x, y)=k$ (k a constant), which are horizontal traces of the graph of the function projected onto the $x y$-plane. Also, we can use an arrow diagram such as the one below.

2. What is a function of three variables? How can you visualize such a function?

A function f of three variables is a rule that assigns to each ordered triple (x, y, z) in its domain a unique real number $f(x, y, z)$. We can visualize a function of three variables by examining its level surfaces $f(x, y, z)=k$, where k is a constant.
3. What does

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L
$$

mean? How can you show that such a limit does not exist?
$\lim _{x, y) \rightarrow(a, b)} f(x, y)=L$ means that the values of $f(x, y)$ approach the number L as the point (x, y) approaches the point (a, b) along any path that is within the domain of f. We can show that a limit at a point does not exist by finding two different paths approaching the point along which $f(x, y)$ has different limits.
4. (a) What does it mean to say that f is continuous at (a, b) ?

A function f of two variables is continuous at (a, b) if

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)
$$

(b) If f is continuous on \mathbb{R}^{2}, what can you say about its graph?
If f is continuous on \mathbb{R}^{2}, its graph will appear as a surface without holes or breaks.
5. (a) Write expressions for the partial derivatives $f_{x}(a, b)$ and $f_{y}(a, b)$ as limits.

$$
\begin{aligned}
& f_{x}(a, b)=\lim _{h \rightarrow 0} \frac{f(a+h, b)-f(a, b)}{h} \\
& f_{y}(a, b)=\lim _{h \rightarrow 0} \frac{f(a, b+h)-f(a, b)}{h}
\end{aligned}
$$

(b) How do you interpret $f_{x}(a, b)$ and $f_{y}(a, b)$ geometrically? How do you interpret them as rates of change?

If $f(a, b)=c$, then the point $P(a, b, c)$ lies on the surface S given by $z=f(x, y)$. We can interpret $f_{x}(a, b)$ as the slope of the tangent line at P to the curve of intersection of the vertical plane $y=b$ and S. In other words, if we restrict ourselves to the path along S through P that is parallel to the $x z$-plane, then $f_{x}(a, b)$ is the slope at P looking in the positive x-direction. Similarly, $f_{y}(a, b)$ is the slope of the tangent line at P to the curve of intersection of the vertical plane $x=a$ and S.
If $z=f(x, y)$, then $f_{x}(x, y)$ can be interpreted as the rate of change of z with respect to x when y is fixed. Thus $f_{x}(a, b)$ is the rate of change of z (with respect to x) when y is fixed at b and x is allowed to vary from a. Similarly, $f_{y}(a, b)$ is the rate of change of z (with respect to y) when x is fixed at a and y is allowed to vary from b.
(c) If $f(x, y)$ is given by a formula, how do you calculate f_{x} and f_{y} ?
To find f_{x}, regard y as a constant and differentiate $f(x, y)$ with respect to x. To find f_{y}, regard x as a constant and differentiate $f(x, y)$ with respect to y.
6. What does Clairaut's Theorem say?

If f is a function of two variables that is defined on a disk D containing the point (a, b) and the functions $f_{x y}$ and $f_{y x}$ are both continuous on D, then Clairaut's Theorem states that $f_{x y}(a, b)=f_{y x}(a, b)$.
7. How do you find a tangent plane to each of the following types of surfaces?
(a) A graph of a function of two variables, $z=f(x, y)$

If f has continuous partial derivatives, an equation of the tangent plane to the surface $z=f(x, y)$ at the point $\left(x_{0}, y_{0}, z_{0}\right)$ is

$$
z-z_{0}=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

(b) A level surface of a function of three variables, $F(x, y, z)=k$

The tangent plane to the level surface $F(x, y, z)=k$ at $P\left(x_{0}, y_{0}, z_{0}\right)$ is the plane that passes through P and has normal vector $\nabla F\left(x_{0}, y_{0}, z_{0}\right)$:

$$
\begin{aligned}
F_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+ & F_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right) \\
& +F_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)=0
\end{aligned}
$$

CHAPTER 14 CONCEPT CHECK ANSWERS (continued)

8. Define the linearization of f at (a, b). What is the corresponding linear approximation? What is the geometric interpretation of the linear approximation?
The linearization of f at (a, b) is the linear function whose graph is the tangent plane to the surface $z=f(x, y)$ at the point $(a, b, f(a, b))$:

$$
L(x, y)=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

The linear approximation of f at (a, b) is

$$
f(x, y) \approx f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

Geometrically, the linear approximation says that function values $f(x, y)$ can be approximated by values $L(x, y)$ from the tangent plane to the graph of f at $(a, b, f(a, b))$ when (x, y) is near (a, b).
9. (a) What does it mean to say that f is differentiable at (a, b) ? If $z=f(x, y)$, then f is differentiable at (a, b) if Δz can be expressed in the form

$$
\Delta z=f_{x}(a, b) \Delta x+f_{y}(a, b) \Delta y+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y
$$

where ε_{1} and $\varepsilon_{2} \rightarrow 0$ as $(\Delta x, \Delta y) \rightarrow(0,0)$. In other words, a differentiable function is one for which the linear approximation as stated above is a good approximation when (x, y) is near (a, b).
(b) How do you usually verify that f is differentiable? If the partial derivatives f_{x} and f_{y} exist near (a, b) and are continuous at (a, b), then f is differentiable at (a, b).
10. If $z=f(x, y)$, what are the differentials $d x, d y$, and $d z$?

The differentials $d x$ and $d y$ are independent variables that can be given any values. If f is differentiable, the differential $d z$ is then defined by

$$
d z=f_{x}(x, y) d x+f_{y}(x, y) d y
$$

11. State the Chain Rule for the case where $z=f(x, y)$ and x and y are functions of one variable. What if x and y are functions of two variables?
Suppose that $z=f(x, y)$ is a differentiable function of x and y, where $x=g(t)$ and $y=h(t)$ are both differentiable functions of t. Then z is a differentiable function of t and

$$
\frac{d z}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}
$$

If $z=f(x, y)$ is a differentiable function of x and y, where $x=g(s, t)$ and $y=h(s, t)$ are differentiable functions of s and t, then

$$
\frac{\partial z}{\partial s}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \quad \frac{\partial z}{\partial t}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t}
$$

12. If z is defined implicitly as a function of x and y by an equation of the form $F(x, y, z)=0$, how do you find $\partial z / \partial x$ and $\partial z / \partial y$?
If F is differentiable and $\partial F / \partial z \neq 0$, then

$$
\frac{\partial z}{\partial x}=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}} \quad \frac{\partial z}{\partial y}=-\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}}
$$

13. (a) Write an expression as a limit for the directional derivative of f at $\left(x_{0}, y_{0}\right)$ in the direction of a unit vector $\mathbf{u}=\langle a, b\rangle$. How do you interpret it as a rate? How do you interpret it geometrically?
The directional derivative of f at $\left(x_{0}, y_{0}\right)$ in the direction of \mathbf{u} is

$$
D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h a, y_{0}+h b\right)-f\left(x_{0}, y_{0}\right)}{h}
$$

if this limit exists.
We can interpret it as the rate of change of f (with respect to distance) at $\left(x_{0}, y_{0}\right)$ in the direction of \mathbf{u}.
Geometrically, if P is the point $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ on the graph of f and C is the curve of intersection of the graph of f with the vertical plane that passes through P in the direction of \mathbf{u}, then $D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)$ is the slope of the tangent line to C at P.
(b) If f is differentiable, write an expression for $D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)$ in terms of f_{x} and f_{y}.

$$
D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)=f_{x}\left(x_{0}, y_{0}\right) a+f_{y}\left(x_{0}, y_{0}\right) b
$$

14. (a) Define the gradient vector ∇f for a function f of two or three variables.
If f is a function of two variables, then

$$
\nabla f(x, y)=\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}
$$

For a function f of three variables,

$$
\begin{aligned}
\nabla f(x, y, z) & =\left\langle f_{x}(x, y, z), f_{y}(x, y, z), f_{z}(x, y, z)\right\rangle \\
& =\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}+\frac{\partial f}{\partial z} \mathbf{k}
\end{aligned}
$$

(b) Express $D_{\mathrm{u}} f$ in terms of ∇f.

$$
\begin{aligned}
D_{\mathbf{u}} f(x, y) & =\nabla f(x, y) \cdot \mathbf{u} \\
D_{\mathbf{u}} f(x, y, z) & =\nabla f(x, y, z) \cdot \mathbf{u}
\end{aligned}
$$

or

CHAPTER 14 CONCEPT CHECK ANSWERS (continued)

(c) Explain the geometric significance of the gradient.

The gradient vector of f gives the direction of maximum rate of increase of f. On the graph of $z=f(x, y), \nabla f$ points in the direction of steepest ascent. Also, the gradient vector is perpendicular to the level curves or level surfaces of a function.
15. What do the following statements mean?
(a) f has a local maximum at (a, b).
f has a local maximum at (a, b) if $f(x, y) \leqslant f(a, b)$ when (x, y) is near (a, b).
(b) f has an absolute maximum at (a, b).
f has an absolute maximum at (a, b) if $f(x, y) \leqslant f(a, b)$ for all points (x, y) in the domain of f.
(c) f has a local minimum at (a, b).
f has a local minimum at (a, b) if $f(x, y) \geqslant f(a, b)$ when (x, y) is near (a, b).
(d) f has an absolute minimum at (a, b).
f has an absolute minimum at (a, b) if $f(x, y) \geqslant f(a, b)$ for all points (x, y) in the domain of f.
(e) f has a saddle point at (a, b).
f has a saddle point at (a, b) if $f(a, b)$ is a local maximum in one direction but a local minimum in another.
16. (a) If f has a local maximum at (a, b), what can you say about its partial derivatives at (a, b) ?
If f has a local maximum at (a, b) and the first-order partial derivatives of f exist there, then $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$.
(b) What is a critical point of f ?

A critical point of f is a point (a, b) such that $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$ or one of these partial derivatives does not exist.
17. State the Second Derivatives Test.

Suppose the second partial derivatives of f are continuous on a disk with center (a, b), and suppose that $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$ [that is, (a, b) is a critical point of f]. Let

$$
D=D(a, b)=f_{x x}(a, b) f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2}
$$

- If $D>0$ and $f_{x x}(a, b)>0$, then $f(a, b)$ is a local minimum.
- If $D>0$ and $f_{x x}(a, b)<0$, then $f(a, b)$ is a local maximum.
- If $D<0$, then $f(a, b)$ is not a local maximum or minimum. The point (a, b) is a saddle point of f.

18. (a) What is a closed set in \mathbb{R}^{2} ? What is a bounded set?

A closed set in \mathbb{R}^{2} is one that contains all its boundary points. If one or more points on the boundary curve are omitted, the set is not closed.
A bounded set is one that is contained within some disk. In other words, it is finite in extent.
(b) State the Extreme Value Theorem for functions of two variables.

If f is continuous on a closed, bounded set D in \mathbb{R}^{2}, then f attains an absolute maximum value $f\left(x_{1}, y_{1}\right)$ and an absolute minimum value $f\left(x_{2}, y_{2}\right)$ at some points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in D.
(c) How do you find the values that the Extreme Value Theorem guarantees?

- Find the values of f at the critical points of f in D.
- Find the extreme values of f on the boundary of D.
- The largest of the values from the above steps is the absolute maximum value; the smallest of these values is the absolute minimum value.

19. Explain how the method of Lagrange multipliers works in finding the extreme values of $f(x, y, z)$ subject to the constraint $g(x, y, z)=k$. What if there is a second constraint $h(x, y, z)=c$?
To find the maximum and minimum values of $f(x, y, z)$ subject to the constraint $g(x, y, z)=k$ [assuming that these extreme values exist and $\nabla g \neq \mathbf{0}$ on the surface $g(x, y, z)=k]$, we first find all values of x, y, z, and λ where $\nabla f(x, y, z)=\lambda \nabla g(x, y, z)$ and $g(x, y, z)=k$. (Thus we are finding the points from the constraint where the gradient vectors ∇f and ∇g are parallel.) Evaluate f at all the resulting points (x, y, z); the largest of these values is the maximum value of f, and the smallest is the minimum value of f.
If there is a second constraint $h(x, y, z)=c$, then we find all values of x, y, z, λ, and μ such that

$$
\nabla f(x, y, z)=\lambda \nabla g(x, y, z)+\mu \nabla h(x, y, z)
$$

Again we find the extreme values of f by evaluating f at the resulting points (x, y, z).

CHAPTER 15 CONCEPT CHECK ANSWERS

1. Suppose f is a continuous function defined on a rectangle $R=[a, b] \times[c, d]$.
(a) Write an expression for a double Riemann sum of f. If $f(x, y) \geqslant 0$, what does the sum represent?
A double Riemann sum of f is

$$
\sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A
$$

where ΔA is the area of each subrectangle and $\left(x_{i j}^{*}, y_{i j}^{*}\right)$ is a sample point in each subrectangle. If $f(x, y) \geqslant 0$, this sum represents an approximation to the volume of the solid that lies above the rectangle R and below the graph of f.
(b) Write the definition of $\iint_{R} f(x, y) d A$ as a limit.

$$
\iint_{R} f(x, y) d A=\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A
$$

(c) What is the geometric interpretation of $\iint_{R} f(x, y) d A$ if $f(x, y) \geqslant 0$? What if f takes on both positive and negative values?
If $f(x, y) \geqslant 0, \iint_{R} f(x, y) d A$ represents the volume of the solid that lies above the rectangle R and below the surface $z=f(x, y)$. If f takes on both positive and negative values, then $\iint_{R} f(x, y) d A$ is $V_{1}-V_{2}$, where V_{1} is the volume above R and below the surface $z=f(x, y)$, and V_{2} is the volume below R and above the surface.
(d) How do you evaluate $\iint_{R} f(x, y) d A$?

We usually evaluate $\iint_{R} f(x, y) d A$ as an iterated integral according to Fubini's Theorem:
$\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y$
(e) What does the Midpoint Rule for double integrals say?

The Midpoint Rule for double integrals says that we approximate the double integral $\iint_{R} f(x, y) d A$ by the double Riemann sum $\sum_{i=1}^{m} \sum_{j=1}^{n} f\left(\bar{x}_{i}, \bar{y}_{j}\right) \Delta A$, where the sample points $\left(\bar{x}_{i}, \bar{y}_{j}\right)$ are the centers of the subrectangles.
(f) Write an expression for the average value of f.

$$
f_{\mathrm{ave}}=\frac{1}{A(R)} \iint_{R} f(x, y) d A
$$

where $A(R)$ is the area of R.
2. (a) How do you define $\iint_{D} f(x, y) d A$ if D is a bounded region that is not a rectangle?
Since D is bounded, it can be enclosed in a rectangular region R. We define a new function F with domain R by
$F(x, y)= \begin{cases}f(x, y) & \text { if }(x, y) \text { is in } D \\ 0 & \text { if }(x, y) \text { is in } R \text { but not in } D\end{cases}$

Then we define

$$
\iint_{D} f(x, y) d A=\iint_{R} F(x, y) d A
$$

(b) What is a type I region? How do you evaluate $\iint_{D} f(x, y) d A$ if D is a type I region?
A region D is of type I if it lies between the graphs of two continuous functions of x, that is,

$$
D=\left\{(x, y) \mid a \leqslant x \leqslant b, g_{1}(x) \leqslant y \leqslant g_{2}(x)\right\}
$$

where g_{1} and g_{2} are continuous on $[a, b]$. Then

$$
\iint_{D} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x
$$

(c) What is a type II region? How do you evaluate $\iint_{D} f(x, y) d A$ if D is a type II region?
A region D is of type II if it lies between the graphs of two continuous functions of y, that is,

$$
D=\left\{(x, y) \mid c \leqslant y \leqslant d, h_{1}(y) \leqslant x \leqslant h_{2}(y)\right\}
$$

where h_{1} and h_{2} are continuous on $[c, d]$. Then

$$
\iint_{D} f(x, y) d A=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y
$$

(d) What properties do double integrals have?

$$
\begin{aligned}
& \quad \iint_{D}[f(x, y)+g(x, y)] d A \\
& =\iiint_{D} f(x, y) d A+\iint_{D} g(x, y) d A \\
& \square \iint_{D} c f(x, y) d A=c \iint_{D} f(x, y) d A
\end{aligned}
$$

where c is a constant

- If $f(x, y) \geqslant g(x, y)$ for all (x, y) in D, then

$$
\iint_{D} f(x, y) d A \geqslant \iint_{D} g(x, y) d A
$$

- If $D=D_{1} \cup D_{2}$, where D_{1} and D_{2} don't overlap except perhaps on their boundaries, then

$$
\iint_{D} f(x, y) d A=\iint_{D_{1}} f(x, y) d A+\iint_{D_{2}} f(x, y) d A
$$

- $\iint_{D} 1 d A=A(D)$, the area of D.
- If $m \leqslant f(x, y) \leqslant M$ for all (x, y) in D, then

$$
m A(D) \leqslant \iint_{D} f(x, y) d A \leqslant M A(D)
$$

CHAPTER 15 CONCEPT CHECK ANSWERS (continued)

3. How do you change from rectangular coordinates to polar coordinates in a double integral? Why would you want to make the change?

We may want to change from rectangular to polar coordinates in a double integral if the region D of integration is more easily described in polar coordinates:

$$
D=\left\{(r, \theta) \mid \alpha \leqslant \theta \leqslant \beta, h_{1}(\theta) \leqslant r \leqslant h_{2}(\theta)\right\}
$$

To evaluate $\iint_{R} f(x, y) d A$, we replace x by $r \cos \theta, y$ by $r \sin \theta$, and $d A$ by $r d r d \theta$ (and use appropriate limits of integration):

$$
\iint_{D} f(x, y) d A=\int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

4. If a lamina occupies a plane region D and has density function $\rho(x, y)$, write expressions for each of the following in terms of double integrals.
(a) The mass: $m=\iint_{D} \rho(x, y) d A$
(b) The moments about the axes:

$$
M_{x}=\iint_{D} y \rho(x, y) d A \quad M_{y}=\iint_{D} x \rho(x, y) d A
$$

(c) The center of mass:

$$
(\bar{x}, \bar{y}), \quad \text { where } \bar{x}=\frac{M_{y}}{m} \quad \text { and } \quad \bar{y}=\frac{M_{x}}{m}
$$

(d) The moments of inertia about the axes and the origin:

$$
\begin{aligned}
& I_{x}=\iint_{D} y^{2} \rho(x, y) d A \\
& I_{y}=\iint_{D} x^{2} \rho(x, y) d A \\
& I_{0}=\iint_{D}\left(x^{2}+y^{2}\right) \rho(x, y) d A
\end{aligned}
$$

5. Let f be a joint density function of a pair of continuous random variables X and Y.
(a) Write a double integral for the probability that X lies between a and b and Y lies between c and d.

$$
P(a \leqslant X \leqslant b, c \leqslant Y \leqslant d)=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x
$$

(b) What properties does f possess?

$$
f(x, y) \geqslant 0 \quad \iint_{\mathbb{R}^{2}} f(x, y) d A=1
$$

(c) What are the expected values of X and Y ?

The expected value of X is $\mu_{1}=\iint_{\mathbb{R}^{2}} x f(x, y) d A$
The expected value of Y is $\mu_{2}=\iint_{\mathbb{R}^{2}} y f(x, y) d A$
6. Write an expression for the area of a surface with equation $z=f(x, y),(x, y) \in D$.

$$
A(S)=\iint_{D} \sqrt{\left[f_{x}(x, y)\right]^{2}+\left[f_{y}(x, y)\right]^{2}+1} d A
$$

(assuming that f_{x} and f_{y} are continuous).
7. (a) Write the definition of the triple integral of f over a rectangular box B.

$$
\iiint_{B} f(x, y, z) d V=\lim _{l, m, n \rightarrow \infty} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} f\left(x_{i j k}^{*}, y_{i j k}^{*}, z_{i j k}^{*}\right) \Delta V
$$

where ΔV is the volume of each sub-box and $\left(x_{i j k}^{*}, y_{i j k}^{*}, z_{i j k}^{*}\right)$ is a sample point in each sub-box.
(b) How do you evaluate $\iiint_{B} f(x, y, z) d V$?

We usually evaluate $\iiint_{B} f(x, y, z) d V$ as an iterated integral according to Fubini's Theorem for Triple Integrals: If f is continuous on $B=[a, b] \times[c, d] \times[r, s]$, then

$$
\iiint_{B} f(x, y, z) d V=\int_{r}^{s} \int_{c}^{d} \int_{a}^{b} f(x, y, z) d x d y d z
$$

Note that there are five other orders of integration that we can use.
(c) How do you define $\iiint_{E} f(x, y, z) d V$ if E is a bounded solid region that is not a box?
Since E is bounded, it can be enclosed in a box B as described in part (b). We define a new function F with domain B by

$$
F(x, y, z)= \begin{cases}f(x, y, z) & \text { if }(x, y, z) \text { is in } E \\ 0 & \text { if }(x, y, z) \text { is in } B \text { but not in } E\end{cases}
$$

Then we define

$$
\iiint_{E} f(x, y, z) d V=\iiint_{B} F(x, y, z) d V
$$

CHAPTER 15 CONCEPT CHECK ANSWERS (continued)

(d) What is a type 1 solid region? How do you evaluate $\iiint_{E} f(x, y, z) d V$ if E is such a region?
A region E is of type 1 if it lies between the graphs of two continuous functions of x and y, that is,

$$
E=\left\{(x, y, z) \mid(x, y) \in D, u_{1}(x, y) \leqslant z \leqslant u_{2}(x, y)\right\}
$$

where D is the projection of E onto the $x y$-plane. Then

$$
\iiint_{E} f(x, y, z) d V=\iint_{D}\left[\int_{u_{1}(x, y)}^{u_{2}(x, y)} f(x, y, z) d z\right] d A
$$

(e) What is a type 2 solid region? How do you evaluate $\iiint_{E} f(x, y, z) d V$ if E is such a region?
A type 2 region is of the form

$$
E=\left\{(x, y, z) \mid(y, z) \in D, u_{1}(y, z) \leqslant x \leqslant u_{2}(y, z)\right\}
$$

where D is the projection of E onto the $y z$-plane. Then

$$
\iiint_{E} f(x, y, z) d V=\iint_{D}\left[\int_{u_{1}(y, z)}^{u_{2}(y, z)} f(x, y, z) d x\right] d A
$$

(f) What is a type 3 solid region? How do you evaluate $\iiint_{E} f(x, y, z) d V$ if E is such a region?
A type 3 region is of the form

$$
E=\left\{(x, y, z) \mid(x, z) \in D, u_{1}(x, z) \leqslant y \leqslant u_{2}(x, z)\right\}
$$

where D is the projection of E onto the $x z$-plane. Then

$$
\iiint_{E} f(x, y, z) d V=\iint_{D}\left[\int_{u_{1}(x, z)}^{u_{2}(x, z)} f(x, y, z) d y\right] d A
$$

8. Suppose a solid object occupies the region E and has density function $\rho(x, y, z)$. Write expressions for each of the following.
(a) The mass:

$$
m=\iiint_{E} \rho(x, y, z) d V
$$

(b) The moments about the coordinate planes:

$$
\begin{aligned}
M_{y z} & =\iiint_{E} x \rho(x, y, z) d V \\
M_{x z} & =\iiint_{E} y \rho(x, y, z) d V \\
M_{x y} & =\iiint_{E} z \rho(x, y, z) d V
\end{aligned}
$$

(c) The coordinates of the center of mass:

$$
(\bar{x}, \bar{y}, \bar{z}), \text { where } \bar{x}=\frac{M_{y z}}{m}, \bar{y}=\frac{M_{x z}}{m}, \bar{z}=\frac{M_{x y}}{m}
$$

(d) The moments of inertia about the axes:

$$
\begin{aligned}
I_{x} & =\iiint_{E}\left(y^{2}+z^{2}\right) \rho(x, y, z) d V \\
I_{y} & =\iiint_{E}\left(x^{2}+z^{2}\right) \rho(x, y, z) d V \\
I_{z} & =\iiint_{E}\left(x^{2}+y^{2}\right) \rho(x, y, z) d V
\end{aligned}
$$

CHAPTER 15 CONCEPT CHECK ANSWERS (continued)

9. (a) How do you change from rectangular coordinates to cylindrical coordinates in a triple integral?

$$
\iint_{E} \int_{\mathrm{E}} f(x, y, z) d V=\int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{h^{\prime}(\theta)}} \int_{u_{1}(r \cos \theta, r \sin \theta)}^{u_{2}(r \cos \theta, r \sin \theta)} f(r \cos \theta, r \sin \theta, z) r d z d r d \theta
$$

where

$$
E=\left\{(r, \theta, z) \mid \alpha \leqslant \theta \leqslant \beta, h_{1}(\theta) \leqslant r \leqslant h_{2}(\theta), u_{1}(r \cos \theta, r \sin \theta) \leqslant z \leqslant u_{2}(r \cos \theta, r \sin \theta)\right\}
$$

Thus we replace x by $r \cos \theta, y$ by $r \sin \theta, d V$ by $r d z d r d \theta$, and use appropriate limits of integration.
(b) How do you change from rectangular coordinates to spherical coordinates in a triple integral?

$$
\iiint_{E} f(x, y, z) d V=\int_{c}^{d} \int_{\alpha}^{\beta} \int_{g_{1}(\theta, \phi)}^{g_{2}(\theta, \phi)} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d \rho d \theta d \phi
$$

where

$$
E=\left\{(\rho, \theta, \phi) \mid \alpha \leqslant \theta \leqslant \beta, c \leqslant \phi \leqslant d, g_{1}(\theta, \phi) \leqslant \rho \leqslant g_{2}(\theta, \phi)\right\}
$$

Thus we replace x by $\rho \sin \phi \cos \theta, y$ by $\rho \sin \phi \sin \theta, z$ by $\rho \cos \phi, d V$ by $\rho^{2} \sin \phi d \rho d \theta d \phi$, and use appropriate limits of integration.
(c) In what situations would you change to cylindrical or spherical coordinates?

We may want to change from rectangular to cylindrical or spherical coordinates in a triple integral if the region E of integration is more easily described in cylindrical or spherical coordinates. Regions that involve symmetry about the z-axis are often simpler to describe using cylindrical coordinates, and regions that are symmetrical about the origin are often simpler in spherical coordinates. Also, sometimes the integrand is easier to integrate using cylindrical or spherical coordinates.
10. (a) If a transformation T is given by $x=g(u, v), y=h(u, v)$, what is the Jacobian of T ?

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\frac{\partial x}{\partial u} \frac{\partial y}{\partial v}-\frac{\partial x}{\partial v} \frac{\partial y}{\partial u}
$$

(b) How do you change variables in a double integral?

We change from an integral in x and y to an integral in u and v by expressing x and y in terms of u and v and writing

$$
d A=\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v
$$

Thus, under the appropriate conditions,

$$
\iint_{R} f(x, y) d A=\iint_{S} f(x(u, v), y(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v
$$

where R is the image of S under the transformation.
(c) How do you change variables in a triple integral?

Similarly to the case of two variables in part (b),

$$
\iiint_{R} f(x, y, z) d V=\iiint_{S} f(x(u, v, w), y(u, v, w), z(u, v, w))\left|\frac{\partial(x, y, z)}{\partial(u, v, w)}\right| d u d v d w
$$

where

$$
\frac{\partial(x, y, z)}{\partial(u, v, w)}=\left|\begin{array}{lll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\
\frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w}
\end{array}\right|
$$

is the Jacobian.

CHAPTER 16 CONCEPT CHECK ANSWERS

1. What is a vector field? Give three examples that have physical meaning.
A vector field is a function that assigns a vector to each point in its domain.

A vector field can represent, for example, the wind velocity at any location in space, the speed and direction of the ocean current at any location, or the force vector of the earth's gravitational field at a location in space.
2. (a) What is a conservative vector field?

A conservative vector field \mathbf{F} is a vector field that is the gradient of some scalar function f, that is, $\mathbf{F}=\nabla f$.
(b) What is a potential function?

The function f in part (a) is called a potential function for \mathbf{F}.
3. (a) Write the definition of the line integral of a scalar function f along a smooth curve C with respect to arc length.

If C is given by the parametric equations $x=x(t)$, $y=y(t), a \leqslant t \leqslant b$, we divide the parameter interval $[a, b]$ into n subintervals $\left[t_{i-1}, t_{i}\right]$ of equal width. The i th subinterval corresponds to a subarc of C with length Δs_{i}. Then

$$
\int_{C} f(x, y) d s=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}, y_{i}^{*}\right) \Delta s_{i}
$$

where $\left(x_{i}^{*}, y_{i}^{*}\right)$ is any sample point in the i th subarc.
(b) How do you evaluate such a line integral?

$$
\int_{C} f(x, y) d s=\int_{a}^{b} f(x(t), y(t)) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

Similarly, if C is a smooth space curve, then

$$
\begin{aligned}
& \int_{C} f(x, y, z) d s \\
& \quad=\int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t
\end{aligned}
$$

(c) Write expressions for the mass and center of mass of a thin wire shaped like a curve C if the wire has linear density function $\rho(x, y)$.

The mass is $m=\int_{C} \rho(x, y) d s$.
The center of mass is (\bar{x}, \bar{y}), where

$$
\begin{aligned}
& \bar{x}=\frac{1}{m} \int_{C} x \rho(x, y) d s \\
& \bar{y}=\frac{1}{m} \int_{C} y \rho(x, y) d s
\end{aligned}
$$

(d) Write the definitions of the line integrals along C of a scalar function f with respect to x, y, and z.

$$
\begin{aligned}
& \int_{C} f(x, y, z) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}, y_{i}^{*}, z_{i}^{*}\right) \Delta x_{i} \\
& \int_{C} f(x, y, z) d y=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}, y_{i}^{*}, z_{i}^{*}\right) \Delta y_{i} \\
& \int_{C} f(x, y, z) d z=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}, y_{i}^{*}, z_{i}^{*}\right) \Delta z_{i}
\end{aligned}
$$

(We have similar results when f is a function of two variables.)
(e) How do you evaluate these line integrals?

$$
\begin{aligned}
& \int_{C} f(x, y, z) d x=\int_{a}^{b} f(x(t), y(t), z(t)) x^{\prime}(t) d t \\
& \int_{C} f(x, y, z) d y=\int_{a}^{b} f(x(t), y(t), z(t)) y^{\prime}(t) d t \\
& \int_{C} f(x, y, z) d z=\int_{a}^{b} f(x(t), y(t), z(t)) z^{\prime}(t) d t
\end{aligned}
$$

4. (a) Define the line integral of a vector field \mathbf{F} along a smooth curve C given by a vector function $\mathbf{r}(t)$.
If \mathbf{F} is a continuous vector field and C is given by a vector function $\mathbf{r}(t), a \leqslant t \leqslant b$, then

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t=\int_{C} \mathbf{F} \cdot \mathbf{T} d s
$$

(b) If \mathbf{F} is a force field, what does this line integral represent?

It represents the work done by \mathbf{F} in moving a particle along the curve C.
(c) If $\mathbf{F}=\langle P, Q, R\rangle$, what is the connection between the line integral of \mathbf{F} and the line integrals of the component functions P, Q, and R ?

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C} P d x+Q d y+R d z
$$

5. State the Fundamental Theorem for Line Integrals.

If C is a smooth curve given by $\mathbf{r}(t), a \leqslant t \leqslant b$, and f is a differentiable function whose gradient vector ∇f is continuous on C, then

$$
\int_{C} \nabla f \cdot d \mathbf{r}=f(\mathbf{r}(b))-f(\mathbf{r}(a))
$$

6. (a) What does it mean to say that $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is independent of path?
$\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is independent of path if the line integral has the same value for any two curves that have the same initial points and the same terminal points.
(b) If you know that $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is independent of path, what can you say about \mathbf{F} ?
We know that \mathbf{F} is a conservative vector field, that is, there exists a function f such that $\nabla f=\mathbf{F}$.

CHAPTER 16 CONCEPT CHECK ANSWERS (continued)

7. State Green's Theorem.

Let C be a positively oriented, piecewise-smooth, simple closed curve in the plane and let D be the region bounded by C. If P and Q have continuous partial derivatives on an open region that contains D, then

$$
\int_{C} P d x+Q d y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A
$$

8. Write expressions for the area enclosed by a curve C in terms of line integrals around C.

$$
A=\oint_{C} x d y=-\oint_{C} y d x=\frac{1}{2} \oint_{C} x d y-y d x
$$

9. Suppose \mathbf{F} is a vector field on \mathbb{R}^{3}.
(a) Define curl \mathbf{F}.
$\operatorname{curl} \mathbf{F}=\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right) \mathbf{i}+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right) \mathbf{j}+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathbf{k}$
$=\nabla \times \mathbf{F}$
(b) Define div \mathbf{F}.

$$
\operatorname{div} \mathbf{F}=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}=\nabla \cdot \mathbf{F}
$$

(c) If \mathbf{F} is a velocity field in fluid flow, what are the physical interpretations of curl \mathbf{F} and $\operatorname{div} \mathbf{F}$?
At a point in the fluid, the vector curl \mathbf{F} aligns with the axis about which the fluid tends to rotate, and its length measures the speed of rotation; $\operatorname{div} \mathbf{F}$ at a point measures the tendency of the fluid to flow away (diverge) from that point.
10. If $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}$, how do you determine whether \mathbf{F} is conservative? What if \mathbf{F} is a vector field on \mathbb{R}^{3} ?
If P and Q have continuous first-order derivatives and $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$, then \mathbf{F} is conservative.

If \mathbf{F} is a vector field on \mathbb{R}^{3} whose component functions have continuous partial derivatives and curl $\mathbf{F}=\mathbf{0}$, then \mathbf{F} is conservative.
11. (a) What is a parametric surface? What are its grid curves? A parametric surface S is a surface in \mathbb{R}^{3} described by a vector function

$$
\mathbf{r}(u, v)=x(u, v) \mathbf{i}+y(u, v) \mathbf{j}+z(u, v) \mathbf{k}
$$

of two parameters u and v. Equivalent parametric equations are

$$
x=x(u, v) \quad y=y(u, v) \quad z=z(u, v)
$$

The grid curves of S are the curves that correspond to holding either u or v constant.
(b) Write an expression for the area of a parametric surface. If S is a smooth parametric surface given by

$$
\mathbf{r}(u, v)=x(u, v) \mathbf{i}+y(u, v) \mathbf{j}+z(u, v) \mathbf{k}
$$

where $(u, v) \in D$ and S is covered just once as (u, v) ranges throughout D, then the surface area of S is

$$
A(S)=\iint_{D}\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d A
$$

(c) What is the area of a surface given by an equation $z=g(x, y)$?

$$
A(S)=\iint_{D} \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}} d A
$$

12. (a) Write the definition of the surface integral of a scalar function f over a surface S.
We divide S into "patches" $S_{i j}$. Then

$$
\iint_{S} f(x, y, z) d S=\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(P_{i j}^{*}\right) \Delta S_{i j}
$$

where $\Delta S_{i j}$ is the area of the patch $S_{i j}$ and $P_{i j}^{*}$ is a sample point from the patch. (S is divided into patches in such a way that ensures that $\Delta S_{i j} \rightarrow 0$ as $m, n \rightarrow \infty$.)
(b) How do you evaluate such an integral if S is a parametric surface given by a vector function $\mathbf{r}(u, v)$?

$$
\iint_{S} f(x, y, z) d S=\iint_{D} f(\mathbf{r}(u, v))\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d A
$$

where D is the parameter domain of S.
(c) What if S is given by an equation $z=g(x, y)$?

$$
\begin{aligned}
& \iint_{S} f(x, y, z) d S \\
& \quad=\iint_{D} f(x, y, g(x, y)) \sqrt{\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}+1} d A
\end{aligned}
$$

(d) If a thin sheet has the shape of a surface S, and the density at (x, y, z) is $\rho(x, y, z)$, write expressions for the mass and center of mass of the sheet.
The mass is

$$
m=\iint_{S} \rho(x, y, z) d S
$$

The center of mass is ($\bar{x}, \bar{y}, \bar{z}$), where

$$
\begin{aligned}
\bar{x} & =\frac{1}{m} \iint_{S} x \rho(x, y, z) d S \\
\bar{y} & =\frac{1}{m} \iint_{S} y \rho(x, y, z) d S \\
\bar{z} & =\frac{1}{m} \iint_{S} z \rho(x, y, z) d S
\end{aligned}
$$

CHAPTER 16 CONCEPT CHECK ANSWERS (continued)

13. (a) What is an oriented surface? Give an example of a nonorientable surface.

An oriented surface S is one for which we can choose a unit normal vector \mathbf{n} at every point so that \mathbf{n} varies continuously over S. The choice of \mathbf{n} provides S with an orientation.

A Möbius strip is a nonorientable surface. (It has only one side.)
(b) Define the surface integral (or flux) of a vector field \mathbf{F} over an oriented surface S with unit normal vector \mathbf{n}.

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{S} \mathbf{F} \cdot \mathbf{n} d S
$$

(c) How do you evaluate such an integral if S is a parametric surface given by a vector function $\mathbf{r}(u, v)$?

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{D} \mathbf{F} \cdot\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right) d A
$$

We multiply by -1 if the opposite orientation of S is desired.
(d) What if S is given by an equation $z=g(x, y)$? If $\mathbf{F}=\langle P, Q, R\rangle$,

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{D}\left(-P \frac{\partial g}{\partial x}-Q \frac{\partial g}{\partial y}+R\right) d A
$$

for the upward orientation of S; we multiply by -1 for the downward orientation.
14. State Stokes' Theorem.

Let S be an oriented piecewise-smooth surface that is bounded by a simple, closed, piecewise-smooth boundary curve C with positive orientation. Let \mathbf{F} be a vector field whose components have continuous partial derivatives on an open region in \mathbb{R}^{3} that contains S. Then

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}
$$

15. State the Divergence Theorem.

Let E be a simple solid region and let S be the boundary surface of E, given with positive (outward) orientation. Let \mathbf{F} be a vector field whose component functions have continuous partial derivatives on an open region that contains E. Then

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iiint_{E} \operatorname{div} \mathbf{F} d V
$$

16. In what ways are the Fundamental Theorem for Line Integrals, Green's Theorem, Stokes' Theorem, and the Divergence Theorem similar?

In each theorem, we integrate a "derivative" over a region, and this integral is equal to an expression involving the values of the original function only on the boundary of the region.

1. (a) Write the general form of a second-order homogeneous linear differential equation with constant coefficients.

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

where a, b, and c are constants and $a \neq 0$.
(b) Write the auxiliary equation.

$$
a r^{2}+b r+c=0
$$

(c) How do you use the roots of the auxiliary equation to solve the differential equation? Write the form of the solution for each of the three cases that can occur.

If the auxiliary equation has two distinct real roots r_{1} and r_{2}, the general solution of the differential equation is

$$
y=c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x}
$$

If the roots are real and equal, the solution is

$$
y=c_{1} e^{r x}+c_{2} x e^{r x}
$$

where r is the common root.
If the roots are complex, we can write $r_{1}=\alpha+i \beta$ and $r_{2}=\alpha-i \beta$, and the solution is

$$
y=e^{\alpha x}\left(c_{1} \cos \beta x+c_{2} \sin \beta x\right)
$$

2. (a) What is an initial-value problem for a second-order differential equation?
An initial-value problem consists of finding a solution y of the differential equation that also satisfies given conditions $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{1}$, where y_{0} and y_{1} are constants.
(b) What is a boundary-value problem for such an equation?

A boundary-value problem consists of finding a solution y of the differential equation that also satisfies given boundary conditions $y\left(x_{0}\right)=y_{0}$ and $y\left(x_{1}\right)=y_{1}$.
3. (a) Write the general form of a second-order nonhomogeneous linear differential equation with constant coefficients.
$a y^{\prime \prime}+b y^{\prime}+c y=G(x)$, where a, b, and c are constants and G is a continuous function.
(b) What is the complementary equation? How does it help solve the original differential equation?
The complementary equation is the related homogeneous equation $a y^{\prime \prime}+b y^{\prime}+c y=0$. If we find the general solution y_{c} of the complementary equation and y_{p} is any particular solution of the nonhomogeneous differential equation, then the general solution of the original differential equation is $y(x)=y_{p}(x)+y_{c}(x)$.
(c) Explain how the method of undetermined coefficients works.
To determine a particular solution y_{p} of $a y^{\prime \prime}+b y^{\prime}+c y=G(x)$, we make an initial guess that y_{p} is a general function of the same type as G. If $G(x)$
is a polynomial, choose y_{p} to be a general polynomial of the same degree. If $G(x)$ is of the form $C e^{k x}$, choose $y_{p}(x)=A e^{k x}$. If $G(x)$ is $C \cos k x$ or $C \sin k x$, choose $y_{p}(x)=A \cos k x+B \sin k x$. If $G(x)$ is a product of functions, choose y_{p} to be a product of functions of the same type. Some examples are:

$G(x)$	$y_{p}(x)$
x^{2}	$A x^{2}+B x+C$
$e^{2 x}$	$A e^{2 x}$
$\sin 2 x$	$A \cos 2 x+B \sin 2 x$
$x e^{-x}$	$(A x+B) e^{-x}$

We then substitute y_{p}, y_{p}^{\prime}, and $y_{p}^{\prime \prime}$ into the differential equation and determine the coefficients.
If y_{p} happens to be a solution of the complementary equation, then multiply the initial trial solution by x (or x^{2} if necessary).
If $G(x)$ is a sum of functions, we find a particular solution for each function and then y_{p} is the sum of these.
The general solution of the differential equation is

$$
y(x)=y_{p}(x)+y_{c}(x)
$$

(d) Explain how the method of variation of parameters works.
We write the solution of the complementary equation $a y^{\prime \prime}+b y^{\prime}+c y=0$ as $y_{c}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)$, where y_{1} and y_{2} are linearly independent solutions. We then take $y_{p}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)$ as a particular solution, where $u_{1}(x)$ and $u_{2}(x)$ are arbitrary functions. After computing y_{p}^{\prime}, we impose the condition that

$$
\begin{equation*}
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \tag{1}
\end{equation*}
$$

and then compute $y_{p}^{\prime \prime}$. Substituting y_{p}, y_{p}^{\prime}, and $y_{p}^{\prime \prime}$ into the original differential equation gives

$$
\begin{equation*}
a\left(u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}\right)=G \tag{2}
\end{equation*}
$$

We then solve equations (1) and (2) for the unknown functions u_{1}^{\prime} and u_{2}^{\prime}. If we are able to integrate these functions, then a particular solution is $y_{p}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)$ and the general solution is $y(x)=y_{p}(x)+y_{c}(x)$.
4. Discuss two applications of second-order linear differential equations.
The motion of an object with mass m at the end of a spring is an example of simple harmonic motion and is described by the second-order linear differential equation

$$
m \frac{d^{2} x}{d t^{2}}+k x=0
$$

CHAPTER 17 CONCEPT CHECK ANSWERS (continued)

where k is the spring constant and x is the distance the spring is stretched (or compressed) from its natural length. If there are external forces acting on the spring, then the differential equation is modified.

Second-order linear differential equations are also used to analyze electrical circuits involving an electromotive force, a resistor, an inductor, and a capacitor in series.
See the discussion in Section 17.3 for additional details.
5. How do you use power series to solve a differential equation?

We first assume that the differential equation has a power series solution of the form

$$
y=\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\cdots
$$

Differentiating gives

$$
y^{\prime}=\sum_{n=1}^{\infty} n c_{n} x^{n-1}=\sum_{n=0}^{\infty}(n+1) c_{n+1} x^{n}
$$

and

$$
y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2)(n+1) c_{n+2} x^{n}
$$

We substitute these expressions into the differential equation and equate the coefficients of x^{n} to find a recursion relation involving the constants c_{n}. Solving the recursion relation gives a formula for c_{n} and then

$$
y=\sum_{n=0}^{\infty} c_{n} x^{n}
$$

is the solution of the differential equation.

