Second-Order Linear Differential Equations

A second-order linear differential equation has the form

$$P(x)\frac{d^2y}{dx^2} + Q(x)\frac{dy}{dx} + R(x)y = G(x)$$

where *P*, *Q*, *R*, and *G* are continuous functions. We saw in Section 7.1 that equations of this type arise in the study of the motion of a spring. In *Additional Topics: Applications of Second-Order Differential Equations* we will further pursue this application as well as the application to electric circuits.

In this section we study the case where G(x) = 0, for all x, in Equation 1. Such equations are called **homogeneous** linear equations. Thus, the form of a second-order linear homogeneous differential equation is

$$P(x)\frac{d^2y}{dx^2} + Q(x)\frac{dy}{dx} + R(x)y = 0$$

If $G(x) \neq 0$ for some x, Equation 1 is **nonhomogeneous** and is discussed in *Additional Topics: Nonhomogeneous Linear Equations*.

Two basic facts enable us to solve homogeneous linear equations. The first of these says that if we know two solutions y_1 and y_2 of such an equation, then the **linear combination** $y = c_1y_1 + c_2y_2$ is also a solution.

3 Theorem If $y_1(x)$ and $y_2(x)$ are both solutions of the linear homogeneous equation (2) and c_1 and c_2 are any constants, then the function

$$y(x) = c_1 y_1(x) + c_2 y_2(x)$$

is also a solution of Equation 2.

Proof Since y_1 and y_2 are solutions of Equation 2, we have

$$P(x)y_1'' + Q(x)y_1' + R(x)y_1 = 0$$

and

$$P(x)y_2'' + O(x)y_2' + R(x)y_2 = 0$$

Therefore, using the basic rules for differentiation, we have

$$P(x)y'' + Q(x)y' + R(x)y$$

$$= P(x)(c_1y_1 + c_2y_2)'' + Q(x)(c_1y_1 + c_2y_2)' + R(x)(c_1y_1 + c_2y_2)$$

$$= P(x)(c_1y_1'' + c_2y_2'') + Q(x)(c_1y_1' + c_2y_2') + R(x)(c_1y_1 + c_2y_2)$$

$$= c_1[P(x)y_1'' + Q(x)y_1' + R(x)y_1] + c_2[P(x)y_2'' + Q(x)y_2' + R(x)y_2]$$

$$= c_1(0) + c_2(0) = 0$$

Thus, $y = c_1y_1 + c_2y_2$ is a solution of Equation 2.

The other fact we need is given by the following theorem, which is proved in more advanced courses. It says that the general solution is a linear combination of two **linearly independent** solutions y_1 and y_2 . This means that neither y_1 nor y_2 is a constant multiple of the other. For instance, the functions $f(x) = x^2$ and $g(x) = 5x^2$ are linearly dependent, but $f(x) = e^x$ and $g(x) = xe^x$ are linearly independent.

4 Theorem If y_1 and y_2 are linearly independent solutions of Equation 2, and P(x) is never 0, then the general solution is given by

$$y(x) = c_1 y_1(x) + c_2 y_2(x)$$

where c_1 and c_2 are arbitrary constants.

Theorem 4 is very useful because it says that if we know *two* particular linearly independent solutions, then we know *every* solution.

In general, it is not easy to discover particular solutions to a second-order linear equation. But it is always possible to do so if the coefficient functions P, Q, and R are constant functions, that is, if the differential equation has the form

ay'' + by' + cy = 0

where a, b, and c are constants and $a \neq 0$.

It's not hard to think of some likely candidates for particular solutions of Equation 5 if we state the equation verbally. We are looking for a function y such that a constant times its second derivative y'' plus another constant times y' plus a third constant times y is equal to 0. We know that the exponential function $y = e^{rx}$ (where r is a constant) has the property that its derivative is a constant multiple of itself: $y' = re^{rx}$. Furthermore, $y'' = r^2e^{rx}$. If we substitute these expressions into Equation 5, we see that $y = e^{rx}$ is a solution if

 $ar^{2}e^{rx} + bre^{rx} + ce^{rx} = 0$ $(ar^{2} + br + c)e^{rx} = 0$

or $(ar^2 + br + c)e^{rx} =$

But e^{rx} is never 0. Thus, $y = e^{rx}$ is a solution of Equation 5 if r is a root of the equation

 $ar^2 + br + c = 0$

Equation 6 is called the **auxiliary equation** (or **characteristic equation**) of the differential equation ay'' + by' + cy = 0. Notice that it is an algebraic equation that is obtained from the differential equation by replacing y'' by r^2 , y' by r, and y by 1.

Sometimes the roots r_1 and r_2 of the auxiliary equation can be found by factoring. In other cases they are found by using the quadratic formula:

 $r_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \qquad r_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

We distinguish three cases according to the sign of the discriminant $b^2 - 4ac$.

CASE I $b^2 - 4ac > 0$

In this case the roots r_1 and r_2 of the auxiliary equation are real and distinct, so $y_1 = e^{r_1x}$ and $y_2 = e^{r_2x}$ are two linearly independent solutions of Equation 5. (Note that e^{r_2x} is not a constant multiple of e^{r_1x} .) Therefore, by Theorem 4, we have the following fact.

If the roots r_1 and r_2 of the auxiliary equation $ar^2 + br + c = 0$ are real and unequal, then the general solution of ay'' + by' + cy = 0 is

$$y = c_1 e^{r_1 x} + c_2 e^{r_2 x}$$

• • In Figure 1 the graphs of the basic solutions $f(x)=e^{2x}$ and $g(x)=e^{-3x}$ of the differential equation in Example 1 are shown in black and red, respectively. Some of the other solutions, linear combinations of f and g, are shown in blue.

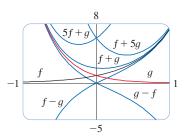


FIGURE 1

EXAMPLE 1 Solve the equation y'' + y' - 6y = 0.

SOLUTION The auxiliary equation is

$$r^2 + r - 6 = (r - 2)(r + 3) = 0$$

whose roots are r = 2, -3. Therefore, by (8) the general solution of the given differential equation is

$$y = c_1 e^{2x} + c_2 e^{-3x}$$

We could verify that this is indeed a solution by differentiating and substituting into the differential equation.

EXAMPLE 2 Solve $3\frac{d^2y}{dx^2} + \frac{dy}{dx} - y = 0$.

SOLUTION To solve the auxiliary equation $3r^2 + r - 1 = 0$ we use the quadratic formula:

$$r = \frac{-1 \pm \sqrt{13}}{6}$$

Since the roots are real and distinct, the general solution is

$$y = c_1 e^{(-1+\sqrt{13})x/6} + c_2 e^{(-1-\sqrt{13})x/6}$$

CASE II $b^2 - 4ac = 0$

In this case $r_1 = r_2$; that is, the roots of the auxiliary equation are real and equal. Let's denote by r the common value of r_1 and r_2 . Then, from Equations 7, we have

 $r = -\frac{b}{2a} \qquad \text{so} \quad 2ar + b = 0$

We know that $y_1 = e^{rx}$ is one solution of Equation 5. We now verify that $y_2 = xe^{rx}$ is also a solution:

$$ay_2'' + by_2' + cy_2 = a(2re^{rx} + r^2xe^{rx}) + b(e^{rx} + rxe^{rx}) + cxe^{rx}$$
$$= (2ar + b)e^{rx} + (ar^2 + br + c)xe^{rx}$$
$$= 0(e^{rx}) + 0(xe^{rx}) = 0$$

The first term is 0 by Equations 9; the second term is 0 because r is a root of the auxiliary equation. Since $y_1 = e^{rx}$ and $y_2 = xe^{rx}$ are linearly independent solutions, Theorem 4 provides us with the general solution.

10 If the auxiliary equation $ar^2 + br + c = 0$ has only one real root r, then the general solution of ay'' + by' + cy = 0 is

$$y = c_1 e^{rx} + c_2 x e^{rx}$$

EXAMPLE 3 Solve the equation 4y'' + 12y' + 9y = 0.

SOLUTION The auxiliary equation $4r^2 + 12r + 9 = 0$ can be factored as

$$(2r + 3)^2 = 0$$

■ ■ Figure 2 shows the basic solutions $f(x)=e^{-3x/2}$ and $g(x)=xe^{-3x/2}$ in Example 3 and some other members of the family of solutions. Notice that all of them approach 0 as $x\to\infty$.

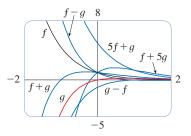


FIGURE 2

so the only root is $r = -\frac{3}{2}$. By (10) the general solution is

$$y = c_1 e^{-3x/2} + c_2 x e^{-3x/2}$$

CASE III $b^2 - 4ac < 0$

In this case the roots r_1 and r_2 of the auxiliary equation are complex numbers. (See Appendix I for information about complex numbers.) We can write

$$r_1 = \alpha + i\beta$$
 $r_2 = \alpha - i\beta$

where α and β are real numbers. [In fact, $\alpha = -b/(2a)$, $\beta = \sqrt{4ac - b^2}/(2a)$.] Then, using Euler's equation

$$e^{i\theta} = \cos\theta + i\sin\theta$$

from Appendix I, we write the solution of the differential equation as

$$y = C_1 e^{r_1 x} + C_2 e^{r_2 x} = C_1 e^{(\alpha + i\beta)x} + C_2 e^{(\alpha - i\beta)x}$$

$$= C_1 e^{\alpha x} (\cos \beta x + i \sin \beta x) + C_2 e^{\alpha x} (\cos \beta x - i \sin \beta x)$$

$$= e^{\alpha x} [(C_1 + C_2) \cos \beta x + i(C_1 - C_2) \sin \beta x]$$

$$= e^{\alpha x} (c_1 \cos \beta x + c_2 \sin \beta x)$$

where $c_1 = C_1 + C_2$, $c_2 = i(C_1 - C_2)$. This gives all solutions (real or complex) of the differential equation. The solutions are real when the constants c_1 and c_2 are real. We summarize the discussion as follows.

II If the roots of the auxiliary equation $ar^2 + br + c = 0$ are the complex numbers $r_1 = \alpha + i\beta$, $r_2 = \alpha - i\beta$, then the general solution of ay'' + by' + cy = 0 is

$$y = e^{\alpha x}(c_1 \cos \beta x + c_2 \sin \beta x)$$

EXAMPLE 4 Solve the equation y'' - 6y' + 13y = 0.

SOLUTION The auxiliary equation is $r^2 - 6r + 13 = 0$. By the quadratic formula, the roots are

$$r = \frac{6 \pm \sqrt{36 - 52}}{2} = \frac{6 \pm \sqrt{-16}}{2} = 3 \pm 2i$$

By (11) the general solution of the differential equation is

$$y = e^{3x}(c_1 \cos 2x + c_2 \sin 2x)$$

-3

■ Figure 3 shows the graphs of the solutions in Example 4, $f(x) = e^{3x} \cos 2x$ and

 $g(x) = e^{3x} \sin 2x$, together with some linear combinations. All solutions approach 0

FIGURE 3

as $x \to -\infty$.

Initial-Value and Boundary-Value Problems

An **initial-value problem** for the second-order Equation 1 or 2 consists of finding a solution y of the differential equation that also satisfies initial conditions of the form

$$y(x_0) = y_0$$
 $y'(x_0) = y_1$

where y_0 and y_1 are given constants. If P, Q, R, and G are continuous on an interval and $P(x) \neq 0$ there, then a theorem found in more advanced books guarantees the existence and uniqueness of a solution to this initial-value problem. Examples 5 and 6 illustrate the technique for solving such a problem.

$$y'' + y' - 6y = 0$$
 $y(0) = 1$ $y'(0) = 0$

SOLUTION From Example 1 we know that the general solution of the differential equation is

$$y(x) = c_1 e^{2x} + c_2 e^{-3x}$$

Differentiating this solution, we get

$$y'(x) = 2c_1e^{2x} - 3c_2e^{-3x}$$

To satisfy the initial conditions we require that

$$y(0) = c_1 + c_2 = 1$$

$$y'(0) = 2c_1 - 3c_2 = 0$$

From (13) we have $c_2 = \frac{2}{3}c_1$ and so (12) gives

$$c_1 + \frac{2}{3}c_1 = 1$$
 $c_1 = \frac{3}{5}$ $c_2 = \frac{2}{5}$

Thus, the required solution of the initial-value problem is

$$y = \frac{3}{5}e^{2x} + \frac{2}{5}e^{-3x}$$

■ ■ The solution to Example 6 is graphed in Figure 5. It appears to be a shifted sine curve and, indeed, you can verify that another way of writing the solution is

- Figure 4 shows the graph of the solution of the initial-value problem in Example 5. Compare

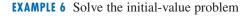
20

with Figure 1.

-2

FIGURE 4

$$y = \sqrt{13} \sin(x + \phi)$$
 where $\tan \phi = \frac{2}{3}$



$$y'' + y = 0$$
 $y(0) = 2$ $y'(0) = 3$

SOLUTION The auxiliary equation is $r^2 + 1 = 0$, or $r^2 = -1$, whose roots are $\pm i$. Thus $\alpha = 0$, $\beta = 1$, and since $e^{0x} = 1$, the general solution is

$$y(x) = c_1 \cos x + c_2 \sin x$$

Since
$$y'(x) = -c_1 \sin x$$

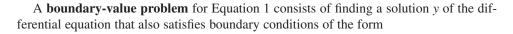
 $y'(x) = -c_1 \sin x + c_2 \cos x$

the initial conditions become

$$y(0) = c_1 = 2$$
 $y'(0) = c_2 = 3$

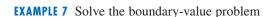
Therefore, the solution of the initial-value problem is

$$y(x) = 2\cos x + 3\sin x$$



$$y(x_0) = y_0 \qquad \qquad y(x_1) = y_1$$

In contrast with the situation for initial-value problems, a boundary-value problem does not always have a solution.



$$y'' + 2y' + y = 0$$
 $y(0) = 1$ $y(1) = 3$

SOLUTION The auxiliary equation is

$$r^2 + 2r + 1 = 0$$
 or $(r+1)^2 = 0$

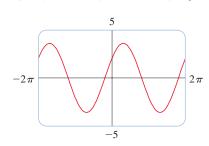


FIGURE 5

Figure 6 shows the graph of the solution of the boundary-value problem in Example 7.

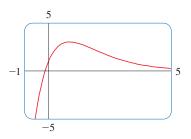


FIGURE 6

whose only root is r = -1. Therefore, the general solution is

$$y(x) = c_1 e^{-x} + c_2 x e^{-x}$$

The boundary conditions are satisfied if

$$y(0) = c_1 = 1$$

$$y(1) = c_1 e^{-1} + c_2 e^{-1} = 3$$

The first condition gives $c_1 = 1$, so the second condition becomes

$$e^{-1} + c_2 e^{-1} = 3$$

Solving this equation for c_2 by first multiplying through by e, we get

$$1 + c_2 = 3e$$
 so $c_2 = 3e - 1$

$$c_2 = 3e - 1$$

Thus, the solution of the boundary-value problem is

$$y = e^{-x} + (3e - 1)xe^{-x}$$

Summary: Solutions of ay'' + by' + c = 0

Roots of $ar^2 + br + c = 0$	General solution
r_1 , r_2 real and distinct $r_1 = r_2 = r$ r_1 , r_2 complex: $\alpha \pm i\beta$	$y = c_1 e^{r_1 x} + c_2 e^{r_2 x}$ $y = c_1 e^{r x} + c_2 x e^{r x}$ $y = e^{\alpha x} (c_1 \cos \beta x + c_2 \sin \beta x)$

Exercises

A Click here for answers.

S Click here for solutions.

1–13 ■ Solve the differential equation.

1.
$$y'' - 6y' + 8y = 0$$

2.
$$y'' - 4y' + 8y = 0$$

3.
$$y'' + 8y' + 41y = 0$$

4.
$$2y'' - y' - y = 0$$

5.
$$y'' - 2y' + y = 0$$

6.
$$3y'' = 5y'$$

7.
$$4y'' + y = 0$$

8.
$$16y'' + 24y' + 9y = 0$$

9.
$$4y'' + y' = 0$$

10.
$$9y'' + 4y = 0$$

11.
$$\frac{d^2y}{dt^2} - 2\frac{dy}{dt} - y = 0$$

12.
$$\frac{d^2y}{dt^2} - 6\frac{dy}{dt} + 4y = 0$$

13.
$$\frac{d^2y}{dt^2} + \frac{dy}{dt} + y = 0$$

14-16 Graph the two basic solutions of the differential equation and several other solutions. What features do the solutions have in common?

14.
$$6 \frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = 0$$

14.
$$6 \frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = 0$$
 15. $\frac{d^2y}{dx^2} - 8 \frac{dy}{dx} + 16y = 0$

16.
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 5y = 0$$

17–24 ■ Solve the initial-value problem.

17.
$$2y'' + 5y' + 3y = 0$$
, $y(0) = 3$, $y'(0) = -4$

18.
$$y'' + 3y = 0$$
, $y(0) = 1$, $y'(0) = 3$

19.
$$4y'' - 4y' + y = 0$$
, $y(0) = 1$, $y'(0) = -1.5$

20.
$$2y'' + 5y' - 3y = 0$$
, $y(0) = 1$, $y'(0) = 4$

21.
$$y'' + 16y = 0$$
, $y(\pi/4) = -3$, $y'(\pi/4) = 4$

22.
$$v'' - 2v' + 5v = 0$$
, $v(\pi) = 0$, $v'(\pi) = 2$

23.
$$y'' + 2y' + 2y = 0$$
, $y(0) = 2$, $y'(0) = 1$

24.
$$y'' + 12y' + 36y = 0$$
, $y(1) = 0$, $y'(1) = 1$

25–32 ■ Solve the boundary-value problem, if possible.

25.
$$4y'' + y = 0$$
, $y(0) = 3$, $y(\pi) = -4$

26.
$$y'' + 2y' = 0$$
, $y(0) = 1$, $y(1) = 2$

27.
$$y'' - 3y' + 2y = 0$$
, $y(0) = 1$, $y(3) = 0$

28.
$$y'' + 100y = 0$$
, $y(0) = 2$, $y(\pi) = 5$

29.
$$y'' - 6y' + 25y = 0$$
, $y(0) = 1$, $y(\pi) = 2$

30.
$$y'' - 6y' + 9y = 0$$
, $y(0) = 1$, $y(1) = 0$

31.
$$y'' + 4y' + 13y = 0$$
, $y(0) = 2$, $y(\pi/2) = 1$

- **32.** 9y'' 18y' + 10y = 0, y(0) = 0, $y(\pi) = 1$
- **33.** Let L be a nonzero real number.
 - (a) Show that the boundary-value problem $y'' + \lambda y = 0$, y(0) = 0, y(L) = 0 has only the trivial solution y = 0 for the cases $\lambda = 0$ and $\lambda < 0$.
- (b) For the case $\lambda > 0$, find the values of λ for which this problem has a nontrivial solution and give the corresponding solution.
- **34.** If a, b, and c are all positive constants and y(x) is a solution of the differential equation ay'' + by' + cy = 0, show that $\lim_{x\to\infty}y(x)=0.$

Answers

S Click here for solutions.

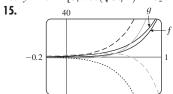
1.
$$y = c_1 e^{4x} + c_2 e^{2x}$$
 3. $y = e^{-4x} (c_1 \cos 5x + c_2 \sin 5x)$ **5.** $y = c_1 e^x + c_2 x e^x$ **7.** $y = c_1 \cos(x/2) + c_2 \sin(x/2)$ **9.** $y = c_1 + c_2 e^{-x/4}$ **11.** $y = c_1 e^{(1+\sqrt{2})t} + c_2 e^{(1-\sqrt{2})t}$

5.
$$y = c_1 e^x + c_2 x e^x$$
 7. $y = c_1 \cos(x/2) + c_2 \sin(x/2)$

9.
$$y = c_1 + c_2 e^{-x/4}$$

11. $y = c_1 e^{(1+\sqrt{2})t} + c_2 e^{(1-\sqrt{2})t}$

13.
$$y = e^{-t/2} [c_1 \cos(\sqrt{3}t/2) + c_2 \sin(\sqrt{3}t/2)]$$



All solutions approach 0 as $x \to -\infty$ and approach $\pm \infty$ as $x \to \infty$.

17.
$$y = 2e^{-3x/2} + e^{-x}$$
 19. $y = e^{x/2} - 2xe^{x/2}$

21.
$$y = 3\cos 4x - \sin 4x$$
 23. $y = e^{-x}(2\cos x + 3\sin x)$

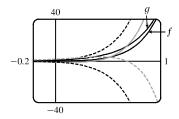
25.
$$y = 3\cos(\frac{1}{2}x) - 4\sin(\frac{1}{2}x)$$
 27. $y = \frac{e^{x+3}}{e^3 - 1} + \frac{e^{2x}}{1 - e^3}$

29. No solution
$$e^{-\frac{1}{2}(2x)} = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = \frac{1}{2} - \frac{1}{2}$$

31.
$$y = e^{-2x}(2\cos 3x - e^{\pi}\sin 3x)$$

33. (b)
$$\lambda = n^2 \pi^2 / L^2$$
, *n* a positive integer; $y = C \sin(n\pi x/L)$

- **1.** The auxiliary equation is $r^2 6r + 8 = 0 \implies (r 4)(r 2) = 0 \implies r = 4, r = 2$. Then by (8) the general solution is $y = c_1 e^{4x} + c_2 e^{2x}$.
- **3.** The auxiliary equation is $r^2 + 8r + 41 = 0 \implies r = -4 \pm 5i$. Then by (11) the general solution is $y = e^{-4x}(c_1 \cos 5x + c_2 \sin 5x)$.
- **5.** The auxiliary equation is $r^2 2r + 1 = (r 1)^2 = 0 \implies r = 1$. Then by (10), the general solution is $y = c_1 e^x + c_2 x e^x$.
- 7. The auxiliary equation is $4r^2 + 1 = 0$ \Rightarrow $r = \pm \frac{1}{2}i$, so $y = c_1 \cos\left(\frac{1}{2}x\right) + c_2 \sin\left(\frac{1}{2}x\right)$.
- **9.** The auxiliary equation is $4r^2 + r = r(4r+1) = 0 \implies r = 0, r = -\frac{1}{4}$, so $y = c_1 + c_2 e^{-x/4}$.
- **11.** The auxiliary equation is $r^2 2r 1 = 0 \implies r = 1 \pm \sqrt{2}$, so $y = c_1 e^{\left(1 + \sqrt{2}\right)t} + c_2 e^{\left(1 \sqrt{2}\right)t}$.
- **13.** The auxiliary equation is $r^2 + r + 1 = 0$ \Rightarrow $r = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$, so $y = e^{-t/2} \left[c_1 \cos\left(\frac{\sqrt{3}}{2}t\right) + c_2 \sin\left(\frac{\sqrt{3}}{2}t\right) \right]$.
- **15.** $r^2-8r+16=(r-4)^2=0$ so $y=c_1e^{4x}+c_2xe^{4x}$. The graphs are all asymptotic to the x-axis as $x\to -\infty$, and as $x\to \infty$ the solutions tend to $\pm \infty$.



- **17.** $2r^2 + 5r + 3 = (2r + 3)(r + 1) = 0$, so $r = -\frac{3}{2}$, r = -1 and the general solution is $y = c_1 e^{-3x/2} + c_2 e^{-x}$. Then $y(0) = 3 \implies c_1 + c_2 = 3$ and $y'(0) = -4 \implies -\frac{3}{2}c_1 c_2 = -4$, so $c_1 = 2$ and $c_2 = 1$. Thus the solution to the initial-value problem is $y = 2e^{-3x/2} + e^{-x}$.
- **19.** $4r^2 4r + 1 = (2r 1)^2 = 0$ \Rightarrow $r = \frac{1}{2}$ and the general solution is $y = c_1 e^{x/2} + c_2 x e^{x/2}$. Then y(0) = 1 \Rightarrow $c_1 = 1$ and y'(0) = -1.5 \Rightarrow $\frac{1}{2}c_1 + c_2 = -1.5$, so $c_2 = -2$ and the solution to the initial-value problem is $y = e^{x/2} 2xe^{x/2}$.
- **21.** $r^2 + 16 = 0 \implies r = \pm 4i$ and the general solution is $y = e^{0x}(c_1 \cos 4x + c_2 \sin 4x) = c_1 \cos 4x + c_2 \sin 4x$. Then $y\left(\frac{\pi}{4}\right) = -3 \implies -c_1 = -3 \implies c_1 = 3$ and $y'\left(\frac{\pi}{4}\right) = 4 \implies -4c_2 = 4 \implies c_2 = -1$, so the solution to the initial-value problem is $y = 3\cos 4x - \sin 4x$.
- **23.** $r^2 + 2r + 2 = 0 \implies r = -1 \pm i$ and the general solution is $y = e^{-x}(c_1 \cos x + c_2 \sin x)$. Then $2 = y(0) = c_1$ and $1 = y'(0) = c_2 c_1 \implies c_2 = 3$ and the solution to the initial-value problem is $y = e^{-x}(2 \cos x + 3 \sin x)$.
- **25.** $4r^2 + 1 = 0 \implies r = \pm \frac{1}{2}i$ and the general solution is $y = c_1 \cos(\frac{1}{2}x) + c_2 \sin(\frac{1}{2}x)$. Then $3 = y(0) = c_1$ and $-4 = y(\pi) = c_2$, so the solution of the boundary-value problem is $y = 3\cos(\frac{1}{2}x) 4\sin(\frac{1}{2}x)$.
- **27.** $r^2 3r + 2 = (r 2)(r 1) = 0 \implies r = 1, r = 2$ and the general solution is $y = c_1 e^x + c_2 e^{2x}$. Then $1 = y(0) = c_1 + c_2$ and $0 = y(3) = c_1 e^3 + c_2 e^6$ so $c_2 = 1/(1 e^3)$ and $c_1 = e^3/(e^3 1)$. The solution of the boundary-value problem is $y = \frac{e^{x+3}}{e^3 1} + \frac{e^{2x}}{1 e^3}$.
- **29.** $r^2 6r + 25 = 0 \implies r = 3 \pm 4i$ and the general solution is $y = e^{3x}(c_1 \cos 4x + c_2 \sin 4x)$. But $1 = y(0) = c_1$ and $2 = y(\pi) = c_1 e^{3\pi} \implies c_1 = 2/e^{3\pi}$, so there is no solution.

- **31.** $r^2+4r+13=0 \Rightarrow r=-2\pm 3i$ and the general solution is $y=e^{-2x}(c_1\cos 3x+c_2\sin 3x)$. But $2=y(0)=c_1$ and $1=y\left(\frac{\pi}{2}\right)=e^{-\pi}(-c_2)$, so the solution to the boundary-value problem is $y=e^{-2x}(2\cos 3x-e^{\pi}\sin 3x)$.
- **33.** (a) Case $I(\lambda=0)$: $y'' + \lambda y = 0 \Rightarrow y'' = 0$ which has an auxiliary equation $r^2 = 0 \Rightarrow r = 0 \Rightarrow y = c_1 + c_2 x$ where y(0) = 0 and y(L) = 0. Thus, $0 = y(0) = c_1$ and $0 = y(L) = c_2 L \Rightarrow c_1 = c_2 = 0$. Thus, y = 0.

Case 2 ($\lambda < 0$): $y'' + \lambda y = 0$ has auxiliary equation $r^2 = -\lambda \Rightarrow r = \pm \sqrt{-\lambda}$ (distinct and real since $\lambda < 0$) $\Rightarrow y = c_1 e^{\sqrt{-\lambda}x} + c_2 e^{-\sqrt{-\lambda}x}$ where y(0) = 0 and y(L) = 0. Thus, $0 = y(0) = c_1 + c_2$ (*) and $0 = y(L) = c_1 e^{\sqrt{-\lambda}L} + c_2 e^{-\sqrt{-\lambda}L}$ (†).

Multiplying (*) by $e^{\sqrt{-\lambda}L}$ and subtracting (†) gives $c_2\Big(e^{\sqrt{-\lambda}L}-e^{-\sqrt{-\lambda}L}\Big)=0 \quad \Rightarrow \quad c_2=0$ and thus $c_1=0$ from (*). Thus, y=0 for the cases $\lambda=0$ and $\lambda<0$.

(b) $y'' + \lambda y = 0$ has an auxiliary equation $r^2 + \lambda = 0 \implies r = \pm i \sqrt{\lambda} \implies y = c_1 \cos \sqrt{\lambda} \, x + c_2 \sin \sqrt{\lambda} \, x$ where y(0) = 0 and y(L) = 0. Thus, $0 = y(0) = c_1$ and $0 = y(L) = c_2 \sin \sqrt{\lambda} L$ since $c_1 = 0$. Since we cannot have a trivial solution, $c_2 \neq 0$ and thus $\sin \sqrt{\lambda} \, L = 0 \implies \sqrt{\lambda} \, L = n\pi$ where n is an integer $\Rightarrow \lambda = n^2 \pi^2 / L^2$ and $y = c_2 \sin(n\pi x/L)$ where n is an integer.