$\boldsymbol{\Delta} \quad \boldsymbol{\Delta} \quad \boldsymbol{\Delta} \quad \mathbf{\Delta}$

Rotation of Axes

- For a discussion of conic sections, see Calculus, Fourth Edition, Section 11.6
Calculus, Early Transcendentals,
Fourth Edition, Section 10.6

In precalculus or calculus you may have studied conic sections with equations of the form

$$
A x^{2}+C y^{2}+D x+E y+F=0
$$

Here we show that the general second-degree equation

$$
\begin{equation*}
A x^{2}+B x y+C y^{2}+D x+E y+F=0 \tag{1}
\end{equation*}
$$

can be analyzed by rotating the axes so as to eliminate the term $B x y$.
In Figure 1 the x and y axes have been rotated about the origin through an acute angle θ to produce the X and Y axes. Thus, a given point P has coordinates (x, y) in the first coordinate system and (X, Y) in the new coordinate system. To see how X and Y are related to x and y we observe from Figure 2 that

$$
\begin{array}{ll}
X=r \cos \phi & Y=r \sin \phi \\
x=r \cos (\theta+\phi) & y=r \sin (\theta+\phi)
\end{array}
$$

FIGURE 1

FIGURE 2

The addition formula for the cosine function then gives

$$
\begin{aligned}
x & =r \cos (\theta+\phi)=r(\cos \theta \cos \phi-\sin \theta \sin \phi) \\
& =(r \cos \phi) \cos \theta-(r \sin \phi) \sin \theta=X \cos \theta-Y \sin \theta
\end{aligned}
$$

A similar computation gives y in terms of X and Y and so we have the following formulas:

$$
\begin{equation*}
x=X \cos \theta-Y \sin \theta \quad y=X \sin \theta+Y \cos \theta \tag{2}
\end{equation*}
$$

By solving Equations 2 for X and Y we obtain

$$
\begin{equation*}
X=x \cos \theta+y \sin \theta \quad Y=-x \sin \theta+y \cos \theta \tag{3}
\end{equation*}
$$

EXAMPLE 1 If the axes are rotated through 60°, find the $X Y$-coordinates of the point whose $x y$-coordinates are $(2,6)$.

SOLUTION Using Equations 3 with $x=2, y=6$, and $\theta=60^{\circ}$, we have

$$
\begin{aligned}
& X=2 \cos 60^{\circ}+6 \sin 60^{\circ}=1+3 \sqrt{3} \\
& Y=-2 \sin 60^{\circ}+6 \cos 60^{\circ}=-\sqrt{3}+3
\end{aligned}
$$

The $X Y$-coordinates are $(1+3 \sqrt{3}, 3-\sqrt{3})$.

Now let's try to determine an angle θ such that the term Bxy in Equation 1 disappears when the axes are rotated through the angle θ. If we substitute from Equations 2 in Equation 1, we get

$$
\begin{aligned}
& A(X \cos \theta-Y \sin \theta)^{2}+B(X \cos \theta-Y \sin \theta)(X \sin \theta+Y \cos \theta) \\
& \quad+C(X \sin \theta+Y \cos \theta)^{2}+D(X \cos \theta-Y \sin \theta) \\
& \quad+E(X \sin \theta+Y \cos \theta)+F=0
\end{aligned}
$$

Expanding and collecting terms, we obtain an equation of the form

$$
\begin{equation*}
A^{\prime} X^{2}+B^{\prime} X Y+C^{\prime} Y^{2}+D^{\prime} X+E^{\prime} Y+F=0 \tag{4}
\end{equation*}
$$

where the coefficient B^{\prime} of $X Y$ is

$$
\begin{aligned}
B^{\prime} & =2(C-A) \sin \theta \cos \theta+B\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \\
& =(C-A) \sin 2 \theta+B \cos 2 \theta
\end{aligned}
$$

To eliminate the $X Y$ term we choose θ so that $B^{\prime}=0$, that is,

$$
(A-C) \sin 2 \theta=B \cos 2 \theta
$$

or

$$
\begin{equation*}
\cot 2 \theta=\frac{A-C}{B} \tag{5}
\end{equation*}
$$

EXAMPLE 2 Show that the graph of the equation $x y=1$ is a hyperbola.
SOLUTION Notice that the equation $x y=1$ is in the form of Equation 1 where $A=0$, $B=1$, and $C=0$. According to Equation 5, the $x y$ term will be eliminated if we choose θ so that

$$
\cot 2 \theta=\frac{A-C}{B}=0
$$

$$
x y=1 \text { or } \frac{X^{2}}{2}-\frac{Y^{2}}{2}=1
$$

FIGURE 3

FIGURE 4

This will be true if $2 \theta=\pi / 2$, that is, $\theta=\pi / 4$. Then $\cos \theta=\sin \theta=1 / \sqrt{2}$ and Equations 2 become

$$
x=\frac{X}{\sqrt{2}}-\frac{Y}{\sqrt{2}} \quad y=\frac{X}{\sqrt{2}}+\frac{Y}{\sqrt{2}}
$$

Substituting these expressions into the original equation gives

$$
\left(\frac{X}{\sqrt{2}}-\frac{Y}{\sqrt{2}}\right)\left(\frac{X}{\sqrt{2}}+\frac{Y}{\sqrt{2}}\right)=1 \quad \text { or } \quad \frac{X^{2}}{2}-\frac{Y^{2}}{2}=1
$$

We recognize this as a hyperbola with vertices $(\pm \sqrt{2}, 0)$ in the $X Y$-coordinate system. The asymptotes are $Y= \pm X$ in the $X Y$-system, which correspond to the coordinate axes in the $x y$-system (see Figure 3).

EXAMPLE 3 Identify and sketch the curve

$$
73 x^{2}+72 x y+52 y^{2}+30 x-40 y-75=0
$$

SOLUTION This equation is in the form of Equation 1 with $A=73, B=72$, and $C=52$. Thus

$$
\cot 2 \theta=\frac{A-C}{B}=\frac{73-52}{72}=\frac{7}{24}
$$

From the triangle in Figure 4 we see that

$$
\cos 2 \theta=\frac{7}{25}
$$

The values of $\cos \theta$ and $\sin \theta$ can then be computed from the half-angle formulas:

$$
\begin{aligned}
& \cos \theta=\sqrt{\frac{1+\cos 2 \theta}{2}}=\sqrt{\frac{1+\frac{7}{25}}{2}}=\frac{4}{5} \\
& \sin \theta=\sqrt{\frac{1-\cos 2 \theta}{2}}=\sqrt{\frac{1-\frac{7}{25}}{2}}=\frac{3}{5}
\end{aligned}
$$

The rotation equations (2) become

$$
x=\frac{4}{5} X-\frac{3}{5} Y \quad y=\frac{3}{5} X+\frac{4}{5} Y
$$

Substituting into the given equation, we have

$$
\begin{aligned}
& \begin{array}{l}
73\left({ }_{5}^{5} X-\frac{3}{5} Y\right)^{2}+72\left({ }_{5}^{5} X-\frac{3}{5} Y\right)\left(\frac{3}{5} X+\frac{4}{5} Y\right)+52\left(\frac{3}{5} X+\frac{4}{5} Y\right)^{2} \\
+30\left({ }_{5}^{5} X-\frac{3}{5} Y\right)-40\left(\frac{3}{5} X+\frac{4}{5} Y\right)-75=0
\end{array} \\
& \text { fies to } \quad 4 X^{2}+Y^{2}-2 Y=3
\end{aligned}
$$

which simplifies to
Completing the square gives

$$
4 X^{2}+(Y-1)^{2}=4 \quad \text { or } \quad X^{2}+\frac{(Y-1)^{2}}{4}=1
$$

and we recognize this as being an ellipse whose center is $(0,1)$ in $X Y$-coordinates.

Since $\theta=\cos ^{-1}\left(\frac{4}{5}\right) \approx 37^{\circ}$, we can sketch the graph in Figure 5.

FIGURE 5

A. Click here for answ ers.

1-4 - Find the $X Y$-coordinates of the given point if the axes are rotated through the specified angle.

1. $(1,4), 30^{\circ}$
2. $(4,3), 45^{\circ}$
3. $(-2,4), 60^{\circ}$
4. $(1,1), 15^{\circ}$

5-12 \quad Use rotation of axes to identify and sketch the curve.
5. $x^{2}-2 x y+y^{2}-x-y=0$
6. $x^{2}-x y+y^{2}=1$
7. $x^{2}+x y+y^{2}=1$
8. $\sqrt{3} x y+y^{2}=1$
9. $97 x^{2}+192 x y+153 y^{2}=225$
10. $3 x^{2}-12 \sqrt{5} x y+6 y^{2}+9=0$
11. $2 \sqrt{3} x y-2 y^{2}-\sqrt{3} x-y=0$
12. $16 x^{2}-8 \sqrt{2} x y+2 y^{2}+(8 \sqrt{2}-3) x-(6 \sqrt{2}+4) y=7$
13. (a) Use rotation of axes to show that the equation

$$
36 x^{2}+96 x y+64 y^{2}+20 x-15 y+25=0
$$

represents a parabola.
(b) Find the $X Y$-coordinates of the focus. Then find the $x y$-coordinates of the focus.
(c) Find an equation of the directrix in the $x y$-coordinate system.
14. (a) Use rotation of axes to show that the equation

$$
2 x^{2}-72 x y+23 y^{2}-80 x-60 y=125
$$

represents a hyperbola.
(b) Find the $X Y$-coordinates of the foci. Then find the $x y$-coordinates of the foci.
(c) Find the $x y$-coordinates of the vertices.
(d) Find the equations of the asymptotes in the $x y$-coordinate system.
(e) Find the eccentricity of the hyperbola.
15. Suppose that a rotation changes Equation 1 into Equation 4. Show that

$$
A^{\prime}+C^{\prime}=A+C
$$

16. Suppose that a rotation changes Equation 1 into Equation 4. Show that

$$
\left(B^{\prime}\right)^{2}-4 A^{\prime} C^{\prime}=B^{2}-4 A C
$$

17. Use Exercise 16 to show that Equation 1 represents (a) a parabola if $B^{2}-4 A C=0$, (b) an ellipse if $B^{2}-4 A C<0$, and (c) a hyperbola if $B^{2}-4 A C>0$, except in degenerate cases when it reduces to a point, a line, a pair of lines, or no graph at all.
18. Use Exercise 17 to determine the type of curve in Exercises 9-12.
19. $((\sqrt{3}+4) / 2,(4 \sqrt{3}-1) / 2)$
20. $(2 \sqrt{3}-1, \sqrt{3}+2)$
21. $X=\sqrt{2} Y^{2}$, parabola

22. $3 X^{2}+Y^{2}=2$, ellipse

23. $X^{2}+\left(Y^{2} / 9\right)=1$, ellipse

24. $(X-1)^{2}-3 Y^{2}=1$, hyperbola

25. (a) $Y-1=4 X^{2} \quad$ (b) $\left(0, \frac{17}{16}\right),\left(-\frac{17}{20}, \frac{51}{80}\right)$
(c) $64 x-48 y+75=0$
