CHALLENGE PROBLEMS

> CHAPTER 8

A. Click here for answers.

S Click here for solutions.

I. If $f(x)=\sin \left(x^{3}\right)$, find $f^{(15)}(0)$.
2. A function f is defined by

$$
f(x)=\lim _{n \rightarrow \infty} \frac{x^{2 n}-1}{x^{2 n}+1}
$$

Where is f continuous?
3. (a) Show that $\tan \frac{1}{2} x=\cot \frac{1}{2} x-2 \cot x$.
(b) Find the sum of the series

$$
\sum_{n=1}^{\infty} \frac{1}{2^{n}} \tan \frac{x}{2^{n}}
$$

FIGURE FOR PROBLEM 4

6. Find the sum of the series

$$
1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+\frac{1}{9}+\frac{1}{12}+\cdots
$$

where the terms are the reciprocals of the positive integers whose only prime factors are 2 s and 3 s .
7. (a) Show that for $x y \neq-1$,

$$
\arctan x-\arctan y=\arctan \frac{x-y}{1+x y}
$$

if the left side lies between $-\pi / 2$ and $\pi / 2$.
(b) Show that

$$
\arctan \frac{120}{119}-\arctan \frac{1}{239}=\frac{\pi}{4}
$$

(c) Deduce the following formula of John Machin (1680-1751):

$$
4 \arctan \frac{1}{5}-\arctan \frac{1}{239}=\frac{\pi}{4}
$$

FIGURE FOR PROBLEM 12
(d) Use the Maclaurin series for arctan to show that

$$
0.197395560<\arctan \frac{1}{5}<0.197395562
$$

(e) Show that

$$
0.004184075<\arctan \frac{1}{239}<0.004184077
$$

(f) Deduce that, correct to seven decimal places,

$$
\pi \approx 3.1415927
$$

Machin used this method in 1706 to find π correct to 100 decimal places. Recently, with the aid of computers, the value of π has been computed to increasingly greater accuracy. In 1999, Takahashi and Kanada, using methods of Borwein and Brent/Salamin, calculated the value of π to 206,158,430,000 decimal places!
8. (a) Prove a formula similar to the one in Problem 7(a) but involving arccot instead of arctan.
(b) Find the sum of the series

$$
\sum_{n=0}^{\infty} \operatorname{arccot}\left(n^{2}+n+1\right)
$$

9. Find the interval of convergence of $\sum_{n=1}^{\infty} n^{3} x^{n}$ and find its sum.
10. If $a_{0}+a_{1}+a_{2}+\cdots+a_{k}=0$, show that

$$
\lim _{n \rightarrow \infty}\left(a_{0} \sqrt{n}+a_{1} \sqrt{n+1}+a_{2} \sqrt{n+2}+\cdots+a_{k} \sqrt{n+k}\right)=0
$$

Hint: Try the special cases $k=1$ and $k=2$ first. If you can see how to prove the assertion for these cases, then you will probably see how to prove it in general.
II. Find the sum of the series $\sum_{n=2}^{\infty} \ln \left(1-\frac{1}{n^{2}}\right)$.
12. Suppose you have a large supply of books, all the same size, and you stack them at the edge of a table, with each book extending farther beyond the edge of the table than the one beneath it. Show that it is possible to do this so that the top book extends entirely beyond the table. In fact, show that the top book can extend any distance at all beyond the edge of the table if the stack is high enough. Use the following method of stacking: The top book extends half its length beyond the second book. The second book extends a quarter of its length beyond the third. The third extends one-sixth of its length beyond the fourth, and so on. (Try it yourself with a deck of cards.) Consider centers of mass.
13. Let

$$
\begin{aligned}
& u=1+\frac{x^{3}}{3!}+\frac{x^{6}}{6!}+\frac{x^{9}}{9!}+\cdots \\
& v=x+\frac{x^{4}}{4!}+\frac{x^{7}}{7!}+\frac{x^{10}}{10!}+\cdots \\
& w=\frac{x^{2}}{2!}+\frac{x^{5}}{5!}+\frac{x^{8}}{8!}+\cdots
\end{aligned}
$$

Show that $u^{3}+v^{3}+w^{3}-3 u v w=1$.
14. If $p>1$, evaluate the expression

$$
\frac{1+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\frac{1}{4^{p}}+\cdots}{1-\frac{1}{2^{p}}+\frac{1}{3^{p}}-\frac{1}{4^{p}}+\cdots}
$$

15. Suppose that circles of equal diameter are packed tightly in n rows inside an equilateral triangle. (The figure illustrates the case $n=4$.) If A is the area of the triangle and A_{n} is the total area occupied by the n rows of circles, show that

$$
\lim _{n \rightarrow \infty} \frac{A_{n}}{A}=\frac{\pi}{2 \sqrt{3}}
$$

16. A sequence $\left\{a_{n}\right\}$ is defined recursively by the equations

$$
a_{0}=a_{1}=1 \quad n(n-1) a_{n}=(n-1)(n-2) a_{n-1}-(n-3) a_{n-2}
$$

Find the sum of the series $\sum_{n=0}^{\infty} a_{n}$.
17. Taking the value of x^{x} at 0 to be 1 and integrating a series term-by-term, show that

$$
\int_{0}^{1} x^{x} d x=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{n}}
$$

18. Starting with the vertices $P_{1}(0,1), P_{2}(1,1), P_{3}(1,0), P_{4}(0,0)$ of a square, we construct further points as shown in the figure: P_{5} is the midpoint of $P_{1} P_{2}, P_{6}$ is the midpoint of $P_{2} P_{3}, P_{7}$ is the midpoint of $P_{3} P_{4}$, and so on. The polygonal spiral path $P_{1} P_{2} P_{3} P_{4} P_{5} P_{6} P_{7} \ldots$ approaches a point P inside the square.
(a) If the coordinates of P_{n} are $\left(x_{n}, y_{n}\right)$, show that ${ }_{2} x_{n}+x_{n+1}+x_{n+2}+x_{n+3}=2$ and find a similar equation for the y-coordinates.
(b) Find the coordinates of P.
19. If $f(x)=\sum_{m=0}^{\infty} c_{m} x^{m}$ has positive radius of convergence and $e^{f(x)}=\sum_{n=0}^{\infty} d_{n} x^{n}$, show that

$$
n d_{n}=\sum_{i=1}^{n} i c_{i} d_{n-i} \quad n \geqslant 1
$$

20. Right-angled triangles are constructed as in the figure. Each triangle has height 1 and its base is the hypotenuse of the preceding triangle. Show that this sequence of triangles makes indefinitely many turns around P by showing that $\sum \theta_{n}$ is a divergent series.
21. Consider the series whose terms are the reciprocals of the positive integers that can be written in base 10 notation without using the digit 0 . Show that this series is convergent and the sum is less than 90.
22. (a) Show that the Maclaurin series of the function

FIGURE FOR PROBLEM 20

ANSWERS

S. Solutions	I. $15!/ 5!=10,897,286,400$	3. (b) 0 if $x=0,(1 / x)-\cot x$ if $x \neq k \pi, k$ an integer

5. (a) $s_{n}=3 \cdot 4^{n}, l_{n}=1 / 3^{n}, p_{n}=4^{n} / 3^{n-1} \quad$ (c) $2 \sqrt{3} / 5$
6. $(-1,1),\left(x^{3}+4 x^{2}+x\right) /(1-x)^{4} \quad$ II. $\ln \frac{1}{2}$

E Exercises

1. It would be far too much work to compute 15 derivatives of f. The key idea is to remember that $f^{(n)}(0)$ occurs in the coefficient of x^{n} in the Maclaurin series of f. We start with the Maclaurin series for sin: $\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots$. Then $\sin \left(x^{3}\right)=x^{3}-\frac{x^{9}}{3!}+\frac{x^{15}}{5!}-\cdots$, and so the coefficient of x^{15} is $\frac{f^{(15)}(0)}{15!}=\frac{1}{5!}$. Therefore, $f^{(15)}(0)=\frac{15!}{5!}=6 \cdot 7 \cdot 8 \cdot 9 \cdot 10 \cdot 11 \cdot 12 \cdot 13 \cdot 14 \cdot 15=10,897,286,400$.
2. (a) From Formula 14a in Appendix A, with $x=y=\theta$, we get $\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$, so $\cot 2 \theta=\frac{1-\tan ^{2} \theta}{2 \tan \theta} \Rightarrow$ $2 \cot 2 \theta=\frac{1-\tan ^{2} \theta}{\tan \theta}=\cot \theta-\tan \theta$. Replacing θ by $\frac{1}{2} x$, we get $2 \cot x=\cot \frac{1}{2} x-\tan \frac{1}{2} x$, or

$$
\tan \frac{1}{2} x=\cot \frac{1}{2} x-2 \cot x
$$

(b) From part (a) with $\frac{x}{2^{n-1}}$ in place of $x, \tan \frac{x}{2^{n}}=\cot \frac{x}{2^{n}}-2 \cot \frac{x}{2^{n-1}}$, so the nth partial sum of $\sum_{n=1}^{\infty} \frac{1}{2^{n}} \tan \frac{x}{2^{n}}$ is

$$
s_{n}=\frac{\tan (x / 2)}{2}+\frac{\tan (x / 4)}{4}+\frac{\tan (x / 8)}{8}+\cdots+\frac{\tan \left(x / 2^{n}\right)}{2^{n}}
$$

$$
=\left[\frac{\cot (x / 2)}{2}-\cot x\right]+\left[\frac{\cot (x / 4)}{4}-\frac{\cot (x / 2)}{2}\right]+\left[\frac{\cot (x / 8)}{8}-\frac{\cot (x / 4)}{4}\right]+\cdots
$$

$$
+\left[\frac{\cot \left(x / 2^{n}\right)}{2^{n}}-\frac{\cot \left(x / 2^{n-1}\right)}{2^{n-1}}\right]=-\cot x+\frac{\cot \left(x / 2^{n}\right)}{2^{n}} \text { (telescoping sum) }
$$

Now $\frac{\cot \left(x / 2^{n}\right)}{2^{n}}=\frac{\cos \left(x / 2^{n}\right)}{2^{n} \sin \left(x / 2^{n}\right)}=\frac{\cos \left(x / 2^{n}\right)}{x} \cdot \frac{x / 2^{n}}{\sin \left(x / 2^{n}\right)} \rightarrow \frac{1}{x} \cdot 1=\frac{1}{x}$ as $n \rightarrow \infty$ since $x / 2^{n} \rightarrow 0$ for $x \neq 0$. Therefore, if $x \neq 0$ and $x \neq k \pi$ where k is any integer, then

$$
\sum_{n=1}^{\infty} \frac{1}{2^{n}} \tan \frac{x}{2^{n}}=\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty}\left(-\cot x+\frac{1}{2^{n}} \cot \frac{x}{2^{n}}\right)=-\cot x+\frac{1}{x}
$$

If $x=0$, then all terms in the series are 0 , so the sum is 0 .
5. (a) At each stage, each side is replaced by four shorter sides, each of length $\frac{1}{3}$ of the side length at the preceding stage. Writing s_{0} and ℓ_{0} for the number of sides and the length of the side of the initial triangle, we generate the table at right. In general, we have $s_{n}=3 \cdot 4^{n}$ and $\ell_{n}=\left(\frac{1}{3}\right)^{n}$, so the length of the perimeter at the nth

$s_{0}=3$	$\ell_{0}=1$
$s_{1}=3 \cdot 4$	$\ell_{1}=1 / 3$
$s_{2}=3 \cdot 4^{2}$	$\ell_{2}=1 / 3^{2}$
$s_{3}=3 \cdot 4^{3}$	$\ell_{3}=1 / 3^{3}$
$\quad \ldots$	\cdots

(b) $p_{n}=\frac{4^{n}}{3^{n-1}}=4\left(\frac{4}{3}\right)^{n-1}$. Since $\frac{4}{3}>1, p_{n} \rightarrow \infty$ as $n \rightarrow \infty$.
(c) The area of each of the small triangles added at a given stage is one-ninth of the area of the triangle added at the preceding stage. Let a be the area of the original triangle. Then the area a_{n} of each of the small triangles added at stage n is $a_{n}=a \cdot \frac{1}{9^{n}}=\frac{a}{9^{n}}$. Since a small triangle is added to each side at every stage, it follows that the total area A_{n} added to the figure at the nth stage is $A_{n}=s_{n-1} \cdot a_{n}=3 \cdot 4^{n-1} \cdot \frac{a}{9^{n}}=a \cdot \frac{4^{n-1}}{3^{2 n-1}}$. Then the total area enclosed by the snowflake curve is $A=a+A_{1}+A_{2}+A_{3}+\cdots=a+a \cdot \frac{1}{3}+a \cdot \frac{4}{3^{3}}+a \cdot \frac{4^{2}}{3^{5}}+a \cdot \frac{4^{3}}{3^{7}}+\cdots$. After the first term, this is a geometric series with common ratio $\frac{4}{9}$, so $A=a+\frac{a / 3}{1-\frac{4}{9}}=a+\frac{a}{3} \cdot \frac{9}{5}=\frac{8 a}{5}$. But the area of the original equilateral triangle with side 1 is $a=\frac{1}{2} \cdot 1 \cdot \sin \frac{\pi}{3}=\frac{\sqrt{3}}{4}$. So the area enclosed by the snowflake curve is $\frac{8}{5} \cdot \frac{\sqrt{3}}{4}=\frac{2 \sqrt{3}}{5}$.
7. (a) Let $a=\arctan x$ and $b=\arctan y$. Then, from Formula 14 b in Appendix A,

$$
\tan (a-b)=\frac{\tan a-\tan b}{1+\tan a \tan b}=\frac{\tan (\arctan x)-\tan (\arctan y)}{1+\tan (\arctan x) \tan (\arctan y)}=\frac{x-y}{1+x y}
$$

Now $\arctan x-\arctan y=a-b=\arctan (\tan (a-b))=\arctan \frac{x-y}{1+x y}$ since $-\frac{\pi}{2}<a-b<\frac{\pi}{2}$.
(b) From part (a) we have

$$
\arctan \frac{120}{119}-\arctan \frac{1}{239}=\arctan \frac{\frac{120}{119}-\frac{1}{239}}{1+\frac{120}{119} \cdot \frac{1}{239}}=\arctan \frac{\frac{28,561}{28,441}}{\frac{28,51}{28,441}}=\arctan 1=\frac{\pi}{4}
$$

(c) Replacing y by $-y$ in the formula of part (a), we get $\arctan x+\arctan y=\arctan \frac{x+y}{1-x y}$. So $4 \arctan \frac{1}{5}=2\left(\arctan \frac{1}{5}+\arctan \frac{1}{5}\right)=2 \arctan \frac{\frac{1}{5}+\frac{1}{5}}{1-\frac{1}{5} \cdot \frac{1}{5}}=2 \arctan \frac{5}{12}=\arctan \frac{5}{12}+\arctan \frac{5}{12}$ $=\arctan \frac{\frac{5}{12}+\frac{5}{12}}{1-\frac{5}{12} \cdot \frac{5}{12}}=\arctan \frac{120}{119}$

Thus, from part (b), we have $4 \arctan \frac{1}{5}-\arctan \frac{1}{239}=\arctan \frac{120}{119}-\arctan \frac{1}{239}=\frac{\pi}{4}$.
(d) From Example 7 in Section 8.6 we have $\arctan x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\frac{x^{9}}{9}-\frac{x^{11}}{11}+\cdots$, so

$$
\arctan \frac{1}{5}=\frac{1}{5}-\frac{1}{3 \cdot 5^{3}}+\frac{1}{5 \cdot 5^{5}}-\frac{1}{7 \cdot 5^{7}}+\frac{1}{9 \cdot 5^{9}}-\frac{1}{11 \cdot 5^{11}}+\cdots
$$

This is an alternating series and the size of the terms decreases to 0 , so by the Alternating Series Estimation Theorem, the sum lies between s_{5} and s_{6}, that is, $0.197395560<\arctan \frac{1}{5}<0.197395562$.
(e) From the series in part (d) we get $\arctan \frac{1}{239}=\frac{1}{239}-\frac{1}{3 \cdot 239^{3}}+\frac{1}{5 \cdot 239^{5}}-\cdots$. The third term is less than 2.6×10^{-13}, so by the Alternating Series Estimation Theorem, we have, to nine decimal places, $\arctan \frac{1}{239} \approx s_{2} \approx 0.004184076$. Thus, $0.004184075<\arctan \frac{1}{239}<0.004184077$.
(f) From part (c) we have $\pi=16 \arctan \frac{1}{5}-4 \arctan \frac{1}{239}$, so from parts (d) and (e) we have $16(0.197395560)-4(0.004184077)<\pi<16(0.197395562)-4(0.004184075) \Rightarrow$ $3.141592652<\pi<3.141592692$. So, to 7 decimal places, $\pi \approx 3.1415927$.
9. We start with the geometric series $\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x},|x|<1$, and differentiate:
$\sum_{n=1}^{\infty} n x^{n-1}=\frac{d}{d x}\left(\sum_{n=0}^{\infty} x^{n}\right)=\frac{d}{d x}\left(\frac{1}{1-x}\right)=\frac{1}{(1-x)^{2}}$ for $|x|<1 \Rightarrow$
$\sum_{n=1}^{\infty} n x^{n}=x \sum_{n=1}^{\infty} n x^{n-1}=\frac{x}{(1-x)^{2}}$ for $|x|<1$. Differentiate again:
$\sum_{n=1}^{\infty} n^{2} x^{n-1}=\frac{d}{d x} \frac{x}{(1-x)^{2}}=\frac{(1-x)^{2}-x \cdot 2(1-x)(-1)}{(1-x)^{4}}=\frac{x+1}{(1-x)^{3}} \Rightarrow \sum_{n=1}^{\infty} n^{2} x^{n}=\frac{x^{2}+x}{(1-x)^{3}} \Rightarrow$
$\sum_{n=1}^{\infty} n^{3} x^{n-1}=\frac{d}{d x} \frac{x^{2}+x}{(1-x)^{3}}=\frac{(1-x)^{3}(2 x+1)-\left(x^{2}+x\right) 3(1-x)^{2}(-1)}{(1-x)^{6}}=\frac{x^{2}+4 x+1}{(1-x)^{4}} \Rightarrow$
$\sum_{n=1}^{\infty} n^{3} x^{n}=\frac{x^{3}+4 x^{2}+x}{(1-x)^{4}},|x|<1$. The radius of convergence is 1 because that is the radius of convergence for the geometric series we started with. If $x= \pm 1$, the series is $\sum n^{3}(\pm 1)^{n}$, which diverges by the Test For Divergence, so the interval of convergence is $(-1,1)$.
11. $\ln \left(1-\frac{1}{n^{2}}\right)=\ln \left(\frac{n^{2}-1}{n^{2}}\right)=\ln \frac{(n+1)(n-1)}{n^{2}}=\ln [(n+1)(n-1)]-\ln n^{2}$

$$
=\ln (n+1)+\ln (n-1)-2 \ln n
$$

$$
=\ln (n-1)-\ln n-\ln n+\ln (n+1)
$$

$$
=\ln \frac{n-1}{n}-[\ln n-\ln (n+1)]=\ln \frac{n-1}{n}-\ln \frac{n}{n+1} .
$$

Let $s_{k}=\sum_{n=2}^{k} \ln \left(1-\frac{1}{n^{2}}\right)=\sum_{n=2}^{k}\left(\ln \frac{n-1}{n}-\ln \frac{n}{n+1}\right)$ for $k \geq 2$. Then
$s_{k}=\left(\ln \frac{1}{2}-\ln \frac{2}{3}\right)+\left(\ln \frac{2}{3}-\ln \frac{3}{4}\right)+\cdots+\left(\ln \frac{k-1}{k}-\ln \frac{k}{k+1}\right)=\ln \frac{1}{2}-\ln \frac{k}{k+1}$, so
$\sum_{n=2}^{\infty} \ln \left(1-\frac{1}{n^{2}}\right)=\lim _{k \rightarrow \infty} s_{k}=\lim _{k \rightarrow \infty}\left(\ln \frac{1}{2}-\ln \frac{k}{k+1}\right)=\ln \frac{1}{2}-\ln 1=\ln 1-\ln 2-\ln 1=-\ln 2$.
13. $u=1+\frac{x^{3}}{3!}+\frac{x^{6}}{6!}+\frac{x^{9}}{9!}+\cdots, v=x+\frac{x^{4}}{4!}+\frac{x^{7}}{7!}+\frac{x^{10}}{10!}+\cdots, w=\frac{x^{2}}{2!}+\frac{x^{5}}{5!}+\frac{x^{8}}{8!}+\cdots$.

Use the Ratio Test to show that the series for u, v, and w have positive radii of convergence (∞ in each case), so Theorem 8.6.2 applies, and hence, we may differentiate each of these series:

$$
\frac{d u}{d x}=\frac{3 x^{2}}{3!}+\frac{6 x^{5}}{6!}+\frac{9 x^{8}}{9!}+\cdots=\frac{x^{2}}{2!}+\frac{x^{5}}{5!}+\frac{x^{8}}{8!}+\cdots=w
$$

Similarly, $\frac{d v}{d x}=1+\frac{x^{3}}{3!}+\frac{x^{6}}{6!}+\frac{x^{9}}{9!}+\cdots=u$, and $\frac{d w}{d x}=x+\frac{x^{4}}{4!}+\frac{x^{7}}{7!}+\frac{x^{10}}{10!}+\cdots=v$.

So $u^{\prime}=w, v^{\prime}=u$, and $w^{\prime}=v$. Now differentiate the left hand side of the desired equation:

$$
\begin{aligned}
\frac{d}{d x}\left(u^{3}+v^{3}+w^{3}-3 u v w\right) & =3 u^{2} u^{\prime}+3 v^{2} v^{\prime}+3 w^{2} w^{\prime}-3\left(u^{\prime} v w+u v^{\prime} w+u v w^{\prime}\right) \\
& =3 u^{2} w+3 v^{2} u+3 w^{2} v-3\left(v w^{2}+u^{2} w+u v^{2}\right)=0 \quad \Rightarrow
\end{aligned}
$$

$u^{3}+v^{3}+w^{3}-3 u v w=C$. To find the value of the constant C, we put $x=0$ in the last equation and get $1^{3}+0^{3}+0^{3}-3(1 \cdot 0 \cdot 0)=C \quad \Rightarrow \quad C=1$, so $u^{3}+v^{3}+w^{3}-3 u v w=1$.
15. If L is the length of a side of the equilateral triangle, then the area is $A=\frac{1}{2} L \cdot \frac{\sqrt{3}}{2} L=\frac{\sqrt{3}}{4} L^{2}$ and so $L^{2}=\frac{4}{\sqrt{3}} A$. Let r be the radius of one of the circles. When there are n rows of circles, the figure shows that
$L=\sqrt{3} r+r+(n-2)(2 r)+r+\sqrt{3} r=r(2 n-2+2 \sqrt{3})$, so $r=\frac{L}{2(n+\sqrt{3}-1)}$.
The number of circles is $1+2+\cdots+n=\frac{n(n+1)}{2}$, and so the total area of the circles is

$$
\begin{aligned}
A_{n} & =\frac{n(n+1)}{2} \pi r^{2}=\frac{n(n+1)}{2} \pi \frac{L^{2}}{4(n+\sqrt{3}-1)^{2}} \\
& =\frac{n(n+1)}{2} \pi \frac{4 A / \sqrt{3}}{4(n+\sqrt{3}-1)^{2}} \\
& =\frac{n(n+1)}{(n+\sqrt{3}-1)^{2}} \frac{\pi A}{2 \sqrt{3}} \Rightarrow \\
\frac{A_{n}}{A} & =\frac{n(n+1)}{(n+\sqrt{3}-1)^{2}} \frac{\pi}{2 \sqrt{3}} \\
& =\frac{1+1 / n}{[1+(\sqrt{3}-1) / n]^{2}} \frac{\pi}{2 \sqrt{3}} \rightarrow \frac{\pi}{2 \sqrt{3}} \text { as } n \rightarrow \infty
\end{aligned}
$$

17. As in Section 8.6 we have to integrate the function x^{x} by integrating series. Writing $x^{x}=\left(e^{\ln x}\right)^{x}=e^{x \ln x}$ and using the Maclaurin series for e^{x}, we have $x^{x}=\left(e^{\ln x}\right)^{x}=e^{x \ln x}=\sum_{n=0}^{\infty} \frac{(x \ln x)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{x^{n}(\ln x)^{n}}{n!}$.

As with power series, we can integrate this series term-by-term:

$$
\int_{0}^{1} x^{x} d x=\sum_{n=0}^{\infty} \int_{0}^{1} \frac{x^{n}(\ln x)^{n}}{n!} d x=\sum_{n=0}^{\infty} \frac{1}{n!} \int_{0}^{1} x^{n}(\ln x)^{n} d x
$$

We integrate by parts with $u=(\ln x)^{n}, d v=x^{n} d x$, so $d u=\frac{n(\ln x)^{n-1}}{x} d x$ and $v=\frac{x^{n+1}}{n+1}$:

$$
\begin{aligned}
\int_{0}^{1} x^{n}(\ln x)^{n} d x & =\lim _{t \rightarrow 0^{+}} \int_{t}^{1} x^{n}(\ln x)^{n} d x=\lim _{t \rightarrow 0^{+}}\left[\frac{x^{n+1}}{n+1}(\ln x)^{n}\right]_{t}^{1}-\lim _{t \rightarrow 0^{+}} \int_{t}^{1} \frac{n}{n+1} x^{n}(\ln x)^{n-1} d x \\
& =0-\frac{n}{n+1} \int_{0}^{1} x^{n}(\ln x)^{n-1} d x
\end{aligned}
$$

(where l'Hospital's Rule was used to help evaluate the first limit).

Further integration by parts gives $\int_{0}^{1} x^{n}(\ln x)^{k} d x=-\frac{k}{n+1} \int_{0}^{1} x^{n}(\ln x)^{k-1} d x$ and, combining these steps, we get $\int_{0}^{1} x^{n}(\ln x)^{n} d x=\frac{(-1)^{n} n!}{(n+1)^{n}} \int_{0}^{1} x^{n} d x=\frac{(-1)^{n} n!}{(n+1)^{n+1}} \Rightarrow$ $\int_{0}^{1} x^{x} d x=\sum_{n=0}^{\infty} \frac{1}{n!} \int_{0}^{1} x^{n}(\ln x)^{n} d x=\sum_{n=0}^{\infty} \frac{1}{n!} \frac{(-1)^{n} n!}{(n+1)^{n+1}}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(n+1)^{n+1}}=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{n}}$.
19. Let $f(x)=\sum_{m=0}^{\infty} c_{m} x^{m}$ and $g(x)=e^{f(x)}=\sum_{n=0}^{\infty} d_{n} x^{n}$. Then $g^{\prime}(x)=\sum_{n=0}^{\infty} n d_{n} x^{n-1}$, so $n d_{n}$ occurs as the coefficient of x^{n-1}. But also

$$
\begin{aligned}
g^{\prime}(x) & =e^{f(x)} f^{\prime}(x)=\left(\sum_{n=0}^{\infty} d_{n} x^{n}\right)\left(\sum_{m=1}^{\infty} m c_{m} x^{m-1}\right) \\
& =\left(d_{0}+d_{1} x+d_{2} x^{2}+\cdots+d_{n-1} x^{n-1}+\cdots\right)\left(c_{1}+2 c_{2} x+3 c_{3} x^{2}+\cdots+n c_{n} x^{n-1}+\cdots\right)
\end{aligned}
$$

so the coefficient of x^{n-1} is $c_{1} d_{n-1}+2 c_{2} d_{n-2}+3 c_{3} d_{n-3}+\cdots+n c_{n} d_{0}=\sum_{i=1}^{n} i c_{i} d_{n-i}$. Therefore, $n d_{n}=\sum_{i=1}^{n} i c_{i} d_{n-i}$.
21. Call the series S. We group the terms according to the number of digits in their denominators:

$$
S=\underbrace{\left(\frac{1}{1}+\frac{1}{2}+\cdots+\frac{1}{8}+\frac{1}{9}\right)}_{g_{1}}+\underbrace{\left(\frac{1}{11}+\cdots+\frac{1}{99}\right)}_{g_{2}}+\underbrace{\left(\frac{1}{111}+\cdots+\frac{1}{999}\right)}_{g_{3}}+\cdots
$$

Now in the group g_{n}, since we have 9 choices for each of the n digits in the denominator, there are 9^{n} terms.
Furthermore, each term in g_{n} is less than $\frac{1}{10^{n-1}}$ [except for the first term in g_{1}]. So $g_{n}<9^{n} \cdot \frac{1}{10^{n-1}}=9\left(\frac{9}{10}\right)^{n-1}$. Now $\sum_{n=1}^{\infty} 9\left(\frac{9}{10}\right)^{n-1}$ is a geometric series with $a=9$ and $r=\frac{9}{10}<1$. Therefore, by the Comparison Test, $S=\sum_{n=1}^{\infty} g_{n}<\sum_{n=1}^{\infty} 9\left(\frac{9}{10}\right)^{n-1}=\frac{9}{1-9 / 10}=90$.

