CHALLENGE PROBLEMS

CHAPTER 12

A Click here for answers.

(5) Click here for solutions.

I. If $\llbracket x \rrbracket$ denotes the greatest integer in x, evaluate the integral

$$
\iint_{R} \llbracket x+y \rrbracket d A
$$

where $R=\{(x, y) \mid 1 \leqslant x \leqslant 3,2 \leqslant y \leqslant 5\}$.
2. Evaluate the integral

$$
\int_{0}^{1} \int_{0}^{1} e^{\max \left\{x^{2}, y^{2}\right\}} d y d x
$$

where $\max \left\{x^{2}, y^{2}\right\}$ means the larger of the numbers x^{2} and y^{2}.
3. Find the average value of the function $f(x)=\int_{x}^{1} \cos \left(t^{2}\right) d t$ on the interval $[0,1]$.
4. If \mathbf{a}, \mathbf{b}, and \mathbf{c} are constant vectors, \mathbf{r} is the position vector $x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$, and E is given by the inequalities $0 \leqslant \mathbf{a} \cdot \mathbf{r} \leqslant \alpha, 0 \leqslant \mathbf{b} \cdot \mathbf{r} \leqslant \beta, 0 \leqslant \mathbf{c} \cdot \mathbf{r} \leqslant \gamma$, show that

$$
\iiint_{E}(\mathbf{a} \cdot \mathbf{r})(\mathbf{b} \cdot \mathbf{r})(\mathbf{c} \cdot \mathbf{r}) d V=\frac{(\alpha \beta \gamma)^{2}}{8|\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})|}
$$

5. The double integral $\int_{0}^{1} \int_{0}^{1} \frac{1}{1-x y} d x d y$ is an improper integral and could be defined as the limit of double integrals over the rectangle $[0, t] \times[0, t]$ as $t \rightarrow 1^{-}$. But if we expand the integrand as a geometric series, we can express the integral as the sum of an infinite series. Show that

$$
\int_{0}^{1} \int_{0}^{1} \frac{1}{1-x y} d x d y=\sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

6. Leonhard Euler was able to find the exact sum of the series in Problem 5. In 1736 he proved that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

In this problem we ask you to prove this fact by evaluating the double integral in Problem 5. Start by making the change of variables

$$
x=\frac{u-v}{\sqrt{2}} \quad y=\frac{u+v}{\sqrt{2}}
$$

This gives a rotation about the origin through the angle $\pi / 4$. You will need to sketch the corresponding region in the $u v$-plane.
[Hint: If, in evaluating the integral, you encounter either of the expressions $(1-\sin \theta) / \cos \theta$ or $(\cos \theta) /(1+\sin \theta)$, you might like to use the identity $\cos \theta=\sin ((\pi / 2)-\theta)$ and the corresponding identity for $\sin \theta$.]
7. (a) Show that

$$
\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{1}{1-x y z} d x d y d z=\sum_{n=1}^{\infty} \frac{1}{n^{3}}
$$

(Nobody has ever been able to find the exact value of the sum of this series.)
(b) Show that

$$
\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{1}{1+x y z} d x d y d z=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{3}}
$$

Use this equation to evaluate the triple integral correct to two decimal places.
8. Show that

$$
\int_{0}^{\infty} \frac{\arctan \pi x-\arctan x}{x} d x=\frac{\pi}{2} \ln \pi
$$

by first expressing the integral as an iterated integral.
9. If f is continuous, show that

$$
\int_{0}^{x} \int_{0}^{y} \int_{0}^{z} f(t) d t d z d y=\frac{1}{2} \int_{0}^{x}(x-t)^{2} f(t) d t
$$

10. (a) A lamina has constant density ρ and takes the shape of a disk with center the origin and radius R. Use Newton's Law of Gravitation (see Section 10.9) to show that the magnitude of the force of attraction that the lamina exerts on a body with mass m located at the point $(0,0, d)$ on the positive z-axis is

$$
F=2 \pi G m \rho d\left(\frac{1}{d}-\frac{1}{\sqrt{R^{2}+d^{2}}}\right)
$$

[Hint: Divide the disk as in Figure 4 in Section 12.3 and first compute the vertical component of the force exerted by the polar subrectangle $R_{i j}$.]
(b) Show that the magnitude of the force of attraction of a lamina with density ρ that occupies an entire plane on an object with mass m located at a distance d from the plane is

$$
F=2 \pi G m \rho
$$

Notice that this expression does not depend on d.

ANSWERS

| S Solutions | I. 30 | 3. $\frac{1}{2} \sin 1$ | 7. (b) 0.90 |
| :--- | :--- | :--- | :--- | :--- |

E Exercises
1.

$$
\begin{aligned}
& \text { (1) } \\
& R_{i}=\{(x, y) \mid x+y \geq i+2, x+y<i+3,1 \leq x \leq 3,2 \leq y \leq 5\} . \\
& \iint_{R} \llbracket x+y \rrbracket d A=\sum_{i=1}^{5} \iint_{R_{i}} \llbracket x+y \rrbracket d A=\sum_{i=1}^{5} \llbracket x+y \rrbracket \iint_{R_{i}} d A \text {, since } \\
& \llbracket x+y \rrbracket=\text { constant }=i+2 \text { for }(x, y) \in R_{i} \text {. Therefore } \\
& \iint_{R} \llbracket x+y \rrbracket d A=\sum_{i=1}^{5}(i+2)\left[A\left(R_{i}\right)\right] \\
& =3 A\left(R_{1}\right)+4 A\left(R_{2}\right)+5 A\left(R_{3}\right)+6 A\left(R_{4}\right)+7 A\left(R_{5}\right) \\
& =3\left(\frac{1}{2}\right)+4\left(\frac{3}{2}\right)+5(2)+6\left(\frac{3}{2}\right)+7\left(\frac{1}{2}\right)=30
\end{aligned}
$$

3. $f_{\mathrm{ave}}=\frac{1}{b-a} \int_{a}^{b} f(x) d x=\frac{1}{1-0} \int_{0}^{1}\left[\int_{x}^{1} \cos \left(t^{2}\right) d t\right] d x$

$$
\begin{aligned}
& =\int_{0}^{1} \int_{x}^{1} \cos \left(t^{2}\right) d t d x \\
& =\int_{0}^{1} \int_{0}^{t} \cos \left(t^{2}\right) d x d t \quad \text { [changing the order of integration] } \\
& \left.=\int_{0}^{1} t \cos \left(t^{2}\right) d t=\frac{1}{2} \sin \left(t^{2}\right)\right]_{0}^{1}=\frac{1}{2} \sin 1
\end{aligned}
$$

5. Since $|x y|<1$, except at $(1,1)$, the formula for the sum of a geometric series gives $\frac{1}{1-x y}=\sum_{n=0}^{\infty}(x y)^{n}$, so

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{1} \frac{1}{1-x y} d x d y & =\int_{0}^{1} \int_{0}^{1} \sum_{n=0}^{\infty}(x y)^{n} d x d y=\sum_{n=0}^{\infty} \int_{0}^{1} \int_{0}^{1}(x y)^{n} d x d y \\
& =\sum_{n=0}^{\infty}\left[\int_{0}^{1} x^{n} d x\right]\left[\int_{0}^{1} y^{n} d y\right]=\sum_{n=0}^{\infty} \frac{1}{n+1} \cdot \frac{1}{n+1} \\
& =\sum_{n=0}^{\infty} \frac{1}{(n+1)^{2}}=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots=\sum_{n=0}^{\infty} \frac{1}{n^{2}}
\end{aligned}
$$

7. (a) Since $|x y z|<1$ except at $(1,1,1)$, the formula for the sum of a geometric series gives $\frac{1}{1-x y z}=\sum_{n=0}^{\infty}(x y z)^{n}$, so

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{1}{1-x y z} d x d y d z & =\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \sum_{n=0}^{\infty}(x y z)^{n} d x d y d z=\sum_{n=0}^{\infty} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1}(x y z)^{n} d x d y d z \\
& =\sum_{n=0}^{\infty}\left[\int_{0}^{1} x^{n} d x\right]\left[\int_{0}^{1} y^{n} d y\right]\left[\int_{0}^{1} z^{n} d z\right] \\
& =\sum_{n=0}^{\infty} \frac{1}{n+1} \cdot \frac{1}{n+1} \cdot \frac{1}{n+1} \\
& =\sum_{n=0}^{\infty} \frac{1}{(n+1)^{3}}=\frac{1}{1^{3}}+\frac{1}{2^{3}}+\frac{1}{3^{3}}+\cdots=\sum_{n=1}^{\infty} \frac{1}{n^{3}}
\end{aligned}
$$

(b) Since $|-x y z|<1$, except at $(1,1,1)$, the formula for the sum of a geometric series gives

$$
\begin{aligned}
& \frac{1}{1+x y z}=\sum_{n=0}^{\infty}(-x y z)^{n} \text {, so } \\
& \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{1}{1+x y z} d x d y d z=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \sum_{n=0}^{\infty}(-x y z)^{n} d x d y d z \\
&=\sum_{n=0}^{\infty} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1}(-x y z)^{n} d x d y d z \\
&=\sum_{n=0}^{\infty}(-1)^{n}\left[\int_{0}^{1} x^{n} d x\right]\left[\int_{0}^{1} y^{n} d y\right]\left[\int_{0}^{1} z^{n} d z\right] \\
&=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{n+1} \cdot \frac{1}{n+1} \cdot \frac{1}{n+1} \\
&=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(n+1)^{3}}=\frac{1}{1^{3}}-\frac{1}{2^{3}}+\frac{1}{3^{3}}-\cdots=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{3}}
\end{aligned}
$$

To evaluate this sum, we first write out a few terms: $s=1-\frac{1}{2^{3}}+\frac{1}{3^{3}}-\frac{1}{4^{3}}+\frac{1}{5^{3}}-\frac{1}{6^{3}} \approx 0.8998$.
Notice that $a_{7}=\frac{1}{7^{3}}<0.003$. By the Alternating Series Estimation Theorem from Section 8.4, we have $\left|s-s_{6}\right| \leq a_{7}<0.003$. This error of 0.003 will not affect the second decimal place, so we have $s \approx 0.90$.
9. $\int_{0}^{x} \int_{0}^{y} \int_{0}^{z} f(t) d t d z d y=\iiint_{E} f(t) d V$, where
$E=\{(t, z, y) \mid 0 \leq t \leq z, 0 \leq z \leq y, 0 \leq y \leq x\}$.
If we let D be the projection of E on the $y t$-plane then
$D=\{(y, t) \mid 0 \leq t \leq x, t \leq y \leq x\}$. And we see from the diagram
 that $E=\{(t, z, y) \mid t \leq z \leq y, t \leq y \leq x, 0 \leq t \leq x\}$. So

$$
\begin{aligned}
\int_{0}^{x} \int_{0}^{y} \int_{0}^{z} f(t) d t d z d y & =\int_{0}^{x} \int_{t}^{x} \int_{t}^{y} f(t) d z d y d t=\int_{0}^{x}\left[\int_{t}^{x}(y-t) f(t) d y\right] d t \\
& =\int_{0}^{x}\left[\left(\frac{1}{2} y^{2}-t y\right) f(t)\right]_{y=t}^{y=x} d t=\int_{0}^{x}\left[\frac{1}{2} x^{2}-t x-\frac{1}{2} t^{2}+t^{2}\right] f(t) d t \\
& =\int_{0}^{x}\left[\frac{1}{2} x^{2}-t x+\frac{1}{2} t^{2}\right] f(t) d t=\int_{0}^{x}\left(\frac{1}{2} x^{2}-2 t x+t^{2}\right) f(t) d t \\
& =\frac{1}{2} \int_{0}^{x}(x-t)^{2} f(t) d t
\end{aligned}
$$

