3.1 MAXIMUM AND MINIMUM VALUES

FIGURE I

EXAMPLE A

(a) Use a graphing device to estimate the absolute minimum and maximum values of the function $f(x)=x-2 \sin x, 0 \leqslant x \leqslant 2 \pi$.
(b) Use calculus to find the exact minimum and maximum values.

SOLUTION

(a) Figure 1 shows a graph of f in the viewing rectangle $[0,2 \pi]$ by $[-1,8]$. By moving the cursor close to the maximum point, we see that the y-coordinates don't change very much in the vicinity of the maximum. The absolute maximum value is about 6.97 and it occurs when $x \approx 5.2$. Similarly, by moving the cursor close to the minimum point, we see that the absolute minimum value is about -0.68 and it occurs when $x \approx 1.0$. It is possible to get more accurate estimates by zooming in toward the maximum and minimum points, but instead let's use calculus.
(b) The function $f(x)=x-2 \sin x$ is continuous on $[0,2 \pi]$. Since $f^{\prime}(x)=1-2 \cos x$, we have $f^{\prime}(x)=0$ when $\cos x=\frac{1}{2}$ and this occurs when $x=\pi / 3$ or $5 \pi / 3$. The values of f at these critical points are

$$
\begin{gathered}
f(\pi / 3)=\frac{\pi}{3}-2 \sin \frac{\pi}{3}=\frac{\pi}{3}-\sqrt{3} \approx-0.684853 \\
f(5 \pi / 3)=\frac{5 \pi}{3}-2 \sin \frac{5 \pi}{3}=\frac{5 \pi}{3}+\sqrt{3} \approx 6.968039
\end{gathered}
$$

and

The values of f at the endpoints are

$$
f(0)=0 \quad \text { and } \quad f(2 \pi)=2 \pi \approx 6.28
$$

Comparing these four numbers and using the Closed Interval Method, we see that the absolute minimum value is $f(\pi / 3)=\pi / 3-\sqrt{3}$ and the absolute maximum value is $f(5 \pi / 3)=5 \pi / 3+\sqrt{3}$. The values from part (a) serve as a check on our work.

