
DERIVATIVES AND THE SHAPES OF GRAPHS

EXAMPLE A Figure 1 shows a population graph for Cyprian honeybees raised in an
apiary. How does the rate of population increase change over time? When is this rate
highest? Over what intervals is P concave upward or concave downward?

SOLUTION By looking at the slope of the curve as t increases, we see that the rate
of increase of the population is initially very small, then gets larger until it reaches a
maximum at about t � 12 weeks, and decreases as the population begins to level
off. As the population approaches its maximum value of about 75,000 (called the
carrying capacity), the rate of increase, , approaches 0. The curve appears to be
concave upward on (0, 12) and concave downward on (12, 18). ■

EXAMPLE B Investigate the family of functions given by . What
features do the members of this family have in common? How do they differ?

SOLUTION The derivative is . If , then for all 
(since ), so is always increasing. If , then when is an
odd multiple of , but just has horizontal tangents there and is still an increasing
function. Similarly, if , then is always decreasing. If , then the
equation has infinitely many solutions and 
has infinitely many minima and maxima.

The second derivative is , which is negative when and,
in general, when , where is any integer. Thus, all members
of the family are concave downward on , and concave upward 
on , . This is illustrated by several members of the family in
Figure 2.
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