3.3 DERIVATIVES AND THE SHAPES OF GRAPHS

EXAMPLE A Figure 1 shows a population graph for Cyprian honeybees raised in an apiary. How does the rate of population increase change over time? When is this rate highest? Over what intervals is P concave upward or concave downward?

SOLUTION By looking at the slope of the curve as t increases, we see that the rate of increase of the population is initially very small, then gets larger until it reaches a maximum at about $t=12$ weeks, and decreases as the population begins to level off. As the population approaches its maximum value of about 75,000 (called the carrying capacity), the rate of increase, $P^{\prime}(t)$, approaches 0 . The curve appears to be concave upward on $(0,12)$ and concave downward on $(12,18)$.

EXAMPLE B Investigate the family of functions given by $f(x)=c x+\sin x$. What features do the members of this family have in common? How do they differ?
SOLUTION The derivative is $f^{\prime}(x)=c+\cos x$. If $c>1$, then $f^{\prime}(x)>0$ for all x (since $\cos x \geqslant-1$), so f is always increasing. If $c=1$, then $f^{\prime}(x)=0$ when x is an odd multiple of π, but f just has horizontal tangents there and is still an increasing function. Similarly, if $c \leqslant-1$, then f is always decreasing. If $-1<c<1$, then the equation $c+\cos x=0$ has infinitely many solutions $\left[x=2 n \pi \pm \cos ^{-1}(-c)\right]$ and f has infinitely many minima and maxima.

The second derivative is $f^{\prime \prime}(x)=-\sin x$, which is negative when $0<x<\pi$ and, in general, when $2 n \pi<x<(2 n+1) \pi$, where n is any integer. Thus, all members of the family are concave downward on $(0, \pi),(2 \pi, 3 \pi), \ldots$ and concave upward on $(\pi, 2 \pi),(3 \pi, 4 \pi), \ldots$ This is illustrated by several members of the family in Figure 2.

