3.6 NEWTON'S METHOD

FIGURE I

EXAMPLE A Find all roots of the equation $x^{4}-5 x^{3}+4 x^{2}-x+13=0$ correct to eight decimal places.

SOLUTION Figure 1 shows a graph of $f(x)=x^{4}-5 x^{3}+4 x^{2}-x+13$ and we see that the roots are near 2.2 and 3.8. The formula for Newton's Method is

$$
x_{n+1}=x_{n}-\frac{x_{n}^{4}-5 x_{n}^{3}+4 x_{n}^{2}-x_{n}+13}{4 x_{n}^{3}-15 x_{n}^{2}+8 x_{n}-1}
$$

Using Newton's Method with the initial approximations from the graph, we get

$$
\begin{array}{ll}
x_{1}=2.2 & x_{1}=3.8 \\
x_{2} \approx 2.22577566 & x_{2} \approx 3.76551041 \\
x_{3} \approx 2.22578253 & x_{3} \approx 3.76419061 \\
x_{4} \approx 2.22578253 & x_{4} \approx 3.76418872 \\
& x_{5} \approx 376418872
\end{array}
$$

The roots of the given equation, correct to eight decimal places, are 2.22578253 and 3.76418872 .

