5.1 INVERSE FUNCTIONS

EXAMPLE A Although the function $y=x^{2}, x \in \mathbb{R}$, is not one-to-one and therefore does not have an inverse function, we can turn it into a one-to-one function by restricting its domain. For instance, the function $f(x)=x^{2}, 0 \leqslant x \leqslant 2$, is one-toone (by the Horizontal Line Test) and has domain [0, 2] and range [0, 4]. (See Figure 1.) Thus f has an inverse function f^{-1} with domain $[0,4]$ and range $[0,2]$.

(a) $y=x^{2}, \quad x \in \mathbb{R}$

(b) $f(x)=x^{2}, \quad 0 \leqslant x \leqslant 2$

FIGURE 2

Without computing a formula for $\left(f^{-1}\right)^{\prime}$ we can still calculate $\left(f^{-1}\right)^{\prime}(1)$. Since $f(1)=1$, we have $f^{-1}(1)=1$. Also $f^{\prime}(x)=2 x$. So by Theorem 7 we have

$$
\left(f^{-1}\right)^{\prime}(1)=\frac{1}{f^{\prime}\left(f^{-1}(1)\right)}=\frac{1}{f^{\prime}(1)}=\frac{1}{2}
$$

In this case it is easy to find f^{-1} explicitly. In fact, $f^{-1}(x)=\sqrt{x}, 0 \leqslant x \leqslant 4$. [In general, we could use the method given by (5).] Then $\left(f^{-1}\right)^{\prime}(x)=1 /(2 \sqrt{x})$, so $\left(f^{-1}\right)^{\prime}(1)=\frac{1}{2}$, which agrees with the preceding computation. The functions f and f^{-1} are graphed in Figure 2.

