7.2 **VOLUMES**

A Click here for answers.

1–5 • Find the volume of the solid obtained by rotating the region bounded by the given curves about the specified line. Sketch the region, the solid, and a typical disk or washer.

1.
$$y^2 = x^3$$
, $x = 4$, $y = 0$; about the x-axis

2.
$$x + y = 1, x = 0, y = 0$$
; about the *x*-axis

3.
$$y = x^2$$
, $y = 4$, $x = 0$, $x = 2$; about the y-axis

4.
$$y = x^2 + 1$$
, $y = 3 - x^2$; about the x-axis

5.
$$y = 2x - x^2$$
, $y = 0$, $x = 0$, $x = 1$; about the y-axis

6-13 ■ Find the volume of the solid obtained by rotating the region bounded by the given curves about the x-axis.

6.
$$y = x^2 - 1$$
, $y = 0$, $x = 0$, $x = 2$

7.
$$y = -1/x$$
, $y = 0$, $x = 1$, $x = 3$

8.
$$y = e^x$$
, $y = 0$, $x = 0$, $x = 1$

9.
$$y = 1/\sqrt{x+1}$$
, $y = 0$, $x = 0$, $x = 1$

10.
$$y = \sec x$$
, $y = 1$, $x = -1$, $x = 1$

11.
$$y = \cos x$$
, $y = \sin x$, $x = 0$, $x = \pi/4$

12.
$$y = |x + 2|$$
, $y = 0$, $x = -3$, $x = 0$

13.
$$y = [x], x = 1, x = 6, y = 0$$

14–25 • Refer to the figure and find the volume generated by rotating the given region about the given line.

- **14.** \Re_1 about OA
- **15.** \Re_1 about OC
- **16.** \Re_1 about AB
- **17.** \Re_1 about BC
- **18.** \Re_2 about OA
- 19. \Re_2 about OC
- **20.** \Re_2 about BC
- **21.** \Re_2 about AB
- **22.** \Re_3 about OA
- **23.** \Re_3 about OC
- **24.** \Re_3 about BC
- **25.** \Re_3 about AB

S Click here for solutions.

26-30 ■ Set up, but do not evaluate, an integral for the volume of the solid obtained by rotating the region bounded by the given curves about the specified line.

26.
$$y = \ln x$$
, $y = 1$, $x = 1$; about the x-axis

27.
$$y = \sqrt{x-1}$$
, $y = 0$, $x = 5$; about the y-axis

28.
$$x - y = 1$$
, $y = (x - 4)^2 + 1$; about $y = 7$

29.
$$y = \cos x$$
, $y = 0$, $x = 0$, $x = \pi/2$; about $y = 1$

30.
$$y = \cos x$$
, $y = 0$, $x = 0$, $x = \pi/2$; about $y = -1$

 \mathbb{H} 31–32 • Use a graph to find approximate x-coordinates of the points of intersection of the given curves. Then find (approximately) the volume of the solid obtained by rotating about the *x*-axis the region bounded by these curves.

31.
$$y = x^2$$
, $y = \sqrt{x+1}$

32.
$$y = x^4$$
, $y = 3x - x^3$

33-34 • Sketch and find the volume of the solid obtained by rotating the region under the graph of f about the x-axis.

33.
$$f(x) = \begin{cases} 3 & \text{if } 0 \le x \le 1\\ 1 & \text{if } 1 < x < 4\\ 3 & \text{if } 4 \le x \le 5 \end{cases}$$

34.
$$f(x) = \begin{cases} \frac{1}{2} & \text{if } 0 \le x < 1\\ x^2 - 2x + 2 & \text{if } 1 \le x \le 2 \end{cases}$$

35–40 ■ Each integral represents the volume of a solid. Describe

35.
$$\pi \int_{0}^{\pi/4} \tan^2 x \, dx$$

36.
$$\pi \int_{1}^{2} y^{6} dy$$

37.
$$\pi \int_0^1 (y-y^2) dy$$

37.
$$\pi \int_0^1 (y-y^2) dy$$
 38. $\pi \int_0^4 [16-(x-2)^4] dx$

39.
$$\pi \int_0^1 \left[(5 - 2x^2)^2 - (5 - 2x)^2 \right] dx$$

40.
$$\pi \int_{\pi/4}^{\pi/2} \left[(2 + \sin x)^2 - (2 + \cos x)^2 \right] dx$$

41. The base of S is the triangular region with vertices (0, 0), (2, 0), and (0, 1). Cross-sections perpendicular to the x-axis are semicircles. Find the volume of S.

7.2

ANSWERS

E Click here for exercises.

1. 64π

2. $\frac{\pi}{3}$

3. 8π

4. $\frac{32}{3}\pi$

5. $\frac{5}{6}\pi$

6. $\frac{46}{15}\pi$

- **7.** $\frac{2}{3}\pi$
- **8.** $\frac{\pi}{2} \left(e^2 1 \right)$
- **9.** $\pi \ln 2$
- 10. $2\pi (\tan 1 1)$
- 11. $\frac{\pi}{2}$

12. 3π

13. 55π

14. $\frac{32}{3}\pi$

15. $\frac{256}{3}\pi$

S Click here for solutions.

16. $\frac{128}{3}\pi$

17. $\frac{64}{3}\pi$

18. $\frac{128}{15}\pi$

19. $rac{512}{21}\pi$

20. $\frac{112}{15}\pi$

21. $\frac{832}{21}\pi$

22. $\frac{64}{5}\pi$

23. $\frac{128}{7}$ 7

24. $\frac{16}{5}\pi$

25. $\frac{320}{7}\pi$

26. $V = \pi \int_{1}^{e} \left[1^{2} - (\ln x)^{2} \right] dx$

27. $V = \pi \int_0^2 (24 - y^4 - 2y^2) dy$

28. $V = \pi \int_3^6 (x^4 - 16x^3 + 83x^2 - 144x + 36) dx$

29. $V = \pi \int_0^{\pi/2} (2\cos x - \cos^2 x) dx$

30. $V = \pi \int_0^{\pi/2} (2\cos x + \cos^2 x) dx$

31. 5.80

32. 6.74

33. 21π

34. $\frac{127\pi}{60}$

35. Solid obtained by rotating the region under the curve $y = \tan x$, from x = 0 to $x = \frac{\pi}{4}$, about the x-axis

36. Solid obtained by rotating the region bounded by the curve $x=y^3$ and the lines $y=1,\,y=2,$ and x=0 about the y-axis

37. Solid obtained by rotating the region between the curves x=y and $x=\sqrt{y}$ about the y-axis

38. Solid obtained by rotating the region bounded by the curve $y=(x-2)^2$ and the line y=4 about the x-axis

39. Solid obtained by rotating the region between the curves $y=5-2x^2$ and y=5-2x about the *x*-axis. *Or:* Solid obtained by rotating the region bounded by the curves y=2x and $y=2x^2$ about the line y=5

40. Solid obtained by rotating the region bounded by the curves $y=2+\cos x$ and $y=2+\sin x$ and the line $x=\frac{\pi}{2}$ about the *x*-axis

41. $\frac{\pi}{12}$

7.2

SOLUTIONS

E Click here for exercises.

2.
$$V = \int_0^1 \pi (-x+1)^2 dx = \pi \int_0^1 (x^2 - 2x + 1) dx$$

= $\pi \left[\frac{1}{3}x^3 - x^2 + x \right]_0^1 = \pi \left(\frac{1}{3} - 1 + 1 \right) = \frac{\pi}{3}$

3.
$$V = \int_0^4 \pi \left(\sqrt{y}\right)^2 dy = \pi \int_0^4 y \, dy = \pi \left[\frac{1}{2}y^2\right]_0^4 = 8\pi$$

4.
$$V = \pi \int_{-1}^{1} \left[(3 - x^2)^2 - (x^2 + 1)^2 \right] dx$$

 $= \pi \int_{-1}^{1} (8 - 8x^2) dx = 2\pi \int_{0}^{1} (8 - 8x^2) dx$
 $= 2\pi \left[8x - \frac{8}{3}x^3 \right]_{0}^{1} = 2\pi \left(8 - \frac{8}{3} \right) = \frac{32}{3}\pi$

5.
$$V = \pi \int_0^1 \left[1^2 - \left(1 - \sqrt{1 - y} \right)^2 \right] dy$$

 $= \pi \int_0^1 \left(2\sqrt{1 - y} - 1 + y \right) dy$
 $= \pi \left[-\frac{4}{3} \left(1 - y \right)^{3/2} - y + \frac{1}{2} y^2 \right]_0^1$
 $= \pi \left[\left(0 - 1 + \frac{1}{2} \right) - \left(-\frac{4}{3} - 0 + 0 \right) \right] = \frac{5}{6} \pi$

6.
$$V = \pi \int_0^2 (x^2 - 1)^2 dx = \pi \int_0^2 (x^4 - 2x^2 + 1) dx$$

= $\pi \left[\frac{1}{5} x^5 - \frac{2}{3} x^3 + x \right]_0^2 = \pi \left(\frac{32}{5} - \frac{16}{3} + 2 \right) = \frac{46}{15} \pi$

7.
$$V = \pi \int_1^3 (1/x)^2 dx = \pi \left[-1/x \right]_1^3 = \pi \left(-\frac{1}{3} + 1 \right) = \frac{2}{3}\pi$$

8.
$$V = \int_0^1 \pi (e^x)^2 dx = \int_0^1 \pi e^{2x} dx = \frac{1}{2} \left[\pi e^{2x} \right]_0^1$$

= $\frac{\pi}{2} (e^2 - 1)$

9. The cross-sectional area is $\pi \left(1 \left/ \sqrt{x+1}\right.\right)^2 = \pi / \left(x+1\right).$ Therefore, the volume is $\int_0^1 \frac{\pi}{x+1} \, dx = \pi \left[\ln \left(x+1\right)\right]_0^1 = \pi \ln 2 - \ln 1 = \pi \ln 2.$

10.
$$V = \pi \int_{-1}^{1} (\sec^2 x - 1^2) dx = \pi [\tan x - x]_{-1}^{1}$$

= $\pi [(\tan 1 - 1) - (-\tan 1 + 1)] = 2\pi (\tan 1 - 1)$

11.
$$V = \pi \int_0^{\pi/4} (\cos^2 x - \sin^2 x) dx$$

 $= \frac{\pi}{2} \int_0^{\pi/4} \cos 2x (2 dx) = \frac{\pi}{2} [\sin 2x]_0^{\pi/4}$
 $= \frac{\pi}{2} (1 - 0) = \frac{\pi}{2}$

12.
$$V = \pi \int_{-3}^{-2} (-x-2)^2 dx + \pi \int_{-2}^{0} (x+2)^2 dx$$

 $= \pi \int_{-3}^{0} (x+2)^2 dx = \left[\frac{\pi}{3} (x+2)^3\right]_{-3}^{0}$
 $= \frac{\pi}{2} \left[8 - (-1)\right] = 3\pi$

13.
$$V = \pi \int_1^2 1^2 dx + \pi \int_2^3 2^2 dx + \pi \int_3^4 3^2 dx + \pi \int_4^5 4^2 dx + \pi \int_5^6 5^2 dx = \pi \cdot 1 + \pi \cdot 4 + \pi \cdot 9 + \pi \cdot 16 + \pi \cdot 25 = 55\pi$$

14.
$$V = \pi \int_0^8 \left(\frac{1}{4}x\right)^2 dx = \frac{\pi}{16} \left[\frac{1}{3}x^3\right]_0^8 = \frac{32}{3}\pi$$

15.
$$V = \pi \int_0^2 \left[8^2 - (4y)^2 \right] dy = \pi \left[64y - \frac{16}{3}y^3 \right]_0^2$$

= $\pi \left(128 - \frac{128}{3} \right) = \frac{256}{3}\pi$

16.
$$V = \pi \int_0^2 (8 - 4y)^2 dy = \pi \left[64y - 32y^2 + \frac{16}{3}y^3 \right]_0^2$$

= $\pi \left(128 - 128 + \frac{128}{3} \right) = \frac{128}{3}\pi$

18.
$$V = \pi \int_0^8 \left[\left(\sqrt[3]{x} \right)^2 - \left(\frac{1}{4} x \right)^2 \right] = \pi \int_0^8 \left(x^{2/3} - \frac{1}{16} x^2 \right) dx$$

$$= \pi \left[\frac{3}{5} x^{5/3} - \frac{1}{48} x^3 \right]_0^8 = \pi \left(\frac{96}{5} - \frac{32}{3} \right) = \frac{128}{15} \pi$$

19.
$$V = \pi \int_0^2 \left[(4y)^2 - (y^3)^2 \right] dy = \pi \int_0^2 \left(16y^2 - y^6 \right) dy$$

= $\pi \left[\frac{16}{3} y^3 - \frac{1}{7} y^7 \right]_0^2 = \pi \left(\frac{128}{3} - \frac{128}{7} \right) = \frac{512}{21} \pi$

20.
$$V = \pi \int_0^8 \left[\left(2 - \frac{1}{4}x \right)^2 - \left(2 - \sqrt[3]{x} \right)^2 \right] dx$$

 $= \pi \int_0^8 \left(-x + \frac{1}{16}x^2 + 4x^{1/3} - x^{2/3} \right) dx$
 $= \pi \left[-\frac{1}{2}x^2 + \frac{1}{48}x^3 + 3x^{4/3} - \frac{3}{5}x^{5/3} \right]_0^8$
 $= \pi \left(-32 + \frac{32}{3} + 48 - \frac{96}{5} \right) = \frac{112}{15}\pi$

21.
$$V = \pi \int_0^2 \left[\left(8 - y^3 \right)^2 - \left(8 - 4y \right)^2 \right] dy$$

 $= \pi \int_0^2 \left(-16y^3 + y^6 + 64y - 16y^2 \right) dy$
 $= \pi \left[-4y^4 + \frac{1}{7}y^7 + 32y^2 - \frac{16}{3}y^3 \right]_0^2$
 $= \pi \left(-64 + \frac{128}{7} + 128 - \frac{128}{3} \right) = \frac{832}{21}\pi$

22.
$$V = \pi \int_0^8 \left(2^2 - x^{2/3}\right) dx = \pi \left[4x - \frac{3}{5}x^{5/3}\right]_0^8$$

= $\pi \left(32 - \frac{96}{5}\right) = \frac{64}{5}\pi$

23.
$$V = \pi \int_0^2 (y^3)^2 dy = \pi \left[\frac{1}{7}y^7\right]_0^2 = \frac{128}{7}\pi$$

24.
$$V = \pi \int_0^8 (2 - \sqrt[3]{x})^2 dx = \pi \int_0^8 \left(4 - 4x^{1/3} + x^{2/3}\right) dx$$

 $= \pi \left[4x - 3x^{4/3} + \frac{3}{5}x^{5/3}\right]_0^8$
 $= \pi \left(32 - 48 + \frac{96}{5}\right) = \frac{16}{5}\pi$

25.
$$V = \pi \int_0^2 \left[8^2 - \left(8 - y^3 \right)^2 \right] dy = \pi \int_0^2 \left(16y^3 - y^6 \right) dy$$

= $\pi \left[4y^4 - \frac{1}{7}y^7 \right]_0^2 = \pi \left(64 - \frac{128}{7} \right) = \frac{320}{7}\pi$

26.
$$V = \pi \int_{1}^{e} \left[1^{2} - (\ln x)^{2} \right] dx$$

27.
$$V = \pi \int_0^2 \left[5^2 - \left(y^2 + 1 \right)^2 \right] dy = \pi \int_0^2 \left(24 - y^4 - 2y^2 \right) dy$$

28.
$$x - 1 = (x - 4)^2 + 1 \Leftrightarrow x^2 - 9x + 18 = 0 \Leftrightarrow x = 3 \text{ or } 6, \text{ so}$$

$$V = \pi \int_3^6 \left[\left[6 - (x - 4)^2 \right]^2 - (8 - x)^2 \right] dx$$

$$= \pi \int_3^6 \left(x^4 - 16x^3 + 83x^2 - 144x + 36 \right) dx$$

29.
$$V = \pi \int_0^{\pi/2} \left[1^2 - (1 - \cos x)^2 \right] dx$$

= $\pi \int_0^{\pi/2} \left(2\cos x - \cos^2 x \right) dx$

30.
$$V = \pi \int_0^{\pi/2} \left[(1 + \cos x)^2 - 1^2 \right] dx$$

= $\pi \int_0^{\pi/2} (2\cos x + \cos^2 x) dx$

31. We see from the graph in Archived Problem 7.1.46 that the x-coordinates of the points of intersection are $x\approx -0.72$ and $x\approx 1.22$, with $\sqrt{x+1}>x^2$ on [-0.72,1.22], so the volume of revolution is about

$$\pi \int_{-0.72}^{1.22} \left[\left(\sqrt{x+1} \right)^2 - \left(x^2 \right)^2 \right] dx$$

$$= \pi \int_{-0.72}^{1.22} \left(x + 1 - x^4 \right) dx$$

$$= \pi \left[\frac{1}{2} x^2 + x - \frac{1}{5} x^5 \right]_{-0.72}^{1.22}$$

$$\approx 5.80$$

32. The x-coordinates of the points of intersection are x=0 and $x\approx 1.17$, with $3x-x^3>x^4$ on [0,1.17], so the volume of revolution is about

$$\pi \int_0^{1.17} \left[\left(3x - x^3 \right)^2 - \left(x^4 \right)^2 \right] dx$$

$$= \pi \int_0^{1.17} \left[9x^2 - 6x^4 + x^6 - x^8 \right] dx$$

$$= \pi \left[3x^3 - \frac{6}{5}x^5 + \frac{1}{7}x^7 - \frac{1}{9}x^9 \right]_0^{1.17}$$

$$\approx 6.74$$

33. $V = \pi \int_0^1 3^2 dx + \pi \int_1^4 1^2 dx + \pi \int_4^5 3^2 dx$ = $9\pi + 3\pi + 9\pi = 21\pi$

34. $V = \pi \int_0^1 \left(\frac{1}{2}\right)^2 dx + \pi \int_1^2 \left(x^2 - 2x + 2\right)^2 dx$ $= \frac{\pi}{4} + \pi \int_1^2 \left(x^4 - 4x^3 + 8x^2 - 8x + 4\right) dx$ $= \frac{\pi}{4} + \pi \left[\frac{1}{5}x^5 - x^4 + \frac{8}{3}x^3 - 4x^2 + 4x\right]_1^2$ $= \frac{\pi}{4} + \pi \left[\left(\frac{32}{5} - 16 + \frac{64}{3} - 16 + 8\right) - \left(\frac{1}{5} - 1 + \frac{8}{3} - 4 + 4\right)\right] = \frac{127\pi}{60}$

35. The solid is obtained by rotating the region under the curve $y = \tan x$, from x = 0 to $x = \frac{\pi}{4}$, about the x-axis.

36. The solid is obtained by rotating the region bounded by the curve $x = y^3$ and the lines y = 1, y = 2, and x = 0 about the *y*-axis.

37. The solid is obtained by rotating the region between the curves x = y and $x = \sqrt{y}$ about the y-axis.

- **38.** The solid is obtained by rotating the region bounded by the curve $y = (x 2)^2$ and the line y = 4 about the x-axis.
- **39.** The solid is obtained by rotating the region between the curves $y=5-2x^2$ and y=5-2x about the x-axis. Or: The solid is obtained by rotating the region bounded by the curves y=2x and $y=2x^2$ about the line y=5.
- **40.** The solid is obtained by rotating the region bounded by the curves $y=2+\cos x$ and $y=2+\sin x$ and the line $x=\frac{\pi}{2}$ about the x-axis.

41.

Since the area of a semicircle of diameter y is $\frac{\pi y^2}{8}$, we have

$$V = \int_0^2 A(x) dx = \int_0^2 \frac{\pi}{8} y^2 dx$$

= $\frac{\pi}{8} \int_0^2 \left(1 - \frac{1}{2}x\right)^2 dx = \frac{\pi}{4} \int_0^2 \left(\frac{1}{2}x - 1\right)^2 \frac{1}{2} dx$
= $\frac{\pi}{4} \left[\frac{1}{3} \left(\frac{1}{2}x - 1\right)^3\right]_0^2 = \frac{\pi}{12} \left[0 - (-1)\right] = \frac{\pi}{12}$