8.8 APPLIED PROJECT: RADIATION FROM THE STARS

This project can be completed anytime after you have studied Section 8.8 in the textbook.

Any object emits radiation when heated. A *blackbody* is a system that absorbs all the radiation that falls on it. For instance, a matte black surface or a large cavity with a small hole in its wall (like a blastfurnace) is a blackbody and emits blackbody radiation. Even the radiation from the Sun is close to being blackbody radiation.

Proposed in the late 19th century, the Rayleigh-Jeans Law expresses the energy density of blackbody radiation of wavelength λ as

$$f(\lambda) = \frac{8\pi kT}{\lambda^4}$$

where λ is measured in meters, T is the temperature in kelvins (K), and k is Boltzmann's constant. The Rayleigh-Jeans Law agrees with experimental measurements for long wavelengths but disagrees drastically for short wavelengths. [The law predicts that $f(\lambda) \to \infty$ as $\lambda \to 0^+$ but experiments have shown that $f(\lambda) \to 0$.] This fact is known as the *ultraviolet catastrophe*.

In 1900 Max Planck found a better model (known now as Planck's Law) for blackbody radiation:

$$f(\lambda) = \frac{8\pi h c \lambda^{-5}}{e^{hc/(\lambda kT)} - 1}$$

where λ is measured in meters, T is the temperature in kelvins, and

$$h = \text{Planck's constant} = 6.6262 \times 10^{-34} \,\text{J} \cdot \text{s}$$

$$c = \text{speed of light} = 2.997925 \times 10^8 \,\text{m/s}$$

$$k = \text{Boltzmann's constant} = 1.3807 \times 10^{-23} \text{ J/K}$$

I. Use l'Hospital's Rule to show that

$$\lim_{\lambda \to 0^+} f(\lambda) = 0 \qquad \text{and} \quad \lim_{\lambda \to \infty} f(\lambda) = 0$$

for Planck's Law. So, for short wavelengths, this law models blackbody radiation better than the Rayleigh-Jeans Law.

- **2.** Use a Taylor polynomial to show that, for large wavelengths, Planck's Law gives approximately the same values as the Rayleigh-Jeans Law.
- 3. Graph f as given by both laws on the same screen and comment on the similarities and differences. Use T = 5700 K (the temperature of the Sun). (You may want to change from meters to the more convenient unit of micrometers: $1 \mu m = 10^{-6} \text{ m}$.)
 - **4.** Use your graph in Problem 3 to estimate the value of λ for which $f(\lambda)$ is a maximum under Planck's Law.
- 5. Investigate how the graph of f changes as T varies. (Use Planck's Law.) In particular, graph f for the stars Betelgeuse (T = 3400 K), Procyon (T = 6400 K), and Sirius (T = 9200 K) as well as the Sun. How does the total radiation emitted (the area under the curve) vary with T? Use the graph to comment on why Sirius is known as a blue star and Betelgeuse as a red star.