NONHOMOGENEOUS LINEAR EQUATIONS

In this section we learn how to solve second-order nonhomogeneous linear differential equations with constant coefficients, that is, equations of the form

$$
1 \quad a y^{\prime \prime}+b y^{\prime}+c y=G(x)
$$

where a, b, and c are constants and G is a continuous function. The related homogeneous equation

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0 \tag{2}
\end{equation*}
$$

is called the complementary equation and plays an important role in the solution of the original nonhomogeneous equation (1).

3 Theorem The general solution of the nonhomogeneous differential equation (1) can be written as

$$
y(x)=y_{p}(x)+y_{c}(x)
$$

where y_{p} is a particular solution of Equation 1 and y_{c} is the general solution of the complementary Equation 2.

Proof All we have to do is verify that if y is any solution of Equation 1, then $y-y_{p}$ is a solution of the complementary Equation 2. Indeed

$$
\begin{aligned}
a\left(y-y_{p}\right)^{\prime \prime}+b\left(y-y_{p}\right)^{\prime}+c\left(y-y_{p}\right) & =a y^{\prime \prime}-a y_{p}^{\prime \prime}+b y^{\prime}-b y_{p}^{\prime}+c y-c y_{p} \\
& =\left(a y^{\prime \prime}+b y^{\prime}+c y\right)-\left(a y_{p}^{\prime \prime}+b y_{p}^{\prime}+c y_{p}\right) \\
& =g(x)-g(x)=0
\end{aligned}
$$

We know from Additional Topics: Second-Order Linear Differential Equations how to solve the complementary equation. (Recall that the solution is $y_{c}=c_{1} y_{1}+c_{2} y_{2}$, where y_{1} and y_{2} are linearly independent solutions of Equation 2.) Therefore, Theorem 3 says that we know the general solution of the nonhomogeneous equation as soon as we know a particular solution y_{p}. There are two methods for finding a particular solution: The method of undetermined coefficients is straightforward but works only for a restricted class of functions G. The method of variation of parameters works for every function G but is usually more difficult to apply in practice.

THE METHOD OF UNDETERMINED COEFFICIENTS

We first illustrate the method of undetermined coefficients for the equation

$$
a y^{\prime \prime}+b y^{\prime}+c y=G(x)
$$

where $G(x)$ is a polynomial. It is reasonable to guess that there is a particular solution y_{p} that is a polynomial of the same degree as G because if y is a polynomial, then $a y^{\prime \prime}+b y^{\prime}+c y$ is also a polynomial. We therefore substitute $y_{p}(x)=$ a polynomial (of the same degree as G) into the differential equation and determine the coefficients.

EXAMPLE 1 Solve the equation $y^{\prime \prime}+y^{\prime}-2 y=x^{2}$.
SOLUTION The auxiliary equation of $y^{\prime \prime}+y^{\prime}-2 y=0$ is

$$
r^{2}+r-2=(r-1)(r+2)=0
$$

- - Figure 1 shows four solutions of the differential equation in Example 1 in terms of the particular solution y_{p} and the functions $f(x)=e^{x}$ and $g(x)=e^{-2 x}$.

FIGURE 1

- - Figure 2 shows solutions of the differential equation in Example 2 in terms of y_{p} and the functions $f(x)=\cos 2 x$ and $g(x)=\sin 2 x$. Notice that all solutions approach ∞ as $x \rightarrow \infty$ and all solutions resemble sine functions when x is negative.

with roots $r=1,-2$. So the solution of the complementary equation is

$$
y_{c}=c_{1} e^{x}+c_{2} e^{-2 x}
$$

Since $G(x)=x^{2}$ is a polynomial of degree 2 , we seek a particular solution of the form

$$
y_{p}(x)=A x^{2}+B x+C
$$

Then $y_{p}^{\prime}=2 A x+B$ and $y_{p}^{\prime \prime}=2 A$ so, substituting into the given differential equation, we have
or

$$
\begin{aligned}
(2 A)+(2 A x+B)-2\left(A x^{2}+B x+C\right) & =x^{2} \\
-2 A x^{2}+(2 A-2 B) x+(2 A+B-2 C) & =x^{2}
\end{aligned}
$$

Polynomials are equal when their coefficients are equal. Thus

$$
-2 A=1 \quad 2 A-2 B=0 \quad 2 A+B-2 C=0
$$

The solution of this system of equations is

$$
A=-\frac{1}{2} \quad B=-\frac{1}{2} \quad C=-\frac{3}{4}
$$

A particular solution is therefore

$$
y_{p}(x)=-\frac{1}{2} x^{2}-\frac{1}{2} x-\frac{3}{4}
$$

and, by Theorem 3, the general solution is

$$
y=y_{c}+y_{p}=c_{1} e^{x}+c_{2} e^{-2 x}-\frac{1}{2} x^{2}-\frac{1}{2} x-\frac{3}{4}
$$

If $G(x)$ (the right side of Equation 1) is of the form $C e^{k x}$, where C and k are constants, then we take as a trial solution a function of the same form, $y_{p}(x)=A e^{k x}$, because the derivatives of $e^{k x}$ are constant multiples of $e^{k x}$.

EXAMPLE 2 Solve $y^{\prime \prime}+4 y=e^{3 x}$.
SOLUTION The auxiliary equation is $r^{2}+4=0$ with roots $\pm 2 i$, so the solution of the complementary equation is

$$
y_{c}(x)=c_{1} \cos 2 x+c_{2} \sin 2 x
$$

For a particular solution we try $y_{p}(x)=A e^{3 x}$. Then $y_{p}^{\prime}=3 A e^{3 x}$ and $y_{p}^{\prime \prime}=9 A e^{3 x}$. Substituting into the differential equation, we have

$$
9 A e^{3 x}+4\left(A e^{3 x}\right)=e^{3 x}
$$

so $13 A e^{3 x}=e^{3 x}$ and $A=\frac{1}{13}$. Thus, a particular solution is

$$
y_{p}(x)=\frac{1}{13} e^{3 x}
$$

and the general solution is

$$
y(x)=c_{1} \cos 2 x+c_{2} \sin 2 x+\frac{1}{13} e^{3 x}
$$

If $G(x)$ is either $C \cos k x$ or $C \sin k x$, then, because of the rules for differentiating the sine and cosine functions, we take as a trial particular solution a function of the form

$$
y_{p}(x)=A \cos k x+B \sin k x
$$

EXAMPLE 3 Solve $y^{\prime \prime}+y^{\prime}-2 y=\sin x$.
SOLUTION We try a particular solution

$$
y_{p}(x)=A \cos x+B \sin x
$$

Then $\quad y_{p}^{\prime}=-A \sin x+B \cos x \quad y_{p}^{\prime \prime}=-A \cos x-B \sin x$
so substitution in the differential equation gives

$$
\begin{array}{r}
(-A \cos x-B \sin x)+(-A \sin x+B \cos x)-2(A \cos x+B \sin x)=\sin x \\
(-3 A+B) \cos x+(-A-3 B) \sin x=\sin x
\end{array}
$$

or
This is true if

$$
-3 A+B=0 \quad \text { and } \quad-A-3 B=1
$$

The solution of this system is

$$
A=-\frac{1}{10} \quad B=-\frac{3}{10}
$$

so a particular solution is

$$
y_{p}(x)=-\frac{1}{10} \cos x-\frac{3}{10} \sin x
$$

In Example 1 we determined that the solution of the complementary equation is $y_{c}=c_{1} e^{x}+c_{2} e^{-2 x}$. Thus, the general solution of the given equation is

$$
y(x)=c_{1} e^{x}+c_{2} e^{-2 x}-\frac{1}{10}(\cos x+3 \sin x)
$$

If $G(x)$ is a product of functions of the preceding types, then we take the trial solution to be a product of functions of the same type. For instance, in solving the differential equation

$$
y^{\prime \prime}+2 y^{\prime}+4 y=x \cos 3 x
$$

we would try

$$
y_{p}(x)=(A x+B) \cos 3 x+(C x+D) \sin 3 x
$$

If $G(x)$ is a sum of functions of these types, we use the easily verified principle of superposition, which says that if $y_{p_{1}}$ and $y_{p_{2}}$ are solutions of

$$
a y^{\prime \prime}+b y^{\prime}+c y=G_{1}(x) \quad a y^{\prime \prime}+b y^{\prime}+c y=G_{2}(x)
$$

respectively, then $y_{p_{1}}+y_{p_{2}}$ is a solution of

$$
a y^{\prime \prime}+b y^{\prime}+c y=G_{1}(x)+G_{2}(x)
$$

EXAMPLE 4 Solve $y^{\prime \prime}-4 y=x e^{x}+\cos 2 x$.
SOLUTION The auxiliary equation is $r^{2}-4=0$ with roots ± 2, so the solution of the complementary equation is $y_{c}(x)=c_{1} e^{2 x}+c_{2} e^{-2 x}$. For the equation $y^{\prime \prime}-4 y=x e^{x}$ we try

$$
y_{p_{1}}(x)=(A x+B) e^{x}
$$

Then $y_{p_{1}}^{\prime}=(A x+A+B) e^{x}, y_{p_{1}}^{\prime \prime}=(A x+2 A+B) e^{x}$, so substitution in the equation gives
or

$$
\begin{aligned}
(A x+2 A+B) e^{x}-4(A x+B) e^{x} & =x e^{x} \\
(-3 A x+2 A-3 B) e^{x} & =x e^{x}
\end{aligned}
$$

- - In Figure 3 we show the particular solution $y_{p}=y_{p_{1}}+y_{p_{2}}$ of the differential equation in Example 4. The other solutions are given in terms of $f(x)=e^{2 x}$ and $g(x)=e^{-2 x}$.

FIGURE 3

- - The graphs of four solutions of the differential equation in Example 5 are shown in Figure 4.

Thus, $-3 A=1$ and $2 A-3 B=0$, so $A=-\frac{1}{3}, B=-\frac{2}{9}$, and

$$
y_{p_{1}}(x)=\left(-\frac{1}{3} x-\frac{2}{9}\right) e^{x}
$$

For the equation $y^{\prime \prime}-4 y=\cos 2 x$, we try

$$
y_{p_{2}}(x)=C \cos 2 x+D \sin 2 x
$$

Substitution gives

$$
\begin{aligned}
-4 C \cos 2 x-4 D \sin 2 x-4(C \cos 2 x+D \sin 2 x) & =\cos 2 x \\
-8 C \cos 2 x-8 D \sin 2 x & =\cos 2 x
\end{aligned}
$$

Therefore, $-8 C=1,-8 D=0$, and

$$
y_{p_{2}}(x)=-\frac{1}{8} \cos 2 x
$$

By the superposition principle, the general solution is

$$
y=y_{c}+y_{p_{1}}+y_{p_{2}}=c_{1} e^{2 x}+c_{2} e^{-2 x}-\left(\frac{1}{3} x+\frac{2}{9}\right) e^{x}-\frac{1}{8} \cos 2 x
$$

Finally we note that the recommended trial solution y_{p} sometimes turns out to be a solution of the complementary equation and therefore can't be a solution of the nonhomogeneous equation. In such cases we multiply the recommended trial solution by x (or by x^{2} if necessary) so that no term in $y_{p}(x)$ is a solution of the complementary equation.

EXAMPLE 5 Solve $y^{\prime \prime}+y=\sin x$.
SOLUTION The auxiliary equation is $r^{2}+1=0$ with roots $\pm i$, so the solution of the complementary equation is

$$
y_{c}(x)=c_{1} \cos x+c_{2} \sin x
$$

Ordinarily, we would use the trial solution

$$
y_{p}(x)=A \cos x+B \sin x
$$

but we observe that it is a solution of the complementary equation, so instead we try

$$
y_{p}(x)=A x \cos x+B x \sin x
$$

Then

$$
\begin{aligned}
& y_{p}^{\prime}(x)=A \cos x-A x \sin x+B \sin x+B x \cos x \\
& y_{p}^{\prime \prime}(x)=-2 A \sin x-A x \cos x+2 B \cos x-B x \sin x
\end{aligned}
$$

Substitution in the differential equation gives

$$
y_{p}^{\prime \prime}+y_{p}=-2 A \sin x+2 B \cos x=\sin x
$$

so $A=-\frac{1}{2}, B=0$, and

$$
y_{p}(x)=-\frac{1}{2} x \cos x
$$

The general solution is

$$
y(x)=c_{1} \cos x+c_{2} \sin x-\frac{1}{2} x \cos x
$$

We summarize the method of undetermined coefficients as follows:

1. If $G(x)=e^{k x} P(x)$, where P is a polynomial of degree n, then try $y_{p}(x)=e^{k x} Q(x)$, where $Q(x)$ is an n th-degree polynomial (whose coefficients are determined by substituting in the differential equation.)
2. If $G(x)=e^{k x} P(x) \cos m x$ or $G(x)=e^{k x} P(x) \sin m x$, where P is an n th-degree polynomial, then try

$$
y_{p}(x)=e^{k x} Q(x) \cos m x+e^{k x} R(x) \sin m x
$$

where Q and R are n th-degree polynomials.
Modification: If any term of y_{p} is a solution of the complementary equation, multiply y_{p} by x (or by x^{2} if necessary).

EXAMPLE 6 Determine the form of the trial solution for the differential equation $y^{\prime \prime}-4 y^{\prime}+13 y=e^{2 x} \cos 3 x$.

SOLUTION Here $G(x)$ has the form of part 2 of the summary, where $k=2, m=3$, and $P(x)=1$. So, at first glance, the form of the trial solution would be

$$
y_{p}(x)=e^{2 x}(A \cos 3 x+B \sin 3 x)
$$

But the auxiliary equation is $r^{2}-4 r+13=0$, with roots $r=2 \pm 3 i$, so the solution of the complementary equation is

$$
y_{c}(x)=e^{2 x}\left(c_{1} \cos 3 x+c_{2} \sin 3 x\right)
$$

This means that we have to multiply the suggested trial solution by x. So, instead, we use

$$
y_{p}(x)=x e^{2 x}(A \cos 3 x+B \sin 3 x)
$$

THE METHOD OF VARIATION OF PARAMETERS

Suppose we have already solved the homogeneous equation $a y^{\prime \prime}+b y^{\prime}+c y=0$ and written the solution as

$$
\begin{equation*}
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x) \tag{4}
\end{equation*}
$$

where y_{1} and y_{2} are linearly independent solutions. Let's replace the constants (or parameters) c_{1} and c_{2} in Equation 4 by arbitrary functions $u_{1}(x)$ and $u_{2}(x)$. We look for a particular solution of the nonhomogeneous equation $a y^{\prime \prime}+b y^{\prime}+c y=G(x)$ of the form

$$
\begin{equation*}
y_{p}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x) \tag{5}
\end{equation*}
$$

(This method is called variation of parameters because we have varied the parameters c_{1} and c_{2} to make them functions.) Differentiating Equation 5, we get

$$
\begin{equation*}
y_{p}^{\prime}=\left(u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}\right)+\left(u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}\right) \tag{6}
\end{equation*}
$$

Since u_{1} and u_{2} are arbitrary functions, we can impose two conditions on them. One condition is that y_{p} is a solution of the differential equation; we can choose the other condition so as to simplify our calculations. In view of the expression in Equation 6, let's impose the condition that

$$
\begin{equation*}
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \tag{7}
\end{equation*}
$$

- = Figure 5 shows four solutions of the differential equation in Example 7.
2.5

FIGURE 5

Then

$$
y_{p}^{\prime \prime}=u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}+u_{1} y_{1}^{\prime \prime}+u_{2} y_{2}^{\prime \prime}
$$

Substituting in the differential equation, we get

$$
a\left(u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}+u_{1} y_{1}^{\prime \prime}+u_{2} y_{2}^{\prime \prime}\right)+b\left(u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}\right)+c\left(u_{1} y_{1}+u_{2} y_{2}\right)=G
$$

or

$$
\begin{equation*}
u_{1}\left(a y_{1}^{\prime \prime}+b y_{1}^{\prime}+c y_{1}\right)+u_{2}\left(a y_{2}^{\prime \prime}+b y_{2}^{\prime}+c y_{2}\right)+a\left(u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}\right)=G \tag{8}
\end{equation*}
$$

But y_{1} and y_{2} are solutions of the complementary equation, so

$$
a y_{1}^{\prime \prime}+b y_{1}^{\prime}+c y_{1}=0 \quad \text { and } \quad a y_{2}^{\prime \prime}+b y_{2}^{\prime}+c y_{2}=0
$$

and Equation 8 simplifies to

$$
\begin{equation*}
a\left(u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}\right)=G \tag{9}
\end{equation*}
$$

Equations 7 and 9 form a system of two equations in the unknown functions u_{1}^{\prime} and u_{2}^{\prime}. After solving this system we may be able to integrate to find u_{1} and u_{2} and then the particular solution is given by Equation 5.

EXAMPLE 7 Solve the equation $y^{\prime \prime}+y=\tan x, 0<x<\pi / 2$.
SOLUTION The auxiliary equation is $r^{2}+1=0$ with roots $\pm i$, so the solution of $y^{\prime \prime}+y=0$ is $c_{1} \sin x+c_{2} \cos x$. Using variation of parameters, we seek a solution of the form

$$
y_{p}(x)=u_{1}(x) \sin x+u_{2}(x) \cos x
$$

Then

$$
y_{p}^{\prime}=\left(u_{1}^{\prime} \sin x+u_{2}^{\prime} \cos x\right)+\left(u_{1} \cos x-u_{2} \sin x\right)
$$

Set
10

$$
u_{1}^{\prime} \sin x+u_{2}^{\prime} \cos x=0
$$

Then

$$
y_{p}^{\prime \prime}=u_{1}^{\prime} \cos x-u_{2}^{\prime} \sin x-u_{1} \sin x-u_{2} \cos x
$$

For y_{p} to be a solution we must have

$$
\begin{equation*}
y_{p}^{\prime \prime}+y_{p}=u_{1}^{\prime} \cos x-u_{2}^{\prime} \sin x=\tan x \tag{11}
\end{equation*}
$$

Solving Equations 10 and 11, we get

$$
\begin{aligned}
& u_{1}^{\prime}\left(\sin ^{2} x+\cos ^{2} x\right)=\cos x \tan x \\
& u_{1}^{\prime}=\sin x \quad u_{1}(x)=-\cos x
\end{aligned}
$$

(We seek a particular solution, so we don't need a constant of integration here.) Then, from Equation 10, we obtain

$$
u_{2}^{\prime}=-\frac{\sin x}{\cos x} u_{1}^{\prime}=-\frac{\sin ^{2} x}{\cos x}=\frac{\cos ^{2} x-1}{\cos x}=\cos x-\sec x
$$

So

$$
u_{2}(x)=\sin x-\ln (\sec x+\tan x)
$$

(Note that $\sec x+\tan x>0$ for $0<x<\pi / 2$.) Therefore

$$
\begin{aligned}
y_{p}(x) & =-\cos x \sin x+[\sin x-\ln (\sec x+\tan x)] \cos x \\
& =-\cos x \ln (\sec x+\tan x)
\end{aligned}
$$

and the general solution is

$$
y(x)=c_{1} \sin x+c_{2} \cos x-\cos x \ln (\sec x+\tan x)
$$

EXERCISES

A. Click here for answers.

S Click here for solutions.

1-10 ■ Solve the differential equation or initial-value problem using the method of undetermined coefficients.

1. $y^{\prime \prime}+3 y^{\prime}+2 y=x^{2}$
2. $y^{\prime \prime}+9 y=e^{3 x}$
3. $y^{\prime \prime}-2 y^{\prime}=\sin 4 x$
4. $y^{\prime \prime}+6 y^{\prime}+9 y=1+x$
5. $y^{\prime \prime}-4 y^{\prime}+5 y=e^{-x}$
6. $y^{\prime \prime}+2 y^{\prime}+y=x e^{-x}$
7. $y^{\prime \prime}+y=e^{x}+x^{3}, \quad y(0)=2, \quad y^{\prime}(0)=0$
8. $y^{\prime \prime}-4 y=e^{x} \cos x, \quad y(0)=1, \quad y^{\prime}(0)=2$
9. $y^{\prime \prime}-y^{\prime}=x e^{x}, \quad y(0)=2, \quad y^{\prime}(0)=1$
10. $y^{\prime \prime}+y^{\prime}-2 y=x+\sin 2 x, \quad y(0)=1, \quad y^{\prime}(0)=0$

11-12 ■ Graph the particular solution and several other solutions.
What characteristics do these solutions have in common?
11. $4 y^{\prime \prime}+5 y^{\prime}+y=e^{x}$
12. $2 y^{\prime \prime}+3 y^{\prime}+y=1+\cos 2 x$

13-18 Write a trial solution for the method of undetermined coefficients. Do not determine the coefficients.
13. $y^{\prime \prime}+9 y=e^{2 x}+x^{2} \sin x$
14. $y^{\prime \prime}+9 y^{\prime}=x e^{-x} \cos \pi x$
15. $y^{\prime \prime}+9 y^{\prime}=1+x e^{9 x}$
24. $y^{\prime \prime}+y=\cot x, 0<x<\pi / 2$
16. $y^{\prime \prime}+3 y^{\prime}-4 y=\left(x^{3}+x\right) e^{x}$
17. $y^{\prime \prime}+2 y^{\prime}+10 y=x^{2} e^{-x} \cos 3 x$
18. $y^{\prime \prime}+4 y=e^{3 x}+x \sin 2 x$

19-22 ■ Solve the differential equation using (a) undetermined coefficients and (b) variation of parameters.
19. $y^{\prime \prime}+4 y=x$
20. $y^{\prime \prime}-3 y^{\prime}+2 y=\sin x$
21. $y^{\prime \prime}-2 y^{\prime}+y=e^{2 x}$
22. $y^{\prime \prime}-y^{\prime}=e^{x}$

23-28 ■ Solve the differential equation using the method of variation of parameters.
23. $y^{\prime \prime}+y=\sec x, 0<x<\pi / 2$
25. $y^{\prime \prime}-3 y^{\prime}+2 y=\frac{1}{1+e^{-x}}$
26. $y^{\prime \prime}+3 y^{\prime}+2 y=\sin \left(e^{x}\right)$
27. $y^{\prime \prime}-y=\frac{1}{x}$
28. $y^{\prime \prime}+4 y^{\prime}+4 y=\frac{e^{-2 x}}{x^{3}}$

ANSWERS

S Click here for solutions.

1. $y=c_{1} e^{-2 x}+c_{2} e^{-x}+\frac{1}{2} x^{2}-\frac{3}{2} x+\frac{7}{4}$
2. $y=c_{1}+c_{2} e^{2 x}+\frac{1}{40} \cos 4 x-\frac{1}{20} \sin 4 x$
3. $y=e^{2 x}\left(c_{1} \cos x+c_{2} \sin x\right)+\frac{1}{10} e^{-x}$
4. $y=\frac{3}{2} \cos x+\frac{11}{2} \sin x+\frac{1}{2} e^{x}+x^{3}-6 x$
5. $y=e^{x}\left(\frac{1}{2} x^{2}-x+2\right)$
6.

The solutions are all asymptotic to $y_{p}=e^{x} / 10$ as $x \rightarrow \infty$. Except for y_{p}, all solutions approach either ∞ or $-\infty$ as $x \rightarrow-\infty$.
13. $y_{p}=A e^{2 x}+\left(B x^{2}+C x+D\right) \cos x+\left(E x^{2}+F x+G\right) \sin x$
15. $y_{p}=A x+(B x+C) e^{9 x}$
17. $y_{p}=x e^{-x}\left[\left(A x^{2}+B x+C\right) \cos 3 x+\left(D x^{2}+E x+F\right) \sin 3 x\right]$
19. $y=c_{1} \cos 2 x+c_{2} \sin 2 x+\frac{1}{4} x$
21. $y=c_{1} e^{x}+c_{2} x e^{x}+e^{2 x}$
23. $y=\left(c_{1}+x\right) \sin x+\left(c_{2}+\ln \cos x\right) \cos x$
25. $y=\left[c_{1}+\ln \left(1+e^{-x}\right)\right] e^{x}+\left[c_{2}-e^{-x}+\ln \left(1+e^{-x}\right)\right] e^{2 x}$
27. $y=\left[c_{1}-\frac{1}{2} \int\left(e^{x} / x\right) d x\right] e^{-x}+\left[c_{2}+\frac{1}{2} \int\left(e^{-x} / x\right) d x\right] e^{x}$

SOLUTIONS

1. The auxiliary equation is $r^{2}+3 r+2=(r+2)(r+1)=0$, so the complementary solution is
$y_{c}(x)=c_{1} e^{-2 x}+c_{2} e^{-x}$. We try the particular solution $y_{p}(x)=A x^{2}+B x+C$, so $y_{p}^{\prime}=2 A x+B$ and $y_{p}^{\prime \prime}=2 A$.
Substituting into the differential equation, we have $(2 A)+3(2 A x+B)+2\left(A x^{2}+B x+C\right)=x^{2}$ or
$2 A x^{2}+(6 A+2 B) x+(2 A+3 B+2 C)=x^{2}$. Comparing coefficients gives $2 A=1,6 A+2 B=0$, and
$2 A+3 B+2 C=0$, so $A=\frac{1}{2}, B=-\frac{3}{2}$, and $C=\frac{7}{4}$. Thus the general solution is
$y(x)=y_{c}(x)+y_{p}(x)=c_{1} e^{-2 x}+c_{2} e^{-x}+\frac{1}{2} x^{2}-\frac{3}{2} x+\frac{7}{4}$.
2. The auxiliary equation is $r^{2}-2 r=r(r-2)=0$, so the complementary solution is $y_{c}(x)=c_{1}+c_{2} e^{2 x}$. Try the particular solution $y_{p}(x)=A \cos 4 x+B \sin 4 x$, so $y_{p}^{\prime}=-4 A \sin 4 x+4 B \cos 4 x$ and $y_{p}^{\prime \prime}=-16 A \cos 4 x-16 B \sin 4 x$. Substitution into the differential equation gives $(-16 A \cos 4 x-16 B \sin 4 x)-2(-4 A \sin 4 x+4 B \cos 4 x)=\sin 4 x \Rightarrow$ $(-16 A-8 B) \cos 4 x+(8 A-16 B) \sin 4 x=\sin 4 x$. Then $-16 A-8 B=0$ and $8 A-16 B=1 \quad \Rightarrow \quad A=\frac{1}{40}$ and $B=-\frac{1}{20}$. Thus the general solution is $y(x)=y_{c}(x)+y_{p}(x)=c_{1}+c_{2} e^{2 x}+\frac{1}{40} \cos 4 x-\frac{1}{20} \sin 4 x$.
3. The auxiliary equation is $r^{2}-4 r+5=0$ with roots $r=2 \pm i$, so the complementary solution is $y_{c}(x)=e^{2 x}\left(c_{1} \cos x+c_{2} \sin x\right)$. Try $y_{p}(x)=A e^{-x}$, so $y_{p}^{\prime}=-A e^{-x}$ and $y_{p}^{\prime \prime}=A e^{-x}$. Substitution gives $A e^{-x}-4\left(-A e^{-x}\right)+5\left(A e^{-x}\right)=e^{-x} \quad \Rightarrow \quad 10 A e^{-x}=e^{-x} \quad \Rightarrow \quad A=\frac{1}{10}$. Thus the general solution is $y(x)=e^{2 x}\left(c_{1} \cos x+c_{2} \sin x\right)+\frac{1}{10} e^{-x}$.
4. The auxiliary equation is $r^{2}+1=0$ with roots $r= \pm i$, so the complementary solution is $y_{c}(x)=c_{1} \cos x+c_{2} \sin x$. For $y^{\prime \prime}+y=e^{x}$ try $y_{p_{1}}(x)=A e^{x}$. Then $y_{p_{1}}^{\prime}=y_{p_{1}}^{\prime \prime}=A e^{x}$ and substitution gives $A e^{x}+A e^{x}=e^{x} \Rightarrow A=\frac{1}{2}$, so $y_{p_{1}}(x)=\frac{1}{2} e^{x}$. For $y^{\prime \prime}+y=x^{3}$ try $y_{p_{2}}(x)=A x^{3}+B x^{2}+C x+D$. Then $y_{p_{2}}^{\prime}=3 A x^{2}+2 B x+C$ and $y_{p_{2}}^{\prime \prime}=6 A x+2 B$. Substituting, we have $6 A x+2 B+A x^{3}+B x^{2}+C x+D=x^{3}$, so $A=1, B=0,6 A+C=0 \quad \Rightarrow \quad C=-6$, and $2 B+D=0 \Rightarrow$ $D=0$. Thus $y_{p_{2}}(x)=x^{3}-6 x$ and the general solution is
$y(x)=y_{c}(x)+y_{p_{1}}(x)+y_{p_{2}}(x)=c_{1} \cos x+c_{2} \sin x+\frac{1}{2} e^{x}+x^{3}-6 x$. But $2=y(0)=c_{1}+\frac{1}{2} \quad \Rightarrow \quad c_{1}=\frac{3}{2}$ and $0=y^{\prime}(0)=c_{2}+\frac{1}{2}-6 \Rightarrow c_{2}=\frac{11}{2}$. Thus the solution to the initial-value problem is $y(x)=\frac{3}{2} \cos x+\frac{11}{2} \sin x+\frac{1}{2} e^{x}+x^{3}-6 x$.
5. The auxiliary equation is $r^{2}-r=0$ with roots $r=0, r=1$ so the complementary solution is $y_{c}(x)=c_{1}+c_{2} e^{x}$. Try $y_{p}(x)=x(A x+B) e^{x}$ so that no term in y_{p} is a solution of the complementary equation. Then $y_{p}^{\prime}=\left(A x^{2}+(2 A+B) x+B\right) e^{x}$ and $y_{p}^{\prime \prime}=\left(A x^{2}+(4 A+B) x+(2 A+2 B)\right) e^{x}$. Substitution into the differential equation gives $\left(A x^{2}+(4 A+B) x+(2 A+2 B)\right) e^{x}-\left(A x^{2}+(2 A+B) x+B\right) e^{x}=x e^{x} \quad \Rightarrow$ $(2 A x+(2 A+B)) e^{x}=x e^{x} \quad \Rightarrow \quad A=\frac{1}{2}, B=-1$. Thus $y_{p}(x)=\left(\frac{1}{2} x^{2}-x\right) e^{x}$ and the general solution is $y(x)=c_{1}+c_{2} e^{x}+\left(\frac{1}{2} x^{2}-x\right) e^{x}$. But $2=y(0)=c_{1}+c_{2}$ and $1=y^{\prime}(0)=c_{2}-1$, so $c_{2}=2$ and $c_{1}=0$. The solution to the initial-value problem is $y(x)=2 e^{x}+\left(\frac{1}{2} x^{2}-x\right) e^{x}=e^{x}\left(\frac{1}{2} x^{2}-x+2\right)$.
6. $y_{c}(x)=c_{1} e^{-x / 4}+c_{2} e^{-x}$. Try $y_{p}(x)=A e^{x}$. Then $10 A e^{x}=e^{x}$, so $A=\frac{1}{10}$ and the general solution is $y(x)=c_{1} e^{-x / 4}+c_{2} e^{-x}+\frac{1}{10} e^{x}$. The solutions are all composed of exponential curves and with the exception of the particular solution (which approaches 0 as $x \rightarrow-\infty$), they all approach either ∞ or $-\infty$ as $x \rightarrow-\infty$. As $x \rightarrow \infty$, all solutions are
 asymptotic to $y_{p}=\frac{1}{10} e^{x}$.
7. Here $y_{c}(x)=c_{1} \cos 3 x+c_{2} \sin 3 x$. For $y^{\prime \prime}+9 y=e^{2 x}$ try $y_{p_{1}}(x)=A e^{2 x}$ and for $y^{\prime \prime}+9 y=x^{2} \sin x$ try $y_{p_{2}}(x)=\left(B x^{2}+C x+D\right) \cos x+\left(E x^{2}+F x+G\right) \sin x$. Thus a trial solution is $y_{p}(x)=y_{p_{1}}(x)+y_{p_{2}}(x)=A e^{2 x}+\left(B x^{2}+C x+D\right) \cos x+\left(E x^{2}+F x+G\right) \sin x$.
8. Here $y_{c}(x)=c_{1}+c_{2} e^{-9 x}$. For $y^{\prime \prime}+9 y^{\prime}=1$ try $y_{p_{1}}(x)=A x$ (since $y=A$ is a solution to the complementary equation) and for $y^{\prime \prime}+9 y^{\prime}=x e^{9 x}$ try $y_{p_{2}}(x)=(B x+C) e^{9 x}$.
9. Since $y_{c}(x)=e^{-x}\left(c_{1} \cos 3 x+c_{2} \sin 3 x\right)$ we try
$y_{p}(x)=x\left(A x^{2}+B x+C\right) e^{-x} \cos 3 x+x\left(D x^{2}+E x+F\right) e^{-x} \sin 3 x$ (so that no term of y_{p} is a solution of the complementary equation).

Note: Solving Equations (7) and (9) in The Method of Variation of Parameters gives

$$
u_{1}^{\prime}=-\frac{G y_{2}}{a\left(y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}\right)} \quad \text { and } \quad u_{2}^{\prime}=\frac{G y_{1}}{a\left(y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}\right)}
$$

We will use these equations rather than resolving the system in each of the remaining exercises in this section.
19. (a) The complementary solution is $y_{c}(x)=c_{1} \cos 2 x+c_{2} \sin 2 x$. A particular solution is of the form
$y_{p}(x)=A x+B$. Thus, $4 A x+4 B=x \quad \Rightarrow \quad A=\frac{1}{4}$ and $B=0 \quad \Rightarrow \quad y_{p}(x)=\frac{1}{4} x$. Thus, the general
solution is $y=y_{c}+y_{p}=c_{1} \cos 2 x+c_{2} \sin 2 x+\frac{1}{4} x$.
(b) In (a), $y_{c}(x)=c_{1} \cos 2 x+c_{2} \sin 2 x$, so set $y_{1}=\cos 2 x, y_{2}=\sin 2 x$. Then
$y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}=2 \cos ^{2} 2 x+2 \sin ^{2} 2 x=2$ so $u_{1}^{\prime}=-\frac{1}{2} x \sin 2 x \quad \Rightarrow$
$u_{1}(x)=-\frac{1}{2} \int x \sin 2 x d x=-\frac{1}{4}\left(-x \cos 2 x+\frac{1}{2} \sin 2 x\right)$ [by parts] and $u_{2}^{\prime}=\frac{1}{2} x \cos 2 x$
$\Rightarrow \quad u_{2}(x)=\frac{1}{2} \int x \cos 2 x d x=\frac{1}{4}\left(x \sin 2 x+\frac{1}{2} \cos 2 x\right)$ [by parts]. Hence
$y_{p}(x)=-\frac{1}{4}\left(-x \cos 2 x+\frac{1}{2} \sin 2 x\right) \cos 2 x+\frac{1}{4}\left(x \sin 2 x+\frac{1}{2} \cos 2 x\right) \sin 2 x=\frac{1}{4} x$. Thus
$y(x)=y_{c}(x)+y_{p}(x)=c_{1} \cos 2 x+c_{2} \sin 2 x+\frac{1}{4} x$.
21. (a) $r^{2}-r=r(r-1)=0 \Rightarrow r=0,1$, so the complementary solution is $y_{c}(x)=c_{1} e^{x}+c_{2} x e^{x}$. A particular solution is of the form $y_{p}(x)=A e^{2 x}$. Thus $4 A e^{2 x}-4 A e^{2 x}+A e^{2 x}=e^{2 x} \Rightarrow A e^{2 x}=e^{2 x} \Rightarrow A=1$ $\Rightarrow \quad y_{p}(x)=e^{2 x}$. So a general solution is $y(x)=y_{c}(x)+y_{p}(x)=c_{1} e^{x}+c_{2} x e^{x}+e^{2 x}$.
(b) From (a), $y_{c}(x)=c_{1} e^{x}+c_{2} x e^{x}$, so set $y_{1}=e^{x}$, $y_{2}=x e^{x}$. Then, $y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}=e^{2 x}(1+x)-x e^{2 x}=e^{2 x}$ and so $u_{1}^{\prime}=-x e^{x} \quad \Rightarrow \quad u_{1}(x)=-\int x e^{x} d x=-(x-1) e^{x} \quad$ [by parts] and $u_{2}^{\prime}=e^{x} \quad \Rightarrow$ $u_{2}(x)=\int e^{x} d x=e^{x}$. Hence $y_{p}(x)=(1-x) e^{2 x}+x e^{2 x}=e^{2 x}$ and the general solution is $y(x)=y_{c}(x)+y_{p}(x)=c_{1} e^{x}+c_{2} x e^{x}+e^{2 x}$.
23. As in Example 6, $y_{c}(x)=c_{1} \sin x+c_{2} \cos x$, so set $y_{1}=\sin x, y_{2}=\cos x$. Then $y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}=-\sin ^{2} x-\cos ^{2} x=-1$, so $u_{1}^{\prime}=-\frac{\sec x \cos x}{-1}=1 \quad \Rightarrow \quad u_{1}(x)=x$ and $u_{2}^{\prime}=\frac{\sec x \sin x}{-1}=-\tan x \Rightarrow u_{2}(x)=-\int \tan x d x=\ln |\cos x|=\ln (\cos x)$ on $0<x<\frac{\pi}{2}$. Hence $y_{p}(x)=x \sin x+\cos x \ln (\cos x)$ and the general solution is $y(x)=\left(c_{1}+x\right) \sin x+\left[c_{2}+\ln (\cos x)\right] \cos x$.
25. $y_{1}=e^{x}, y_{2}=e^{2 x}$ and $y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}=e^{3 x}$. So $u_{1}^{\prime}=\frac{-e^{2 x}}{\left(1+e^{-x}\right) e^{3 x}}=-\frac{e^{-x}}{1+e^{-x}}$ and $u_{1}(x)=\int-\frac{e^{-x}}{1+e^{-x}} d x=\ln \left(1+e^{-x}\right) . u_{2}^{\prime}=\frac{e^{x}}{\left(1+e^{-x}\right) e^{3 x}}=\frac{e^{x}}{e^{3 x}+e^{2 x}}$ so $u_{2}(x)=\int \frac{e^{x}}{e^{3 x}+e^{2 x}} d x=\ln \left(\frac{e^{x}+1}{e^{x}}\right)-e^{-x}=\ln \left(1+e^{-x}\right)-e^{-x}$. Hence $y_{p}(x)=e^{x} \ln \left(1+e^{-x}\right)+e^{2 x}\left[\ln \left(1+e^{-x}\right)-e^{-x}\right]$ and the general solution is $y(x)=\left[c_{1}+\ln \left(1+e^{-x}\right)\right] e^{x}+\left[c_{2}-e^{-x}+\ln \left(1+e^{-x}\right)\right] e^{2 x}$.
27. $y_{1}=e^{-x}, y_{2}=e^{x}$ and $y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}=2$. So $u_{1}^{\prime}=-\frac{e^{x}}{2 x}, u_{2}^{\prime}=\frac{e^{-x}}{2 x}$ and $y_{p}(x)=-e^{-x} \int \frac{e^{x}}{2 x} d x+e^{x} \int \frac{e^{-x}}{2 x} d x$. Hence the general solution is $y(x)=\left(c_{1}-\int \frac{e^{x}}{2 x} d x\right) e^{-x}+\left(c_{2}+\int \frac{e^{-x}}{2 x} d x\right) e^{x}$.

