ROTATION OF AXES

- - For a discussion of conic sections, see Review of Conic Sections.

In precalculus or calculus you may have studied conic sections with equations of the form

$$
A x^{2}+C y^{2}+D x+E y+F=0
$$

Here we show that the general second-degree equation

$$
\begin{equation*}
A x^{2}+B x y+C y^{2}+D x+E y+F=0 \tag{1}
\end{equation*}
$$

can be analyzed by rotating the axes so as to eliminate the term $B x y$.
In Figure 1 the x and y axes have been rotated about the origin through an acute angle θ to produce the X and Y axes. Thus, a given point P has coordinates (x, y) in the first coordinate system and (X, Y) in the new coordinate system. To see how X and Y are related to x and y we observe from Figure 2 that

$$
\begin{array}{ll}
X=r \cos \phi & Y=r \sin \phi \\
x=r \cos (\theta+\phi) & y=r \sin (\theta+\phi)
\end{array}
$$

FIGURE 1

FIGURE 2

The addition formula for the cosine function then gives

$$
\begin{aligned}
x & =r \cos (\theta+\phi)=r(\cos \theta \cos \phi-\sin \theta \sin \phi) \\
& =(r \cos \phi) \cos \theta-(r \sin \phi) \sin \theta=X \cos \theta-Y \sin \theta
\end{aligned}
$$

A similar computation gives y in terms of X and Y and so we have the following formulas:

$$
\begin{equation*}
x=X \cos \theta-Y \sin \theta \quad y=X \sin \theta+Y \cos \theta \tag{2}
\end{equation*}
$$

By solving Equations 2 for X and Y we obtain

$$
\begin{equation*}
X=x \cos \theta+y \sin \theta \quad Y=-x \sin \theta+y \cos \theta \tag{3}
\end{equation*}
$$

EXAMPLE 1 If the axes are rotated through 60°, find the $X Y$-coordinates of the point whose $x y$-coordinates are $(2,6)$.
SOLUTION Using Equations 3 with $x=2, y=6$, and $\theta=60^{\circ}$, we have

$$
\begin{aligned}
& X=2 \cos 60^{\circ}+6 \sin 60^{\circ}=1+3 \sqrt{3} \\
& Y=-2 \sin 60^{\circ}+6 \cos 60^{\circ}=-\sqrt{3}+3
\end{aligned}
$$

The $X Y$-coordinates are $(1+3 \sqrt{3}, 3-\sqrt{3})$.

Now let's try to determine an angle θ such that the term Bxy in Equation 1 disappears when the axes are rotated through the angle θ. If we substitute from Equations 2 in Equation 1, we get

$$
\begin{aligned}
& A(X \cos \theta-Y \sin \theta)^{2}+B(X \cos \theta-Y \sin \theta)(X \sin \theta+Y \cos \theta) \\
& \quad+C(X \sin \theta+Y \cos \theta)^{2}+D(X \cos \theta-Y \sin \theta) \\
& \quad+E(X \sin \theta+Y \cos \theta)+F=0
\end{aligned}
$$

Expanding and collecting terms, we obtain an equation of the form

$$
\begin{equation*}
A^{\prime} X^{2}+B^{\prime} X Y+C^{\prime} Y^{2}+D^{\prime} X+E^{\prime} Y+F=0 \tag{4}
\end{equation*}
$$

where the coefficient B^{\prime} of $X Y$ is

$$
\begin{aligned}
B^{\prime} & =2(C-A) \sin \theta \cos \theta+B\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \\
& =(C-A) \sin 2 \theta+B \cos 2 \theta
\end{aligned}
$$

To eliminate the $X Y$ term we choose θ so that $B^{\prime}=0$, that is,

$$
(A-C) \sin 2 \theta=B \cos 2 \theta
$$

or

$$
\begin{equation*}
\cot 2 \theta=\frac{A-C}{B} \tag{5}
\end{equation*}
$$

EXAMPLE 2 Show that the graph of the equation $x y=1$ is a hyperbola.
SOLUTION Notice that the equation $x y=1$ is in the form of Equation 1 where $A=0$, $B=1$, and $C=0$. According to Equation 5, the $x y$ term will be eliminated if we choose θ so that

$$
\cot 2 \theta=\frac{A-C}{B}=0
$$

This will be true if $2 \theta=\pi / 2$, that is, $\theta=\pi / 4$. Then $\cos \theta=\sin \theta=1 / \sqrt{2}$ and Equa-

$$
x y=1 \text { or } \frac{X^{2}}{2}-\frac{Y^{2}}{2}=1
$$

FIGURE 3 tions 2 become

$$
x=\frac{X}{\sqrt{2}}-\frac{Y}{\sqrt{2}} \quad y=\frac{X}{\sqrt{2}}+\frac{Y}{\sqrt{2}}
$$

Substituting these expressions into the original equation gives

$$
\left(\frac{X}{\sqrt{2}}-\frac{Y}{\sqrt{2}}\right)\left(\frac{X}{\sqrt{2}}+\frac{Y}{\sqrt{2}}\right)=1 \quad \text { or } \quad \frac{X^{2}}{2}-\frac{Y^{2}}{2}=1
$$

We recognize this as a hyperbola with vertices $(\pm \sqrt{2}, 0)$ in the $X Y$-coordinate system. The asymptotes are $Y= \pm X$ in the $X Y$-system, which correspond to the coordinate axes in the $x y$-system (see Figure 3).

EXAMPLE 3 Identify and sketch the curve

$$
73 x^{2}+72 x y+52 y^{2}+30 x-40 y-75=0
$$

SOLUTION This equation is in the form of Equation 1 with $A=73, B=72$, and $C=52$. Thus

$$
\cot 2 \theta=\frac{A-C}{B}=\frac{73-52}{72}=\frac{7}{24}
$$

From the triangle in Figure 4 we see that

$$
\cos 2 \theta=\frac{7}{25}
$$

The values of $\cos \theta$ and $\sin \theta$ can then be computed from the half-angle formulas:

$$
\begin{aligned}
& \cos \theta=\sqrt{\frac{1+\cos 2 \theta}{2}}=\sqrt{\frac{1+\frac{7}{25}}{2}}=\frac{4}{5} \\
& \sin \theta=\sqrt{\frac{1-\cos 2 \theta}{2}}=\sqrt{\frac{1-\frac{7}{25}}{2}}=\frac{3}{5}
\end{aligned}
$$

The rotation equations (2) become

$$
x=\frac{4}{5} X-\frac{3}{5} Y \quad y=\frac{3}{5} X+\frac{4}{5} Y
$$

Substituting into the given equation, we have

$$
\begin{gathered}
73\left({ }_{5}^{4} X-\frac{3}{5} Y\right)^{2}+72\left({ }_{5}^{4} X-\frac{3}{5} Y\right)\left({ }_{5}^{3} X+\frac{4}{5} Y\right)+52\left({ }_{5}^{3} X+\frac{4}{5} Y\right)^{2} \\
+30\left({ }_{5}^{4} X-\frac{3}{5} Y\right)-40\left(\frac{3}{5} X+\frac{4}{5} Y\right)-75=0
\end{gathered}
$$

which simplifies to

$$
4 X^{2}+Y^{2}-2 Y=3
$$

Completing the square gives

$$
4 X^{2}+(Y-1)^{2}=4 \quad \text { or } \quad X^{2}+\frac{(Y-1)^{2}}{4}=1
$$

and we recognize this as being an ellipse whose center is $(0,1)$ in $X Y$-coordinates. Since $\theta=\cos ^{-1}\left(\frac{4}{5}\right) \approx 37^{\circ}$, we can sketch the graph in Figure 5.

EXERCISES

A Click here for answers.

S Click here for solutions.

1-4 ■ Find the $X Y$-coordinates of the given point if the axes are rotated through the specified angle.

1. $(1,4), 30^{\circ}$
2. $(4,3), 45^{\circ}$
3. $(-2,4), 60^{\circ}$
4. $(1,1), 15^{\circ}$

5-12 ■ Use rotation of axes to identify and sketch the curve.
5. $x^{2}-2 x y+y^{2}-x-y=0$
6. $x^{2}-x y+y^{2}=1$
7. $x^{2}+x y+y^{2}=1$
8. $\sqrt{3} x y+y^{2}=1$
9. $97 x^{2}+192 x y+153 y^{2}=225$
10. $3 x^{2}-12 \sqrt{5} x y+6 y^{2}+9=0$
11. $2 \sqrt{3} x y-2 y^{2}-\sqrt{3} x-y=0$
12. $16 x^{2}-8 \sqrt{2} x y+2 y^{2}+(8 \sqrt{2}-3) x-(6 \sqrt{2}+4) y=7$
13. (a) Use rotation of axes to show that the equation

$$
36 x^{2}+96 x y+64 y^{2}+20 x-15 y+25=0
$$

represents a parabola.
(b) Find the $X Y$-coordinates of the focus. Then find the $x y$-coordinates of the focus.
(c) Find an equation of the directrix in the $x y$-coordinate system.
14. (a) Use rotation of axes to show that the equation

$$
2 x^{2}-72 x y+23 y^{2}-80 x-60 y=125
$$

represents a hyperbola.
(b) Find the $X Y$-coordinates of the foci. Then find the $x y$-coordinates of the foci.
(c) Find the $x y$-coordinates of the vertices.
(d) Find the equations of the asymptotes in the $x y$-coordinate system.
(e) Find the eccentricity of the hyperbola.
15. Suppose that a rotation changes Equation 1 into Equation 4. Show that

$$
A^{\prime}+C^{\prime}=A+C
$$

16. Suppose that a rotation changes Equation 1 into Equation 4. Show that

$$
\left(B^{\prime}\right)^{2}-4 A^{\prime} C^{\prime}=B^{2}-4 A C
$$

17. Use Exercise 16 to show that Equation 1 represents (a) a parabola if $B^{2}-4 A C=0$, (b) an ellipse if $B^{2}-4 A C<0$, and (c) a hyperbola if $B^{2}-4 A C>0$, except in degenerate cases when it reduces to a point, a line, a pair of lines, or no graph at all.
18. Use Exercise 17 to determine the type of curve in Exercises 9-12.

ANSWERS

5 Click here for solutions.

1. $((\sqrt{3}+4) / 2,(4 \sqrt{3}-1) / 2)$
2. $(2 \sqrt{3}-1, \sqrt{3}+2)$
3. $X=\sqrt{2} Y^{2}$, parabola

4. $3 X^{2}+Y^{2}=2$, ellipse

5. $X^{2}+\left(Y^{2} / 9\right)=1$, ellipse

6. $(X-1)^{2}-3 Y^{2}=1$, hyperbola

7. (a) $Y-1=4 X^{2} \quad$ (b) $\left(0, \frac{17}{16}\right),\left(-\frac{17}{20}, \frac{51}{80}\right)$
(c) $64 x-48 y+75=0$

SOLUTIONS

1. $X=1 \cdot \cos 30^{\circ}+4 \sin 30^{\circ}=2+\frac{\sqrt{3}}{2}, Y=-1 \cdot \sin 30^{\circ}+4 \cos 30^{\circ}=2 \sqrt{3}-\frac{1}{2}$.
2. $X=-2 \cos 60^{\circ}+4 \sin 60^{\circ}=-1+2 \sqrt{3}, Y=2 \sin 60^{\circ}+4 \cos 60^{\circ}=\sqrt{3}+2$.
3. $\cot 2 \theta=\frac{A-C}{B}=0 \Rightarrow 2 \theta=\frac{\pi}{2} \quad \Leftrightarrow \quad \theta=\frac{\pi}{4} \quad \Rightarrow \quad[$ by Equations 2] $x=\frac{X-Y}{\sqrt{2}}$ and $y=\frac{X+Y}{\sqrt{2}}$. Substituting these into the curve equation gives $0=(x-y)^{2}-(x+y)=2 Y^{2}-\sqrt{2} X$ or $Y^{2}=\frac{X}{\sqrt{2}}$.
[Parabola, vertex $(0,0)$, directrix $X=-1 /(4 \sqrt{2})$, focus $(1 /(4 \sqrt{2}), 0)]$.

4. $\cot 2 \theta=\frac{A-C}{B}=0 \quad \Rightarrow \quad 2 \theta=\frac{\pi}{2} \quad \Leftrightarrow \quad \theta=\frac{\pi}{4} \quad \Rightarrow \quad[$ by Equations 2] $x=\frac{X-Y}{\sqrt{2}}$ and $y=\frac{X+Y}{\sqrt{2}}$. Substituting these into the curve equation gives
$1=\frac{X^{2}-2 X Y+Y^{2}}{2}+\frac{X^{2}-Y^{2}}{2}+\frac{X^{2}+2 X Y+Y^{2}}{2} \Rightarrow$
$3 X^{2}+Y^{2}=2 \Rightarrow \frac{X^{2}}{2 / 3}+\frac{Y^{2}}{2}=1$. [An ellipse, center $(0,0)$, foci on

Y-axis with $a=\sqrt{2}, b=\sqrt{6} / 3, c=2 \sqrt{3} / 3$.]
5. $\cot 2 \theta=\frac{97-153}{192}=\frac{-7}{24} \Rightarrow \tan 2 \theta=-\frac{24}{7} \quad \Rightarrow \quad \frac{\pi}{2}<2 \theta<\pi$ and $\cos 2 \theta=\frac{-7}{25} \quad \Rightarrow \quad \frac{\pi}{4}<\theta<\frac{\pi}{2}, \cos \theta=\frac{3}{5}, \sin \theta=\frac{4}{5} \quad \Rightarrow$ $x=X \cos \theta-Y \sin \theta=\frac{3 X-4 Y}{5}$ and $y=X \sin \theta+Y \cos \theta=\frac{4 X+3 Y}{5}$. Substituting, we get $\frac{97}{25}(3 X-4 Y)^{2}+\frac{192}{25}(3 X-4 Y)(4 X+3 Y)+\frac{153}{25}(4 X+3 Y)^{2}=225$, which simplifies to $X^{2}+\frac{Y^{2}}{9}=1$ (an ellipse with foci on Y-axis, centered at origin, $a=3, b=1$).
6. $\cot 2 \theta=\frac{A-C}{B}=\frac{1}{\sqrt{3}} \Rightarrow \theta=\frac{\pi}{6} \quad \Rightarrow \quad x=\frac{\sqrt{3} X-Y}{2}$, $y=\frac{X+\sqrt{3} Y}{2}$. Substituting into the curve equation and simplifying gives $4 X^{2}-12 Y^{2}-8 x=0 \Rightarrow(X-1)^{2}-3 Y^{2}=1$ [a hyperbola with foci on X-axis, centered at $(1,0), a=1, b=1 / \sqrt{3}, c=2 / \sqrt{3}]$.
7. (a) $\cot 2 \theta=\frac{A-C}{B}=\frac{-7}{24}$ so, as in Exercise 9, $x=\frac{3 X-4 Y}{5}$ and $y=\frac{4 X+3 Y}{5}$. Substituting and simplifying we get $100 X^{2}-25 Y+25=0 \Rightarrow 4 X^{2}=Y-1$, which is a parabola.
(b) The vertex is $(0,1)$ and $p=\frac{1}{16}$, so the $X Y$-coordinates of the focus are $\left(0, \frac{17}{16}\right)$, and the $x y$-coordinates are $x=\frac{0 \cdot 3}{5}-\left(\frac{17}{16}\right)\left(\frac{4}{5}\right)=-\frac{17}{20}$ and $y=\frac{0 \cdot 4}{5}+\left(\frac{17}{16}\right)\left(\frac{3}{5}\right)=\frac{51}{80}$.
(c) The directrix is $Y=\frac{15}{16}$, so $-x \cdot \frac{4}{5}+y \cdot \frac{3}{5}=\frac{15}{16} \Rightarrow 64 x-48 y+75=0$.
8. A rotation through θ changes Equation 1 to
$A(X \cos \theta-Y \sin \theta)^{2}+B(X \cos \theta-Y \sin \theta)(X \sin \theta+Y \cos \theta)+C(X \sin \theta+Y \cos \theta)^{2}+D(X \cos \theta-$ $Y \sin \theta)+E(X \sin \theta+Y \cos \theta)+F=0$.

Comparing this to Equation 4, we see that $A^{\prime}+C^{\prime}=A\left(\cos ^{2} \theta+\sin ^{2} \theta\right)+C\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=A+C$.
17. Choose θ so that $B^{\prime}=0$. Then $B^{2}-4 A C=\left(B^{\prime}\right)^{2}-4 A^{\prime} C^{\prime}=-4 A^{\prime} C^{\prime}$. But $A^{\prime} C^{\prime}$ will be 0 for a parabola, negative for a hyperbola (where the X^{2} and Y^{2} coefficients are of opposite sign), and positive for an ellipse (same sign for X^{2} and Y^{2} coefficients). So :

$$
B^{2}-4 A C=0 \text { for a parabola, } \quad B^{2}-4 A C>0 \text { for a hyperbola }, \quad B^{2}-4 A C<0 \text { for an ellipse. }
$$

Note that the transformed equation takes the form $A^{\prime} X^{2}+C^{\prime} Y^{2}+D^{\prime} X+E^{\prime} Y+F=0$, or by completing the square (assuming $A^{\prime} C^{\prime} \neq 0$), $A^{\prime}\left(X^{\prime}\right)^{2}+C^{\prime}\left(Y^{\prime}\right)^{2}=F^{\prime}$, so that if $F^{\prime}=0$, the graph is either a pair of intersecting lines or a point, depending on the signs of A^{\prime} and C^{\prime}. If $F^{\prime} \neq 0$ and $A^{\prime} C^{\prime}>0$, then the graph is either an ellipse, a point, or nothing, and if $A^{\prime} C^{\prime}<0$, the graph is a hyperbola. If A^{\prime} or C^{\prime} is 0 , we cannot complete the square, so we get $A^{\prime}\left(X^{\prime}\right)^{2}+E^{\prime} Y+F=0$ or $C^{\prime}\left(Y^{\prime}\right)^{2}+D^{\prime} X+F^{\prime}=0$. This is a parabola, a straight line (if only the second-degree coefficient is nonzero), a pair of parallel lines (if the first-degree coefficient is zero and the other two have opposite signs), or an empty graph (if the first-degree coefficient is zero and the other two have the same sign).

