- For a review of reflecting and shifting graphs, see Section 1.2.

FIGURE I

EXAMPLE A Sketch the graph of the function $y=3-2^{x}$ and determine its domain and range.

SOLUTION First we reflect the graph of $y=2^{x}$ [shown in Figure 1(a)] about the x-axis to get the graph of $y=-2^{x}$ in Figure 1(b). Then we shift the graph of $y=-2^{x}$ upward 3 units to obtain the graph of $y=3-2^{x}$ in Figure 1(c). The domain is \mathbb{R} and the range is $(-\infty, 3)$.

(a) $y=2^{x}$

(b) $y=-2^{x}$

(c) $y=3-2^{x}$

V Play the Video \boldsymbol{V} EXAMPLE B Graph the function $y=\frac{1}{2} e^{-x}-1$ and state the domain and range.
SOLUTION We start with the graph of $y=e^{x}$ from Figure 2(a) and reflect about the y-axis to get the graph of $y=e^{-x}$ in Figure 2(b). (Notice that the graph crosses the y-axis with a slope of -1). Then we compress the graph vertically by a factor of 2 to obtain the graph of $y=\frac{1}{2} e^{-x}$ in Figure 2(c). Finally, we shift the graph downward one unit to get the desired graph in Figure 2(d). The domain is \mathbb{R} and the range is $(-1, \infty)$.

(a) $y=e^{x}$

(b) $y=e^{-x}$

(c) $y=\frac{1}{2} e^{-x}$

(d) $y=\frac{1}{2} e^{-x}-1$

FIGURE 2

