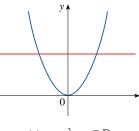
3.2 INVERSE FUNCTIONS AND LOGARITHMS

EXAMPLE A Although the function $y = x^2$, $x \in \mathbb{R}$, is not one-to-one and therefore does not have an inverse function, we can turn it into a one-to-one function by restricting its domain. For instance, the function $f(x) = x^2$, $0 \le x \le 2$, is one-to-one (by the Horizontal Line Test) and has domain [0, 2] and range [0, 4]. (See Figure 1.) Thus f has an inverse function f^{-1} with domain [0, 4] and range [0, 2].



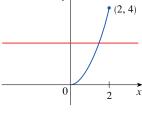


FIGURE I

(a) $y = x^2$, $x \in \mathbb{R}$

(b) $f(x) = x^2$, $0 \le x \le 2$

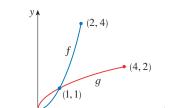


FIGURE 2

Without computing a formula for $(f^{-1})'$ we can still calculate $(f^{-1})'(1)$. Since f(1) = 1, we have $f^{-1}(1) = 1$. Also f'(x) = 2x. So by Theorem 7 we have

$$(f^{-1})'(1) = \frac{1}{f'(f^{-1}(1))} = \frac{1}{f'(1)} = \frac{1}{2}$$

In this case it is easy to find f^{-1} explicitly. In fact, $f^{-1}(x) = \sqrt{x}$, $0 \le x \le 4$. [In general, we could use the method given by (5).] Then $(f^{-1})'(x) = 1/(2\sqrt{x})$, so $(f^{-1})'(1) = \frac{1}{2}$, which agrees with the preceding computation. The functions f and f^{-1} are graphed in Figure 2.