5.2 THE DEFINITE INTEGRAL

- Because $f(x)=e^{x}$ is positive, the integral in Example A represents the area shown in Figure 1.

FIGURE I

- A computer algebra system is able to find an explicit expression for this sum because it is a geometric series. The limit could be found using l'Hospital's Rule.

EXAMPLE A

(a) Set up an expression for $\int_{1}^{3} e^{x} d x$ as a limit of sums.
(b) Use a computer algebra system to evaluate the expression.

SOLUTION

(a) Here we have $f(x)=e^{x}, a=1, b=3$, and

$$
\Delta x=\frac{b-a}{n}=\frac{2}{n}
$$

So $x_{0}=1, x_{1}=1+2 / n, x_{2}=1+4 / n, x_{3}=1+6 / n$, and

$$
x_{i}=1+\frac{2 i}{n}
$$

From Theorem 4, we get

$$
\begin{aligned}
\int_{1}^{3} e^{x} d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(1+\frac{2 i}{n}\right) \frac{2}{n} \\
& =\lim _{n \rightarrow \infty} \frac{2}{n} \sum_{i=1}^{n} e^{1+2 i / n}
\end{aligned}
$$

(b) If we ask a computer algebra system to evaluate the sum and simplify, we obtain

$$
\sum_{i=1}^{n} e^{1+2 i / n}=\frac{e^{(3 n+2) / n}-e^{(n+2) / n}}{e^{2 / n}-1}
$$

Now we ask the computer algebra system to evaluate the limit:

$$
\int_{1}^{3} e^{x} d x=\lim _{n \rightarrow \infty} \frac{2}{n} \cdot \frac{e^{(3 n+2) / n}-e^{(n+2) / n}}{e^{2 / n}-1}=e^{3}-e
$$

We will learn a much easier method for the evaluation of integrals in the next section.

