3.7 ANTIDERIVATIVES

FIGURE I

EXAMPLE A The graph of a function f is given in Figure 1. Make a rough sketch of an antiderivative F, given that $F(0)=2$.
SOLUTION We are guided by the fact that the slope of $y=F(x)$ is $f(x)$. We start at the point $(0,2)$ and draw F as an initially decreasing function since $f(x)$ is negative when $0<x<1$. Notice that $f(1)=f(3)=0$, so F has horizontal tangents when $x=1$ and $x=3$. For $1<x<3, f(x)$ is positive and so F is increasing. We see that F has a local minimum when $x=1$ and a local maximum when $x=3$. For $x>3$, $f(x)$ is negative and so F is decreasing on $(3, \infty)$. Since $f(x) \rightarrow 0$ as $x \rightarrow \infty$, the graph of F becomes flatter as $x \rightarrow \infty$. Also notice that $F^{\prime \prime}(x)=f^{\prime}(x)$ changes from positive to negative at $x=2$ and from negative to positive at $x=4$, so F has inflection points when $x=2$ and $x=4$. We use this information to sketch the graph of the antiderivative in Figure 2.

