3.7 ANTIDERIVATIVES

EXAMPLE A The graph of a function f is given in Figure 1. Make a rough sketch of an antiderivative F, given that F(0) = 2.

SOLUTION We are guided by the fact that the slope of y = F(x) is f(x). We start at the point (0, 2) and draw *F* as an initially decreasing function since f(x) is negative when 0 < x < 1. Notice that f(1) = f(3) = 0, so *F* has horizontal tangents when x = 1 and x = 3. For 1 < x < 3, f(x) is positive and so *F* is increasing. We see that *F* has a local minimum when x = 1 and a local maximum when x = 3. For x > 3, f(x) is negative and so *F* is decreasing on $(3, \infty)$. Since $f(x) \to 0$ as $x \to \infty$, the graph of *F* becomes flatter as $x \to \infty$. Also notice that F''(x) = f'(x) changes from positive to negative at x = 2 and from negative to positive at x = 4, so *F* has inflection points when x = 2 and x = 4. We use this information to sketch the graph of the antiderivative in Figure 2.

FIGURE 2