4.3 DISCOVERY PROJECT: AREA FUNCTIONS

This project can be completed anytime after you have studied Section 4.3 in the textbook.
I. (a) Draw the line $y=2 t+1$ and use geometry to find the area under this line, above the t-axis, and between the vertical lines $t=1$ and $t=3$.
(b) If $x>1$, let $A(x)$ be the area of the region that lies under the line $y=2 t+1$ between $t=1$ and $t=x$. Sketch this region and use geometry to find an expression for $A(x)$.
(c) Differentiate the area function $A(x)$. What do you notice?
2. (a) If $0 \leqslant x \leqslant \pi$, let $A(x)=\int_{0}^{x} \sin t d t$. $A(x)$ represents the area of a region. Sketch that region.
(b) Use the Evaluation Theorem to find an expression for $A(x)$.
(c) Find $A^{\prime}(x)$. What do you notice?
(d) If x is any number between 0 and π and h is a small positive number, then $A(x+h)-A(x)$ represents the area of a region. Describe and sketch the region.
(e) Draw a rectangle that approximates the region in part (d). By comparing the areas of these two regions, show that

$$
\frac{A(x+h)-A(x)}{h} \approx \sin x
$$

(f) Use part (e) to give an intuitive explanation for the result of part (c).3. (a) Draw the graph of the function $f(x)=\cos \left(x^{2}\right)$ in the viewing rectangle $[0,2]$ by $[-1.25,1.25]$.
(b) If we define a new function g by

$$
g(x)=\int_{0}^{x} \cos \left(t^{2}\right) d t
$$

then $g(x)$ is the area under the graph of f from 0 to x [until $f(x)$ becomes negative, at which point $g(x)$ becomes a difference of areas]. Use part (a) to determine the value of x at which $g(x)$ starts to decrease. [Unlike the integral in Problem 2, it is impossible to evaluate the integral defining g to obtain an explicit expression for $g(x)$.]
(c) Use the integration command on your calculator or computer to estimate $g(0.2), g(0.4)$, $g(0.6), \ldots, g(1.8), g(2)$. Then use these values to sketch a graph of g.
(d) Use your graph of g from part (c) to sketch the graph of g^{\prime} using the interpretation of $g^{\prime}(x)$ as the slope of a tangent line. How does the graph of g^{\prime} compare with the graph of f ?
4. Suppose f is a continuous function on the interval $[a, b]$ and we define a new function g by the equation

$$
g(x)=\int_{a}^{x} f(t) d t
$$

Based on your results in Problems 1-3, conjecture an expression for $g^{\prime}(x)$.

