5.6 APPLIED PROJECT: CAS WHERE TO SIT AT THE MOVIES

This project can be completed anytime after you have studied Section 5.6 in the textbook.

A movie theater has a screen that is positioned 10 ft off the floor and is 25 ft high. The first row of seats is placed 9 ft from the screen and the rows are set 3 ft apart. The floor of the seating area is inclined at an angle of $\alpha=20^{\circ}$ above the horizontal and the distance up the incline that you sit is x. The theater has 21 rows of seats, so $0 \leqslant x \leqslant 60$. Suppose you decide that the best place to sit is in the row where the angle θ subtended by the screen at your eyes is a maximum. Let's also suppose that your eyes are 4 ft above the floor, as shown in the figure.
I. Show that

$$
\theta=\arccos \left(\frac{a^{2}+b^{2}-625}{2 a b}\right)
$$

where

$$
\begin{aligned}
a^{2} & =(9+x \cos \alpha)^{2}+(31-x \sin \alpha)^{2} \\
b^{2} & =(9+x \cos \alpha)^{2}+(x \sin \alpha-6)^{2}
\end{aligned}
$$

2. Use a graph of θ as a function of x to estimate the value of x that maximizes θ. In which row should you sit? What is the viewing angle θ in this row?
3. Use your computer algebra system to differentiate θ and find a numerical value for the root of the equation $d \theta / d x=0$. Does this value confirm your result in Problem 2?
4. Use the graph of θ to estimate the average value of θ on the interval $0 \leqslant x \leqslant 60$. Then use your CAS to compute the average value. Compare with the maximum and minimum values of θ.
