This project can be completed anytime after you have studied Section 2.3 in the textbook.


Suppose you are asked to design the first ascent and drop for a new roller coaster. By studying photographs of your favorite coasters, you decide to make the slope of the ascent 0.8 and the slope of the drop -1.6 . You decide to connect these two straight stretches $y=L_{1}(x)$ and $y=L_{2}(x)$ with part of a parabola $y=f(x)=a x^{2}+b x+c$, where $x$ and $f(x)$ are measured in feet. For the track to be smooth there can't be abrupt changes in direction, so you want the linear segments $L_{1}$ and $L_{2}$ to be tangent to the parabola at the transition points $P$ and $Q$. (See the figure.) To simplify the equations you decide to place the origin at $P$.

1. (a) Suppose the horizontal distance between $P$ and $Q$ is 100 ft . Write equations in $a, b$, and $c$ that will ensure that the track is smooth at the transition points.
(b) Solve the equations in part (a) for $a, b$, and $c$ to find a formula for $f(x)$.
(c) Plot $L_{1}, f$, and $L_{2}$ to verify graphically that the transitions are smooth.
(d) Find the difference in elevation between $P$ and $Q$.
2. The solution in Problem 1 might look smooth, but it might not feel smooth because the piecewise defined function [consisting of $L_{1}(x)$ for $x<0, f(x)$ for $0 \leqslant x \leqslant 100$, and $L_{2}(x)$ for $x>100$ ] doesn't have a continuous second derivative. So you decide to improve the design by using a quadratic function $q(x)=a x^{2}+b x+c$ only on the interval $10 \leqslant x \leqslant 90$ and connecting it to the linear functions by means of two cubic functions:

$$
\begin{array}{lc}
g(x)=k x^{3}+l x^{2}+m x+n & 0 \leqslant x<10 \\
h(x)=p x^{3}+q x^{2}+r x+s & 90<x \leqslant 100
\end{array}
$$

(a) Write a system of equations in 11 unknowns that ensure that the functions and their first two derivatives agree at the transition points.
CAS
(b) Solve the equations in part (a) with a computer algebra system to find formulas for $q(x), g(x)$, and $h(x)$.
(c) Plot $L_{1}, g, q, h$, and $L_{2}$, and compare with the plot in Problem 1(c).

