2.8 LABORATORY PROJECT: TAYLOR POLYNOMIALS

This project can be completed anytime after you have studied Section 2.8 in the textbook.

The tangent line approximation $L(x)$ is the best first-degree (linear) approximation to $f(x)$ near $x=a$ because $f(x)$ and $L(x)$ have the same rate of change (derivative) at a. For a better approximation than a linear one, let's try a second-degree (quadratic) approximation $P(x)$. In other words, we approximate a curve by a parabola instead of by a straight line. To make sure that the approximation is a good one, we stipulate the following:
(i) $P(a)=f(a) \quad(P$ and f should have the same value at a.)
(ii) $P^{\prime}(a)=f^{\prime}(a) \quad(P$ and f should have the same rate of change at a.)
(iii) $P^{\prime \prime}(a)=f^{\prime \prime}(a) \quad$ (The slopes of P and f should change at the same rate at a.)
I. Find the quadratic approximation $P(x)=A+B x+C x^{2}$ to the function $f(x)=\cos x$ that satisfies conditions (i), (ii), and (iii) with $a=0$. Graph P, f, and the linear approximation $L(x)=1$ on a common screen. Comment on how well the functions P and L approximate f.
2. Determine the values of x for which the quadratic approximation $f(x)=P(x)$ in Problem 1 is accurate to within 0.1. [Hint: Graph $y=P(x), y=\cos x-0.1$, and $y=\cos x+0.1$ on a common screen.]
3. To approximate a function f by a quadratic function P near a number a, it is best to write P in the form

$$
P(x)=A+B(x-a)+C(x-a)^{2}
$$

Show that the quadratic function that satisfies conditions (i), (ii), and (iii) is

$$
P(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}
$$

4. Find the quadratic approximation to $f(x)=\sqrt{x+3}$ near $a=1$. Graph f, the quadratic approximation, and the linear approximation from Example 2 in Section 2.8 on a common screen. What do you conclude?
5. Instead of being satisfied with a linear or quadratic approximation to $f(x)$ near $x=a$, let's try to find better approximations with higher-degree polynomials. We look for an n th-degree polynomial

$$
T_{n}(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\cdots+c_{n}(x-a)^{n}
$$

such that T_{n} and its first n derivatives have the same values at $x=a$ as f and its first n derivatives. By differentiating repeatedly and setting $x=a$, show that these conditions are satisfied if $c_{0}=f(a), c_{1}=f^{\prime}(a), c_{2}=\frac{1}{2} f^{\prime \prime}(a)$, and in general

$$
c_{k}=\frac{f^{(k)}(a)}{k!}
$$

where $k!=1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots \cdot k$. The resulting polynomial

$$
T_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

is called the \boldsymbol{n} th-degree Taylor polynomial of \boldsymbol{f} centered at \boldsymbol{a}.
6. Find the 8th-degree Taylor polynomial centered at $a=0$ for the function $f(x)=\cos x$. Graph f together with the Taylor polynomials $T_{2}, T_{4}, T_{6}, T_{8}$ in the viewing rectangle $[-5,5]$ by $[-1.4,1.4]$ and comment on how well they approximate f.

