8.7 WRITING PROJECT: HOW NEWTON DISCOVERED THE BINOMIAL SERIES

This project can be completed anytime after you have studied Section 8.7 in the textbook.

The Binomial Theorem, which gives the expansion of $(a+b)^{k}$, was known to Chinese mathematicians many centuries before the time of Newton for the case where the exponent k is a positive integer. In 1665, when he was 22 , Newton was the first to discover the infinite series expansion of $(a+b)^{k}$ when k is a fractional exponent (positive or negative). He didn't publish his discovery, but he stated it and gave examples of how to use it in a letter (now called the epistola prior) dated June 13, 1676, that he sent to Henry Oldenburg, secretary of the Royal Society of London, to transmit to Leibniz. When Leibniz replied, he asked how Newton had discovered the binomial series. Newton wrote a second letter, the epistola posterior of October 24, 1676, in which he explained in great detail how he arrived at his discovery by a very indirect route. He was investigating the areas under the curves $y=\left(1-x^{2}\right)^{n / 2}$ from 0 to x for $n=0,1,2,3,4, \ldots$ These are easy to calculate if n is even. By observing patterns and interpolating, Newton was able to guess the answers for odd values of n. Then he realized he could get the same answers by expressing $\left(1-x^{2}\right)^{n / 2}$ as an infinite series.
Write a report on Newton's discovery of the binomial series. Start by giving the statement of the binomial series in Newton's notation (see the epistola prior on page 285 of [4] or page 402 of [2]). Explain why Newton's version is equivalent to Theorem 18 on page 465. Then read Newton's epistola posterior (page 287 in [4] or page 404 in [2]) and explain the patterns that Newton discovered in the areas under the curves $y=\left(1-x^{2}\right)^{n / 2}$. Show how he was able to guess the areas under the remaining curves and how he verified his answers. Finally, explain how these discoveries led to the binomial series. The books by Edwards [1] and Katz [3] contain commentaries on Newton's letters.
I. C. H. Edwards, The Historical Development of the Calculus (New York: Springer-Verlag, 1979), pp. 178-187.
2. John Fauvel and Jeremy Gray, eds., The History of Mathematics: A Reader (London: MacMillan Press, 1987).
3. Victor Katz, A History of Mathematics: An Introduction (New York: HarperCollins, 1993), pp. 463-466.
4. D. J. Struik, ed., A Sourcebook in Mathematics, 1200-1800 (Princeton, NJ: Princeton University Press, 1969).

