AREA OF A SURFACE OF REVOLUTION

FIGURE 1

FIGURE 2

FIGURE 3

A surface of revolution is formed when a curve is rotated about a line. Such a surface is the lateral boundary of a solid of revolution of the type discussed in Sections 7.2 and 7.3.

We want to define the area of a surface of revolution in such a way that it corresponds to our intuition. If the surface area is A, we can imagine that painting the surface would require the same amount of paint as does a flat region with area A.

Let's start with some simple surfaces. The lateral surface area of a circular cylinder with radius r and height h is taken to be $A=2 \pi r h$ because we can imagine cutting the cylinder and unrolling it (as in Figure 1) to obtain a rectangle with dimensions $2 \pi r$ and h.

Likewise, we can take a circular cone with base radius r and slant height l, cut it along the dashed line in Figure 2, and flatten it to form a sector of a circle with radius l and central angle $\theta=2 \pi r / l$. We know that, in general, the area of a sector of a circle with radius l and angle θ is $\frac{1}{2} l^{2} \theta$ (see Exercise 67 in Section 6.2) and so in this case it is

$$
A=\frac{1}{2} l^{2} \theta=\frac{1}{2} l^{2}\left(\frac{2 \pi r}{l}\right)=\pi r l
$$

Therefore, we define the lateral surface area of a cone to be $A=\pi r l$.

What about more complicated surfaces of revolution? If we follow the strategy we used with arc length, we can approximate the original curve by a polygon. When this polygon is rotated about an axis, it creates a simpler surface whose surface area approximates the actual surface area. By taking a limit, we can determine the exact surface area.

The approximating surface, then, consists of a number of bands, each formed by rotating a line segment about an axis. To find the surface area, each of these bands can be considered a portion of a circular cone, as shown in Figure 3. The area of the band (or frustum of a cone) with slant height l and upper and lower radii r_{1} and r_{2} is found by subtracting the areas of two cones:

$$
\begin{equation*}
A=\pi r_{2}\left(l_{1}+l\right)-\pi r_{1} l_{1}=\pi\left[\left(r_{2}-r_{1}\right) l_{1}+r_{2} l\right] \tag{1}
\end{equation*}
$$

From similar triangles we have

$$
\frac{l_{1}}{r_{1}}=\frac{l_{1}+l}{r_{2}}
$$

which gives

$$
r_{2} l_{1}=r_{1} l_{1}+r_{1} l \quad \text { or } \quad\left(r_{2}-r_{1}\right) l_{1}=r_{1} l
$$

Putting this in Equation 1, we get

$$
A=\pi\left(r_{1} l+r_{2} l\right)
$$

or

$$
A=2 \pi r l
$$

where $r=\frac{1}{2}\left(r_{1}+r_{2}\right)$ is the average radius of the band.

(a) Surface of revolution

(b) Approximating band

FIGURE 4

Now we apply this formula to our strategy. Consider the surface shown in Figure 4, which is obtained by rotating the curve $y=f(x), a \leqslant x \leqslant b$, about the x-axis, where f is positive and has a continuous derivative. In order to define its surface area, we divide the interval $[a, b]$ into n subintervals with endpoints $x_{0}, x_{1}, \ldots, x_{n}$ and equal width Δx, as we did in determining arc length. If $y_{i}=f\left(x_{i}\right)$, then the point $P_{i}\left(x_{i}, y_{i}\right)$ lies on the curve. The part of the surface between x_{i-1} and x_{i} is approximated by taking the line segment $P_{i-1} P_{i}$ and rotating it about the x-axis. The result is a band with slant height $l=\left|P_{i-1} P_{i}\right|$ and average radius $r=\frac{1}{2}\left(y_{i-1}+y_{i}\right)$ so, by Formula 2, its surface area is

$$
2 \pi \frac{y_{i-1}+y_{i}}{2}\left|P_{i-1} P_{i}\right|
$$

As in the proof of Theorem 7.4.2, we have

$$
\left|P_{i-1} P_{i}\right|=\sqrt{1+\left[f^{\prime}\left(x_{i}^{*}\right)\right]^{2}} \Delta x
$$

where x_{i}^{*} is some number in $\left[x_{i-1}, x_{i}\right]$. When Δx is small, we have $y_{i}=f\left(x_{i}\right) \approx f\left(x_{i}^{*}\right)$ and also $y_{i-1}=f\left(x_{i-1}\right) \approx f\left(x_{i}^{*}\right)$, since f is continuous. Therefore

$$
2 \pi \frac{y_{i-1}+y_{i}}{2}\left|P_{i-1} P_{i}\right| \approx 2 \pi f\left(x_{i}^{*}\right) \sqrt{1+\left[f^{\prime}\left(x_{i}^{*}\right)\right]^{2}} \Delta x
$$

and so an approximation to what we think of as the area of the complete surface of revolution is

$$
\begin{equation*}
\sum_{i=1}^{n} 2 \pi f\left(x_{i}^{*}\right) \sqrt{1+\left[f^{\prime}\left(x_{i}^{*}\right)\right]^{2}} \Delta x \tag{3}
\end{equation*}
$$

This approximation appears to become better as $n \rightarrow \infty$ and, recognizing (3) as a Riemann sum for the function $g(x)=2 \pi f(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}}$, we have

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} 2 \pi f\left(x_{i}^{*}\right) \sqrt{1+\left[f^{\prime}\left(x_{i}^{*}\right)\right]^{2}} \Delta x=\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

Therefore, in the case where f is positive and has a continuous derivative, we define the surface area of the surface obtained by rotating the curve $y=f(x), a \leqslant x \leqslant b$, about the x-axis as

$$
\begin{equation*}
S=\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x \tag{4}
\end{equation*}
$$

With the Leibniz notation for derivatives, this formula becomes

$$
\begin{equation*}
S=\int_{a}^{b} 2 \pi y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \tag{5}
\end{equation*}
$$

If the curve is described as $x=g(y), c \leqslant y \leqslant d$, then the formula for surface area becomes

$$
\begin{equation*}
S=\int_{c}^{d} 2 \pi y \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y \tag{6}
\end{equation*}
$$

and both Formulas 5 and 6 can be summarized symbolically, using the notation for arc
length given in Section 7.4, as

7

$$
S=\int 2 \pi y d s
$$

For rotation about the y-axis, the surface area formula becomes

8

$$
S=\int 2 \pi x d s
$$

where, as before, we can use either

$$
d s=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \quad \text { or } \quad d s=\sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y
$$

These formulas can be remembered by thinking of $2 \pi y$ or $2 \pi x$ as the circumference of a circle traced out by the point (x, y) on the curve as it is rotated about the x-axis or y-axis, respectively (see Figure 5).

(a) Rotation about x-axis: $S=\int 2 \pi y d s$

(b) Rotation about y-axis: $S=\int 2 \pi x d s$

EXAMPLE 1 The curve $y=\sqrt{4-x^{2}},-1 \leqslant x \leqslant 1$, is an arc of the circle $x^{2}+y^{2}=4$. Find the area of the surface obtained by rotating this arc about the x-axis. (The surface is a portion of a sphere of radius 2. See Figure 6.)

SOLUTION We have

FIGURE 6

- - Figure 6 shows the portion of the sphere

$$
\frac{d y}{d x}=\frac{1}{2}\left(4-x^{2}\right)^{-1 / 2}(-2 x)=\frac{-x}{\sqrt{4-x^{2}}}
$$

and so, by Formula 5, the surface area is

$$
\begin{aligned}
S & =\int_{-1}^{1} 2 \pi y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \\
& =2 \pi \int_{-1}^{1} \sqrt{4-x^{2}} \sqrt{1+\frac{x^{2}}{4-x^{2}}} d x \\
& =2 \pi \int_{-1}^{1} \sqrt{4-x^{2}} \frac{2}{\sqrt{4-x^{2}}} d x \\
& =4 \pi \int_{-1}^{1} 1 d x=4 \pi(2)=8 \pi
\end{aligned}
$$

- - Figure 7 shows the surface of revolution whose area is computed in Example 2.

FIGURE 7

- - As a check on our answer to Example 2, notice from Figure 7 that the surface area should be close to that of a circular cylinder with the same height and radius halfway between the upper and lower radius of the surface: $2 \pi(1.5)(3) \approx 28.27$. We computed that the surface area was

$$
\frac{\pi}{6}(17 \sqrt{17}-5 \sqrt{5}) \approx 30.85
$$

which seems reasonable. Alternatively, the surface area should be slightly larger than the area of a frustum of a cone with the same top and bottom edges. From Equation 2, this is $2 \pi(1.5)(\sqrt{10}) \approx 29.80$.

$$
\begin{aligned}
S & =\int 2 \pi x d s=\int_{1}^{4} 2 \pi x \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y \\
& =2 \pi \int_{1}^{4} \sqrt{y} \sqrt{1+\frac{1}{4 y}} d y=\pi \int_{1}^{4} \sqrt{4 y+1} d y \\
& \left.=\frac{\pi}{4} \int_{5}^{17} \sqrt{u} d u \quad \quad \text { (where } u=1+4 y\right) \\
& =\frac{\pi}{6}(17 \sqrt{17}-5 \sqrt{5}) \quad \text { (as in Solution 1) }
\end{aligned}
$$

EXAMPLE 3 Find the area of the surface generated by rotating the curve $y=e^{x}$, $0 \leqslant x \leqslant 1$, about the x-axis.

- - Another method: Use Formula 6 with $x=\ln y$.

SOLUTION Using Formula 5 with

$$
y=e^{x} \quad \text { and } \quad \frac{d y}{d x}=e^{x}
$$

we have

$$
\begin{aligned}
S & =\int_{0}^{1} 2 \pi y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=2 \pi \int_{0}^{1} e^{x} \sqrt{1+e^{2 x}} d x \\
& =2 \pi \int_{1}^{e} \sqrt{1+u^{2}} d u \quad \quad\left(\text { where } u=e^{x}\right) \\
& =2 \pi \int_{\pi / 4}^{\alpha} \sec ^{3} \theta d \theta \quad \quad\left(\text { where } u=\tan \theta \text { and } \alpha=\tan ^{-1} e\right) \\
& =2 \pi \cdot \frac{1}{2}[\sec \theta \tan \theta+\ln |\sec \theta+\tan \theta|]_{\pi / 4}^{\alpha} \quad(\text { by Example } 8 \text { in Section 6.2) } \\
& =\pi[\sec \alpha \tan \alpha+\ln (\sec \alpha+\tan \alpha)-\sqrt{2}-\ln (\sqrt{2}+1)]
\end{aligned}
$$

Since $\tan \alpha=e$, we have $\sec ^{2} \alpha=1+\tan ^{2} \alpha=1+e^{2}$ and

$$
S=\pi\left[e \sqrt{1+e^{2}}+\ln \left(e+\sqrt{1+e^{2}}\right)-\sqrt{2}-\ln (\sqrt{2}+1)\right]
$$

EXERCISES

(A) Click here for answers.

(5) Click here for solutions.

1-4 \square Set up, but do not evaluate, an integral for the area of the surface obtained by rotating the curve about the given axis.

1. $y=\ln x, 1 \leqslant x \leqslant 3 ; \quad x$-axis
2. $y=\sin ^{2} x, 0 \leqslant x \leqslant \pi / 2 ; \quad x$-axis
3. $y=\sec x, 0 \leqslant x \leqslant \pi / 4 ; \quad y$-axis
4. $y=e^{x}, 1 \leqslant y \leqslant 2 ; \quad y$-axis

5-12■ Find the area of the surface obtained by rotating the curve about the x-axis.
5. $y=x^{3}, \quad 0 \leqslant x \leqslant 2$
6. $9 x=y^{2}+18, \quad 2 \leqslant x \leqslant 6$
7. $y=\sqrt{x}, \quad 4 \leqslant x \leqslant 9$
8. $y=\cos 2 x, \quad 0 \leqslant x \leqslant \pi / 6$
9. $y=\cosh x, \quad 0 \leqslant x \leqslant 1$
10. $y=\frac{x^{3}}{6}+\frac{1}{2 x}, \quad \frac{1}{2} \leqslant x \leqslant 1$
11. $x=\frac{1}{3}\left(y^{2}+2\right)^{3 / 2}, \quad 1 \leqslant y \leqslant 2$
12. $x=1+2 y^{2}, \quad 1 \leqslant y \leqslant 2$

13-16 \square The given curve is rotated about the y-axis. Find the area of the resulting surface.
13. $y=\sqrt[3]{x}, \quad 1 \leqslant y \leqslant 2$
14. $y=1-x^{2}, \quad 0 \leqslant x \leqslant 1$
15. $x=\sqrt{a^{2}-y^{2}}, \quad 0 \leqslant y \leqslant a / 2$
16. $x=a \cosh (y / a), \quad-a \leqslant y \leqslant a$

17-20 ■ Use Simpson's Rule with $n=10$ to approximate the area of the surface obtained by rotating the curve about the x-axis. Compare your answer with the value of the integral produced by your calculator.
17. $y=\ln x, \quad 1 \leqslant x \leqslant 3$
18. $y=x+\sqrt{x}, \quad 1 \leqslant x \leqslant 2$
19. $y=\sec x, \quad 0 \leqslant x \leqslant \pi / 3$
20. $y=\sqrt{1+e^{x}}, \quad 0 \leqslant x \leqslant 1$
(CAS 21-22 ■ Use either a CAS or a table of integrals to find the exact area of the surface obtained by rotating the given curve about the x-axis.
21. $y=1 / x, \quad 1 \leqslant x \leqslant 2$
22. $y=\sqrt{x^{2}+1}, \quad 0 \leqslant x \leqslant 3$
(CAS 23-24 ■ Use a CAS to find the exact area of the surface obtained by rotating the curve about the y-axis. If your CAS has trouble evaluating the integral, express the surface area as an integral in the other variable.
23. $y=x^{3}, \quad 0 \leqslant y \leqslant 1$
24. $y=\ln (x+1), \quad 0 \leqslant x \leqslant 1$
25. (a) If $a>0$, find the area of the surface generated by rotating the loop of the curve $3 a y^{2}=x(a-x)^{2}$ about the x-axis.
(b) Find the surface area if the loop is rotated about the y-axis.
26. A group of engineers is building a parabolic satellite dish whose shape will be formed by rotating the curve $y=a x^{2}$ about the y-axis. If the dish is to have a 10 - ft diameter and a maximum depth of 2 ft , find the value of a and the surface area of the dish.
27. The ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad a>b
$$

is rotated about the x-axis to form a surface called an ellipsoid. Find the surface area of this ellipsoid.
28. Find the surface area of the torus in Exercise 41 in Section 7.2.
29. If the curve $y=f(x), a \leqslant x \leqslant b$, is rotated about the horizontal line $y=c$, where $f(x) \leqslant c$, find a formula for the area of the resulting surface.
[CAS 30. Use the result of Exercise 29 to set up an integral to find the area of the surface generated by rotating the curve $y=\sqrt{x}$, $0 \leqslant x \leqslant 4$, about the line $y=4$. Then use a CAS to evaluate the integral.
31. Find the area of the surface obtained by rotating the circle $x^{2}+y^{2}=r^{2}$ about the line $y=r$.
32. Show that the surface area of a zone of a sphere that lies between two parallel planes is $S=\pi d h$, where d is the diameter of the sphere and h is the distance between the planes. (Notice that S depends only on the distance between the planes and not on their location, provided that both planes intersect the sphere.)
33. Formula 4 is valid only when $f(x) \geqslant 0$. Show that when $f(x)$ is not necessarily positive, the formula for surface area becomes

$$
S=\int_{a}^{b} 2 \pi|f(x)| \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

34. Let L be the length of the curve $y=f(x), a \leqslant x \leqslant b$, where f is positive and has a continuous derivative. Let S_{f} be the surface area generated by rotating the curve about the x-axis. If c is a positive constant, define $g(x)=f(x)+c$ and let S_{g} be the corresponding surface area generated by the curve $y=g(x)$, $a \leqslant x \leqslant b$. Express S_{g} in terms of S_{f} and L.

ANSWERS

S Click here for solutions.

1. $\int_{1}^{3} 2 \pi \ln x \sqrt{1+(1 / x)^{2}} d x$
2. $\int_{0}^{\pi / 4} 2 \pi x \sqrt{1+(\sec x \tan x)^{2}} d x$
3. $\pi(145 \sqrt{145}-1) / 27$
4. $\pi(37 \sqrt{37}-17 \sqrt{17}) / 6$
5. $\pi\left[1+\frac{1}{4}\left(e^{2}-e^{-2}\right)\right]$
6. $21 \pi / 2$
7. $\pi(145 \sqrt{145}-10 \sqrt{10}) / 27$
8. πa^{2}
9. 9.023754
10. 13.527296
11. $(\pi / 4)[4 \ln (\sqrt{17}+4)-4 \ln (\sqrt{2}+1)-\sqrt{17}+4 \sqrt{2}]$
12. $(\pi / 6)[\ln (\sqrt{10}+3)+3 \sqrt{10}]$
13. (a) $\pi a^{2} / 3$
(b) $56 \pi \sqrt{3} a^{2} / 45$
14. $2 \pi\left[b^{2}+a^{2} b \sin ^{-1}\left(\sqrt{a^{2}-b^{2}} / a\right) / \sqrt{a^{2}-b^{2}}\right]$
15. $\int_{a}^{b} 2 \pi[c-f(x)] \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x$
16. $4 \pi^{2} r^{2}$

SOLUTIONS

1. $y=\ln x \quad \Rightarrow \quad d s=\sqrt{1+(d y / d x)^{2}} d x=\sqrt{1+(1 / x)^{2}} d x \quad \Rightarrow \quad S=\int_{1}^{3} 2 \pi(\ln x) \sqrt{1+(1 / x)^{2}} d x \quad[\mathrm{by}$ (7)]
2. $y=\sec x \quad \Rightarrow \quad d s=\sqrt{1+(d y / d x)^{2}} d x=\sqrt{1+(\sec x \tan x)^{2}} d x \quad \Rightarrow$

$$
S=\int_{0}^{\pi / 4} 2 \pi x \sqrt{1+(\sec x \tan x)^{2}} d x \quad[\mathrm{by}(8)]
$$

5. $y=x^{3} \quad \Rightarrow \quad y^{\prime}=3 x^{2}$. So

$$
\begin{aligned}
S & =\int_{0}^{2} 2 \pi y \sqrt{1+\left(y^{\prime}\right)^{2}} d x=2 \pi \int_{0}^{2} x^{3} \sqrt{1+9 x^{4}} d x \quad\left[u=1+9 x^{4}, d u=36 x^{3} d x\right] \\
& =\frac{2 \pi}{36} \int_{1}^{145} \sqrt{u} d u=\frac{\pi}{18}\left[\frac{2}{3} u^{3 / 2}\right]_{1}^{145}=\frac{\pi}{27}(145 \sqrt{145}-1)
\end{aligned}
$$

7. $y=\sqrt{x} \Rightarrow 1+(d y / d x)^{2}=1+[1 /(2 \sqrt{x})]^{2}=1+1 /(4 x)$. So

$$
\begin{aligned}
S & =\int_{4}^{9} 2 \pi y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{4}^{9} 2 \pi \sqrt{x} \sqrt{1+\frac{1}{4 x}} d x=2 \pi \int_{4}^{9} \sqrt{x+\frac{1}{4}} d x \\
& =2 \pi\left[\frac{2}{3}\left(x+\frac{1}{4}\right)^{3 / 2}\right]_{4}^{9}=\frac{4 \pi}{3}\left[\frac{1}{8}(4 x+1)^{3 / 2}\right]_{4}^{9}=\frac{\pi}{6}(37 \sqrt{37}-17 \sqrt{17})
\end{aligned}
$$

9. $y=\cosh x \quad \Rightarrow \quad 1+(d y / d x)^{2}=1+\sinh ^{2} x=\cosh ^{2} x$. So

$$
\begin{aligned}
S & =2 \pi \int_{0}^{1} \cosh x \cosh x d x=2 \pi \int_{0}^{1} \frac{1}{2}(1+\cosh 2 x) d x=\pi\left[x+\frac{1}{2} \sinh 2 x\right]_{0}^{1} \\
& =\pi\left(1+\frac{1}{2} \sinh 2\right) \quad \text { or } \quad \pi\left[1+\frac{1}{4}\left(e^{2}-e^{-2}\right)\right]
\end{aligned}
$$

11. $x=\frac{1}{3}\left(y^{2}+2\right)^{3 / 2} \Rightarrow d x / d y=\frac{1}{2}\left(y^{2}+2\right)^{1 / 2}(2 y)=y \sqrt{y^{2}+2} \Rightarrow$
$1+(d x / d y)^{2}=1+y^{2}\left(y^{2}+2\right)=\left(y^{2}+1\right)^{2}$. So

$$
S=2 \pi \int_{1}^{2} y\left(y^{2}+1\right) d y=2 \pi\left[\frac{1}{4} y^{4}+\frac{1}{2} y^{2}\right]_{1}^{2}=2 \pi\left(4+2-\frac{1}{4}-\frac{1}{2}\right)=\frac{21 \pi}{2}
$$

13. $y=\sqrt[3]{x} \Rightarrow x=y^{3} \Rightarrow 1+(d x / d y)^{2}=1+9 y^{4}$. So

$$
\begin{aligned}
S & =2 \pi \int_{1}^{2} x \sqrt{1+(d x / d y)^{2}} d y=2 \pi \int_{1}^{2} y^{3} \sqrt{1+9 y^{4}} d y=\frac{2 \pi}{36} \int_{1}^{2} \sqrt{1+9 y^{4}} 36 y^{3} d y \\
& =\frac{\pi}{18}\left[\frac{2}{3}\left(1+9 y^{4}\right)^{3 / 2}\right]_{1}^{2}=\frac{\pi}{27}(145 \sqrt{145}-10 \sqrt{10})
\end{aligned}
$$

15. $x=\sqrt{a^{2}-y^{2}} \Rightarrow d x / d y=\frac{1}{2}\left(a^{2}-y^{2}\right)^{-1 / 2}(-2 y)=-y / \sqrt{a^{2}-y^{2}} \Rightarrow$
$1+(d x / d y)^{2}=1+\frac{y^{2}}{a^{2}-y^{2}}=\frac{a^{2}-y^{2}}{a^{2}-y^{2}}+\frac{y^{2}}{a^{2}-y^{2}}=\frac{a^{2}}{a^{2}-y^{2}} \quad \Rightarrow$
$S=\int_{0}^{a / 2} 2 \pi \sqrt{a^{2}-y^{2}} \frac{a}{\sqrt{a^{2}-y^{2}}} d y=2 \pi \int_{0}^{a / 2} a d y=2 \pi a[y]_{0}^{a / 2}=2 \pi a\left(\frac{a}{2}-0\right)=\pi a^{2}$. Note that this is
$\frac{1}{4}$ the surface area of a sphere of radius a, and the length of the interval $y=0$ to $y=a / 2$ is $\frac{1}{4}$ the length of the interval $y=-a$ to $y=a$.
16. $y=\ln x \Rightarrow d y / d x=1 / x \Rightarrow 1+(d y / d x)^{2}=1+1 / x^{2} \Rightarrow S=\int_{1}^{3} 2 \pi \ln x \sqrt{1+1 / x^{2}} d x$.

Let $f(x)=\ln x \sqrt{1+1 / x^{2}}$. Since $n=10, \Delta x=\frac{3-1}{10}=\frac{1}{5}$. Then
$S \approx S_{10}=2 \pi \cdot \frac{1 / 5}{3}[f(1)+4 f(1.2)+2 f(1.4)+\cdots+2 f(2.6)+4 f(2.8)+f(3)] \approx 9.023754$.
The value of the integral produced by a calculator is 9.024262 (to six decimal places).
19. $y=\sec x \Rightarrow d y / d x=\sec x \tan x \quad \Rightarrow \quad 1+(d y / d x)^{2}=1+\sec ^{2} x \tan ^{2} x \Rightarrow$
$S=\int_{0}^{\pi / 3} 2 \pi \sec x \sqrt{1+\sec ^{2} x \tan ^{2} x} d x$. Let $f(x)=\sec x \sqrt{1+\sec ^{2} x \tan ^{2} x}$.
Since $n=10, \Delta x=\frac{\pi / 3-0}{10}=\frac{\pi}{30}$. Then
$S \approx S_{10}=2 \pi \cdot \frac{\pi / 30}{3}\left[f(0)+4 f\left(\frac{\pi}{30}\right)+2 f\left(\frac{2 \pi}{30}\right)+\cdots+2 f\left(\frac{8 \pi}{30}\right)+4 f\left(\frac{9 \pi}{30}\right)+f\left(\frac{\pi}{3}\right)\right] \approx 13.527296$.
The value of the integral produced by a calculator is 13.516987 (to six decimal places).
21. $y=1 / x \quad \Rightarrow \quad d s=\sqrt{1+(d y / d x)^{2}} d x=\sqrt{1+\left(-1 / x^{2}\right)^{2}} d x=\sqrt{1+1 / x^{4}} d x \quad \Rightarrow$

$$
\begin{aligned}
S & =\int_{1}^{2} 2 \pi \cdot \frac{1}{x} \sqrt{1+\frac{1}{x^{4}}} d x=2 \pi \int_{1}^{2} \frac{\sqrt{x^{4}+1}}{x^{3}} d x=2 \pi \int_{1}^{4} \frac{\sqrt{u^{2}+1}}{u^{2}}\left(\frac{1}{2} d u\right) \quad\left[u=x^{2}, d u=2 x d x\right] \\
& =\pi \int_{1}^{4} \frac{\sqrt{1+u^{2}}}{u^{2}} d u \stackrel{24}{=} \pi\left[-\frac{\sqrt{1+u^{2}}}{u}+\ln \left(u+\sqrt{1+u^{2}}\right)\right]_{1}^{4} \\
& =\pi\left[-\frac{\sqrt{17}}{4}+\ln (4+\sqrt{17})+\frac{\sqrt{2}}{1}-\ln (1+\sqrt{2})\right]=\pi\left[\sqrt{2}-\frac{\sqrt{17}}{4}+\ln \left(\frac{4+\sqrt{17}}{1+\sqrt{2}}\right)\right]
\end{aligned}
$$

23. $y=x^{3}$ and $0 \leq y \leq 1 \Rightarrow y^{\prime}=3 x^{2}$ and $0 \leq x \leq 1$.

$$
\begin{aligned}
S & =\int_{0}^{1} 2 \pi x \sqrt{1+\left(3 x^{2}\right)^{2}} d x=2 \pi \int_{0}^{3} \sqrt{1+u^{2}} \frac{1}{6} d u \quad\left[u=3 x^{2}, d u=6 x d x\right] \\
& =\frac{\pi}{3} \int_{0}^{3} \sqrt{1+u^{2}} d u \stackrel{21}{=} \quad[\text { or use CAS }] \quad \frac{\pi}{3}\left[\frac{1}{2} u \sqrt{1+u^{2}}+\frac{1}{2} \ln \left(u+\sqrt{1+u^{2}}\right)\right]_{0}^{3} \\
& =\frac{\pi}{3}\left[\frac{3}{2} \sqrt{10}+\frac{1}{2} \ln (3+\sqrt{10})\right]=\frac{\pi}{6}[3 \sqrt{10}+\ln (3+\sqrt{10})]
\end{aligned}
$$

25. Since $a>0$, the curve $3 a y^{2}=x(a-x)^{2}$ only has points with $x \geq 0 .\left(3 a y^{2} \geq 0 \Rightarrow x(a-x)^{2} \geq 0 \Rightarrow x \geq 0\right.$.) The curve is symmetric about the x-axis (since the equation is unchanged when y is replaced by $-y$). $y=0$ when $x=0$ or a,
 so the curve's loop extends from $x=0$ to $x=a$.
$\frac{d}{d x}\left(3 a y^{2}\right)=\frac{d}{d x}\left[x(a-x)^{2}\right] \Rightarrow 6 a y \frac{d y}{d x}=x \cdot 2(a-x)(-1)+(a-x)^{2} \Rightarrow \frac{d y}{d x}=\frac{(a-x)[-2 x+a-x]}{6 a y}$
$\Rightarrow \quad\left(\frac{d y}{d x}\right)^{2}=\frac{(a-x)^{2}(a-3 x)^{2}}{36 a^{2} y^{2}}=\frac{(a-x)^{2}(a-3 x)^{2}}{36 a^{2}} \cdot \frac{3 a}{x(a-x)^{2}} \quad\left[\begin{array}{c}\text { the last fraction } \\ \text { is } 1 / y^{2}\end{array}\right]=\frac{(a-3 x)^{2}}{12 a x} \Rightarrow$

$$
\begin{aligned}
& 1+\left(\frac{d y}{d x}\right)^{2}=1+\frac{a^{2}-6 a x+9 x^{2}}{12 a x}=\frac{12 a x}{12 a x}+\frac{a^{2}-6 a x+9 x^{2}}{12 a x}=\frac{a^{2}+6 a x+9 x^{2}}{12 a x}=\frac{(a+3 x)^{2}}{12 a x} \text { for } x \neq 0 . \\
& \text { (a) } S=\int_{x=0}^{a} 2 \pi y d s=2 \pi \int_{0}^{a} \frac{\sqrt{x}(a-x)}{\sqrt{3 a}} \cdot \frac{a+3 x}{\sqrt{12 a x}} d x=2 \pi \int_{0}^{a} \frac{(a-x)(a+3 x)}{6 a} d x \\
& \quad=\frac{\pi}{3 a} \int_{0}^{a}\left(a^{2}+2 a x-3 x^{2}\right) d x=\frac{\pi}{3 a}\left[a^{2} x+a x^{2}-x^{3}\right]_{0}^{a}=\frac{\pi}{3 a}\left(a^{3}+a^{3}-a^{3}\right)=\frac{\pi}{3 a} \cdot a^{3}=\frac{\pi a^{2}}{3} .
\end{aligned}
$$

Note that we have rotated the top half of the loop about the x-axis. This generates the full surface.
(b) We must rotate the full loop about the y-axis, so we get double the area obtained by rotating the top half of the loop:

$$
\begin{aligned}
S & =2 \cdot 2 \pi \int_{x=0}^{a} x d s=4 \pi \int_{0}^{a} x \frac{a+3 x}{\sqrt{12 a x}} d x=\frac{4 \pi}{2 \sqrt{3 a}} \int_{0}^{a} x^{1 / 2}(a+3 x) d x \\
& =\frac{2 \pi}{\sqrt{3 a}} \int_{0}^{a}\left(a x^{1 / 2}+3 x^{3 / 2}\right) d x=\frac{2 \pi}{\sqrt{3 a}}\left[\frac{2}{3} a x^{3 / 2}+\frac{6}{5} x^{5 / 2}\right]_{0}^{a}=\frac{2 \pi \sqrt{3}}{3 \sqrt{a}}\left(\frac{2}{3} a^{5 / 2}+\frac{6}{5} a^{5 / 2}\right) \\
& =\frac{2 \pi \sqrt{3}}{3}\left(\frac{2}{3}+\frac{6}{5}\right) a^{2}=\frac{2 \pi \sqrt{3}}{3}\left(\frac{28}{15}\right) a^{2}=\frac{56 \pi \sqrt{3} a^{2}}{45}
\end{aligned}
$$

27. $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \Rightarrow \frac{y(d y / d x)}{b^{2}}=-\frac{x}{a^{2}} \Rightarrow \frac{d y}{d x}=-\frac{b^{2} x}{a^{2} y} \Rightarrow$

$$
\begin{aligned}
1+\left(\frac{d y}{d x}\right)^{2} & =1+\frac{b^{4} x^{2}}{a^{4} y^{2}}=\frac{b^{4} x^{2}+a^{4} y^{2}}{a^{4} y^{2}}=\frac{b^{4} x^{2}+a^{4} b^{2}\left(1-x^{2} / a^{2}\right)}{a^{4} b^{2}\left(1-x^{2} / a^{2}\right)}=\frac{a^{4} b^{2}+b^{4} x^{2}-a^{2} b^{2} x^{2}}{a^{4} b^{2}-a^{2} b^{2} x^{2}} \\
& =\frac{a^{4}+b^{2} x^{2}-a^{2} x^{2}}{a^{4}-a^{2} x^{2}}=\frac{a^{4}-\left(a^{2}-b^{2}\right) x^{2}}{a^{2}\left(a^{2}-x^{2}\right)}
\end{aligned}
$$

The ellipsoid's surface area is twice the area generated by rotating the first quadrant portion of the ellipse about the x-axis. Thus,

$$
\begin{aligned}
S & =2 \int_{0}^{a} 2 \pi y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=4 \pi \int_{0}^{a} \frac{b}{a} \sqrt{a^{2}-x^{2}} \frac{\sqrt{a^{4}-\left(a^{2}-b^{2}\right) x^{2}}}{a \sqrt{a^{2}-x^{2}}} d x \\
& =\frac{4 \pi b}{a^{2}} \int_{0}^{a} \sqrt{a^{4}-\left(a^{2}-b^{2}\right) x^{2}} d x=\frac{4 \pi b}{a^{2}} \int_{0}^{a \sqrt{a^{2}-b^{2}}} \sqrt{a^{4}-u^{2}} \frac{d u}{\sqrt{a^{2}-b^{2}}} \quad\left[u=\sqrt{a^{2}-b^{2}} x\right] \\
& \stackrel{30}{=} \frac{4 \pi b}{a^{2} \sqrt{a^{2}-b^{2}}}\left[\frac{u}{2} \sqrt{a^{4}-u^{2}}+\frac{a^{4}}{2} \sin ^{-1} \frac{u}{a^{2}}\right]_{0}^{a \sqrt{a^{2}-b^{2}}} \\
& =\frac{4 \pi b}{a^{2} \sqrt{a^{2}-b^{2}}}\left[\frac{a \sqrt{a^{2}-b^{2}}}{2} \sqrt{a^{4}-a^{2}\left(a^{2}-b^{2}\right)}+\frac{a^{4}}{2} \sin ^{-1} \frac{\sqrt{a^{2}-b^{2}}}{a}\right]=2 \pi\left[b^{2}+\frac{a^{2} b \sin ^{-1} \frac{\sqrt{a^{2}-b^{2}}}{a}}{\sqrt{a^{2}-b^{2}}}\right]
\end{aligned}
$$

29. The analogue of $f\left(x_{i}^{*}\right)$ in the derivation of (4) is now $c-f\left(x_{i}^{*}\right)$, so

$$
S=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} 2 \pi\left[c-f\left(x_{i}^{*}\right)\right] \sqrt{1+\left[f^{\prime}\left(x_{i}^{*}\right)\right]^{2}} \Delta x=\int_{a}^{b} 2 \pi[c-f(x)] \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x .
$$

31. For the upper semicircle, $f(x)=\sqrt{r^{2}-x^{2}}, f^{\prime}(x)=-x / \sqrt{r^{2}-x^{2}}$. The surface area generated is

$$
\begin{aligned}
S_{1} & =\int_{-r}^{r} 2 \pi\left(r-\sqrt{r^{2}-x^{2}}\right) \sqrt{1+\frac{x^{2}}{r^{2}-x^{2}}} d x=4 \pi \int_{0}^{r}\left(r-\sqrt{r^{2}-x^{2}}\right) \frac{r}{\sqrt{r^{2}-x^{2}}} d x \\
& =4 \pi \int_{0}^{r}\left(\frac{r^{2}}{\sqrt{r^{2}-x^{2}}}-r\right) d x
\end{aligned}
$$

For the lower semicircle, $f(x)=-\sqrt{r^{2}-x^{2}}$ and $f^{\prime}(x)=\frac{x}{\sqrt{r^{2}-x^{2}}}$, so $S_{2}=4 \pi \int_{0}^{r}\left(\frac{r^{2}}{\sqrt{r^{2}-x^{2}}}+r\right) d x$. Thus, the total area is $S=S_{1}+S_{2}=8 \pi \int_{0}^{r}\left(\frac{r^{2}}{\sqrt{r^{2}-x^{2}}}\right) d x=8 \pi\left[r^{2} \sin ^{-1}\left(\frac{x}{r}\right)\right]_{0}^{r}=8 \pi r^{2}\left(\frac{\pi}{2}\right)=4 \pi^{2} r^{2}$.
33. In the derivation of (4), we computed a typical contribution to the surface area to be $2 \pi \frac{y_{i-1}+y_{i}}{2}\left|P_{i-1} P_{i}\right|$, the area of a frustum of a cone. When $f(x)$ is not necessarily positive, the approximations $y_{i}=f\left(x_{i}\right) \approx f\left(x_{i}^{*}\right)$ and $y_{i-1}=f\left(x_{i-1}\right) \approx f\left(x_{i}^{*}\right)$ must be replaced by $y_{i}=\left|f\left(x_{i}\right)\right| \approx\left|f\left(x_{i}^{*}\right)\right|$ and $y_{i-1}=\left|f\left(x_{i-1}\right)\right| \approx\left|f\left(x_{i}^{*}\right)\right|$. Thus, $2 \pi \frac{y_{i-1}+y_{i}}{2}\left|P_{i-1} P_{i}\right| \approx 2 \pi\left|f\left(x_{i}^{*}\right)\right| \sqrt{1+\left[f^{\prime}\left(x_{i}^{*}\right)\right]^{2}} \Delta x$. Continuing with the rest of the derivation as before, we obtain $S=\int_{a}^{b} 2 \pi|f(x)| \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x$.

