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Often a graph is the best 
way to represent a function 
because it conveys so much 

information at a glance. 
Shown is a graph of the 

vertical ground acceleration 
created by the 2011 

earthquake near Tohoku, 
Japan. The earthquake 

had a magnitude of 9.0 on 
the Richter scale and was 

so powerful that it moved 
northern Japan 8 feet closer 

to North America.

Functions and Models

The fundamental objects that we deal with in calculus are functions. This chapter pre­
pares the way for calculus by discussing the basic ideas concerning functions, their graphs, 
and ways of transforming and combining them. We stress that a function can be represented in 
different ways: by an equation, in a table, by a graph, or in words. We look at the main types of 
functions that occur in calculus and describe the process of using these functions as mathematical 
models of real-world phenomena.
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10	 Chapter 1    Functions and Models

Functions arise whenever one quantity depends on another. Consider the following four 
situations.

A.	� The area A of a circle depends on the radius r of the circle. The rule that connects r 
and A is given by the equation A − �r 2. With each positive number r there is associ­
ated one value of A, and we say that A is a function of r.

B.	� The human population of the world P depends on the time t. The table gives esti­
mates of the world population Pstd at time t, for certain years. For instance,

Ps1950d < 2,560,000,000

But for each value of the time t there is a corresponding value of P, and we say that 
P is a function of t.

C.	� The cost C of mailing an envelope depends on its weight w. Although there is no 
simple formula that connects w and C, the post office has a rule for determining C 
when w is known.

D.	� The vertical acceleration a of the ground as measured by a seismograph during an 
earthquake is a function of the elapsed time t. Figure 1 shows a graph generated by 
seismic activity during the Northridge earthquake that shook Los Angeles in 1994. 
For a given value of t, the graph provides a corresponding value of a.
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Each of these examples describes a rule whereby, given a number (r, t, w, or t), 
another number (A, P, C, or a) is assigned. In each case we say that the second number 
is a function of the first number.

A function f  is a rule that assigns to each element x in a set D exactly one 
element, called f sxd, in a set E.

We usually consider functions for which the sets D and E are sets of real numbers. 
The set D is called the domain of the function. The number f sxd is the value of f  at x 
and is read “ f  of x.” The range of f  is the set of all possible values of f sxd as x varies 
throughout the domain. A symbol that represents an arbitrary number in the domain of a 
function f  is called an independent variable. A symbol that represents a number in the 
range of f  is called a dependent variable. In Example A, for instance, r is the indepen­
dent variable and A is the dependent variable.

Year
Population 
(millions)

1900 1650
1910 1750
1920 1860
1930 2070
1940 2300
1950 2560
1960 3040
1970 3710
1980 4450
1990 5280
2000 6080
2010 6870

FIGURE 1
Vertical ground acceleration  

during the Northridge earthquake
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	 Section  1.1    Four Ways to Represent a Function	 11

It’s helpful to think of a function as a machine (see Figure 2). If x is in the domain of 
the function f, then when x enters the machine, it’s accepted as an input and the machine 
produces an output f sxd according to the rule of the function. Thus we can think of the 
domain as the set of all possible inputs and the range as the set of all possible outputs.

The preprogrammed functions in a calculator are good examples of a function as a 
machine. For example, the square root key on your calculator computes such a function. 
You press the key labeled s   (or sx ) and enter the input x. If x , 0, then x is not in the 
domain of this function; that is, x is not an acceptable input, and the calculator will indi­
cate an error. If x > 0, then an approximation to sx  will appear in the display. Thus the 
sx  key on your calculator is not quite the same as the exact mathematical function f  
defined by f sxd − sx .

Another way to picture a function is by an arrow diagram as in Figure 3. Each arrow 
connects an element of D to an element of E. The arrow indicates that f sxd is associated 
with x, f sad is associated with a, and so on.

The most common method for visualizing a function is its graph. If f  is a function 
with domain D, then its graph is the set of ordered pairs

hsx, f sxdd | x [ Dj

(Notice that these are input-output pairs.) In other words, the graph of f  consists of all 
points sx, yd in the coordinate plane such that y − f sxd and x is in the domain of f.

The graph of a function f  gives us a useful picture of the behavior or “life history” 
of a function. Since the y-coordinate of any point sx, yd on the graph is y − f sxd, we can 
read the value of f sxd from the graph as being the height of the graph above the point x 
(see Figure 4). The graph of f  also allows us to picture the domain of f  on the x-axis and 
its range on the y-axis as in Figure 5.
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{x, ƒ}

ƒ

f(1)
f(2)

0 1 2 x xx

y y

Example �1�  The graph of a function f  is shown in Figure 6.
(a)  Find the values of f s1d and f s5d.
(b)  What are the domain and range of f ?

Solution
(a)  We see from Figure 6 that the point s1, 3d lies on the graph of f, so the value of f  
at 1 is f s1d − 3. (In other words, the point on the graph that lies above x − 1 is 3 units 
above the x-axis.)

When x − 5, the graph lies about 0.7 units below the x-axis, so we estimate that 
f s5d < 20.7.

(b)  We see that f sxd is defined when 0 < x < 7, so the domain of f  is the closed inter­
val f0, 7g. Notice that f  takes on all values from 22 to 4, so the range of f  is

	 hy | 22 < y < 4j − f22, 4g	 ■

x
(input)

ƒ
(output)

f

FIGURE 2
Machine diagram for a function f  

f
D E

ƒ

f(a)a

x

FIGURE 3
Arrow diagram for f  

FIGURE 4 FIGURE 5
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FIGURE 6

The notation for intervals is given in 
Appendix A.
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12	 Chapter 1    Functions and Models

Example �2�  Sketch the graph and find the domain and range of each function.
(a)  fsxd − 2x 2 1	 (b)  tsxd − x 2

Solution
(a)  The equation of the graph is y − 2x 2 1, and we recognize this as being the equa­
tion of a line with slope 2 and y-intercept 21. (Recall the slope-intercept form of the 
equation of a line: y − mx 1 b. See Appendix B.) This enables us to sketch a portion 
of the graph of f  in Figure 7. The expression 2x 2 1 is defined for all real numbers, so 
the domain of f  is the set of all real numbers, which we denote by R. The graph shows 
that the range is also R.

(b)  Since ts2d − 22 − 4 and ts21d − s21d2 − 1, we could plot the points s2, 4d and 
s21, 1d, together with a few other points on the graph, and join them to produce the 
graph (Figure 8). The equation of the graph is y − x 2, which represents a parabola (see 
Appendix C). The domain of t is R. The range of t consists of all values of tsxd, that is, 
all numbers of the form x 2. But x 2 > 0 for all numbers x and any positive number y is a 
square. So the range of t is hy | y > 0j − f0, `d. This can also be seen from Figure 8. ■

Example �3�  If f sxd − 2x 2 2 5x 1 1 and h ± 0, evaluate 
f sa 1 hd 2 f sad

h
.

Solution � We first evaluate f sa 1 hd by replacing x by a 1 h in the expression for f sxd:

f sa 1 hd − 2sa 1 hd2 2 5sa 1 hd 1 1

  − 2sa2 1 2ah 1 h2d 2 5sa 1 hd 1 1

  − 2a2 1 4ah 1 2h2 2 5a 2 5h 1 1

Then we substitute into the given expression and simplify:

f sa 1 hd 2 f sad
h

−
s2a2 1 4ah 1 2h2 2 5a 2 5h 1 1d 2 s2a2 2 5a 1 1d

h

  −
2a2 1 4ah 1 2h2 2 5a 2 5h 1 1 2 2a2 1 5a 2 1

h

−
4ah 1 2h2 2 5h

h
− 4a 1 2h 2 5

■

Representations of Functions
There are four possible ways to represent a function:

●  verbally	 (by a description in words)
●  numerically	 (by a table of values)
●  visually	 (by a graph)
●  algebraically    (by an explicit formula)

If a single function can be represented in all four ways, it’s often useful to go from one 
representation to another to gain additional insight into the function. (In Example 2, for 
instance, we started with algebraic formulas and then obtained the graphs.) But certain 
functions are described more naturally by one method than by another. With this in mind, 
let’s reexamine the four situations that we considered at the beginning of this section.

x

y=2x-1

0
-1

y

1
2

FIGURE 7

(_1, 1)

(2, 4)

0

y

1

x1

y=≈

FIGURE 8

The expression

f sa 1 hd 2 f sad
h

in Example 3 is called a difference 
quotient and occurs frequently in 
calculus. As we will see in Chapter 
2, it represents the average rate of 
change of f sxd between x − a and 
x − a 1 h.
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	 Section  1.1    Four Ways to Represent a Function	 13

A.	� The most useful representation of the area of a circle as a function of its radius is 
probably the algebraic formula Asrd − �r 2, though it is possible to compile a table 
of values or to sketch a graph (half a parabola). Because a circle has to have a posi­
tive radius, the domain is hr | r . 0j − s0, `d, and the range is also s0, `d.

B.	� We are given a description of the function in words: Pstd is the human population of 
the world at time t. Let’s measure t so that t − 0 corresponds to the year 1900. The 
table of values of world population provides a convenient representation of this func­
tion. If we plot these values, we get the graph (called a scatter plot) in Figure 9. It 
too is a useful representation; the graph allows us to absorb all the data at once. What 
about a formula? Of course, it’s impossible to devise an explicit formula that gives 
the exact human population Pstd at any time t. But it is possible to find an expression 
for a function that approximates Pstd. In fact, using methods explained in Section 
1.2, we obtain the approximation

Pstd < f std − s1.43653 3 109d ∙ s1.01395dt

��Figure 10 shows that it is a reasonably good “fit.” The function f  is called a mathe-
matical model for population growth. In other words, it is a function with an explicit 
formula that approximates the behavior of our given function. We will see, however, 
that the ideas of calculus can be applied to a table of values; an explicit formula is 
not necessary. 

5x10' 5x10'

P

t20 40 60 80 100 120 20 40 60
Years since 1900Years since 1900

80 100 120

P

t0 0

FIGURE 9 FIGURE 10

The function P is typical of the functions that arise whenever we attempt to apply 
calculus to the real world. We start with a verbal description of a function. Then we 
may be able to construct a table of values of the function, perhaps from instrument 
readings in a scientific experiment. Even though we don’t have complete knowledge 
of the values of the function, we will see throughout the book that it is still possible 
to perform the operations of calculus on such a function.

C.	� Again the function is described in words: Let Cswd be the cost of mailing a large enve­
lope with weight w. The rule that the US Postal Service used as of 2015 is as follows: 
The cost is 98 cents for up to 1 oz, plus 21 cents for each additional ounce (or less) 
up to 13 oz. The table of values shown in the margin is the most convenient repre­
sentation for this function, though it is possible to sketch a graph (see Example 10).

D.	� The graph shown in Figure 1 is the most natural representation of the vertical accel­
eration function astd. It’s true that a table of values could be compiled, and it is 
even possible to devise an approximate formula. But everything a geologist needs to 

t 
(years

since 1900)
Population 
(millions)

0 1650
10 1750
20 1860
30 2070
40 2300
50 2560
60 3040
70 3710
80 4450
90 5280

100 6080
110 6870

A function defined by a table of 
values is called a tabular function.

w (ounces) Cswd (dollars)

0 , w < 1  0.98

1 , w < 2  1.19

2 , w < 3  1.40

3 , w < 4  1.61

4 , w < 5  1.82
∙  ∙
∙  ∙
∙  ∙
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14	 Chapter 1    Functions and Models

PS   In setting up applied functions as 
in Example 5, it may be useful to review 
the principles of problem solving as 
discussed on page 71, particularly  
Step 1: Understand the Problem.

know— amplitudes and patterns — can be seen easily from the graph. (The same is  
true for the patterns seen in electrocardiograms of heart patients and polygraphs for 
lie-detection.)

In the next example we sketch the graph of a function that is defined verbally.

Example �4�  When you turn on a hot-water faucet, the temperature T  of the water 
depends on how long the water has been running. Draw a rough graph of T  as a func­
tion of the time t that has elapsed since the faucet was turned on.

SOLUTION � The initial temperature of the running water is close to room temperature 
because the water has been sitting in the pipes. When the water from the hot-water tank 
starts flowing from the faucet, T  increases quickly. In the next phase, T  is constant at 
the temperature of the heated water in the tank. When the tank is drained, T  decreases 
to the temperature of the water supply. This enables us to make the rough sketch of T  
as a function of t in Figure 11.	 ■

In the following example we start with a verbal description of a function in a physical 
situation and obtain an explicit algebraic formula. The ability to do this is a useful skill 
in solving calculus problems that ask for the maximum or minimum values of quantities.

Example �5�  A rectangular storage container with an open top has a volume of  
10 m3. The length of its base is twice its width. Material for the base costs $10 per 
square meter; material for the sides costs $6 per square meter. Express the cost of mate­
rials as a function of the width of the base.

SOLUTION � We draw a diagram as in Figure 12 and introduce notation by letting w and 
2w be the width and length of the base, respectively, and h be the height. 

The area of the base is s2wdw − 2w2, so the cost, in dollars, of the material for the 
base is 10s2w2 d. Two of the sides have area wh and the other two have area 2wh, so the 
cost of the material for the sides is 6f2swhd 1 2s2whdg. The total cost is therefore

C − 10s2w2 d 1 6f2swhd 1 2s2whdg − 20w2 1 36wh

�To express C as a function of w alone, we need to eliminate h and we do so by using 
the fact that the volume is 10 m3. Thus

ws2wdh − 10

which gives 	  h −
10

2w2 −
5

w2

Substituting this into the expression for C, we have

C − 20w2 1 36wS 5

w2D − 20w2 1
180

w

Therefore the equation

Cswd − 20w2 1
180

w
        w . 0

expresses C as a function of w.	 ■

Example �6�  Find the domain of each function.

(a)  f sxd − sx 1 2                   (b)  tsxd −
1

x 2 2 x

t

T

0

FIGURE 11

w

2w

h

FIGURE 12
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	 Section  1.1    Four Ways to Represent a Function 	 15

SOLUTION
(a)  Because the square root of a negative number is not defined (as a real number), 
the domain of f  consists of all values of x such that x 1 2 > 0. This is equivalent to 
x > 22, so the domain is the interval f22, `d.
(b)  Since

tsxd −
1

x 2 2 x
−

1

xsx 2 1d

and division by 0 is not allowed, we see that tsxd is not defined when x − 0 or x − 1. 
Thus the domain of t is

hx | x ± 0, x ± 1j

which could also be written in interval notation as

	 s2`, 0d ø s0, 1d ø s1, `d	 ■

The graph of a function is a curve in the xy-plane. But the question arises: Which 
curves in the xy-plane are graphs of functions? This is answered by the following test.

The Vertical Line Test  A curve in the xy-plane is the graph of a function of x if 
and only if no vertical line intersects the curve more than once.

The reason for the truth of the Vertical Line Test can be seen in Figure 13. If each 
vertical line x − a intersects a curve only once, at sa, bd, then exactly one function value 
is defined by f sad − b. But if a line x − a intersects the curve twice, at sa, bd and sa, cd,  
then the curve can’t represent a function because a function can’t assign two different 
values to a.

For example, the parabola x − y 2 2 2 shown in Figure 14(a) is not the graph of a 
function of x because, as you can see, there are vertical lines that intersect the parabola 
twice. The parabola, however, does contain the graphs of two functions of x. Notice 
that the equation x − y 2 2 2 implies y 2 − x 1 2, so y − 6sx 1 2 . Thus the upper 
and lower halves of the parabola are the graphs of the functions f sxd − sx 1 2  [from 
Example 6(a)] and tsxd − 2sx 1 2 . [See Figures 14(b) and (c).] 

We observe that if we reverse the roles of x and y, then the equation x − hsyd − y 2 2 2 
does define x as a function of y (with y as the independent variable and x as the depen­
dent variable) and the parabola now appears as the graph of the function h.

(b) y=œ„„„„x+2

_2 0 x

y

(_2, 0)

(a) x=¥-2

0 x

y

(c) y=_œ„„„„x+2

_2
0

y

x

Piecewise Defined Functions
The functions in the following four examples are defined by different formulas in dif­
ferent parts of their domains. Such functions are called piecewise defined functions.

a

x=a

(a, b)

0

a

(a, c)

(a, b)

x=a

0 x

y

x

y

(a) This curve represents a function.

(b) This curve doesn’t represent
     a function.

FIGURE 13

FIGURE 14

Domain Convention
If a function is given by a formula 
and the domain is not stated explic­
itly, the convention is that the domain 
is the set of all numbers for which 
the formula makes sense and defines 
a real number.
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16	 Chapter 1    Functions and Models

Example �7 � A function f  is defined by

f sxd − H1 2 x

x 2

if  x < 21

if  x . 21

Evaluate f s22d, f s21d, and f s0d and sketch the graph.

Solution � Remember that a function is a rule. For this particular function the rule is 
the following: First look at the value of the input x. If it happens that x < 21, then the 
value of f sxd is 1 2 x. On the other hand, if x . 21, then the value of f sxd is x 2.

Since 22 < 21, we have f s22d − 1 2 s22d − 3.

Since 21 < 21, we have f s21d − 1 2 s21d − 2.

Since 0 . 21, we have f s0d − 02 − 0.

How do we draw the graph of f ? We observe that if x < 21, then f sxd − 1 2 x,  
so the part of the graph of f  that lies to the left of the vertical line x − 21 must coin­
cide with the line y − 1 2 x, which has slope 21 and y-intercept 1. If x . 21,  
then f sxd − x 2, so the part of the graph of f  that lies to the right of the line x − 21 
must coincide with the graph of y − x 2, which is a parabola. This enables us to sketch 
the graph in Figure 15. The solid dot indicates that the point s21, 2d is included on the 
graph; the open dot indicates that the point s21, 1d is excluded from the graph.	 ■

The next example of a piecewise defined function is the absolute value function. 
Recall that the absolute value of a number a, denoted by | a |, is the distance from a to 0 
on the real number line. Distances are always positive or 0, so we have

| a | > 0        for every number a

For example,

| 3 | − 3      | 23 | − 3      | 0 | − 0      | s2 2 1 | − s2 2 1      | 3 2 � | − � 2 3

In general, we have

| a | − a    if  a > 0

| a | − 2a  if  a , 0

(Remember that if a is negative, then 2a is positive.)

Example �8 � Sketch the graph of the absolute value function f sxd − | x |.
SOLUTION � From the preceding discussion we know that

| x | − Hx

2x

if  x > 0

if  x , 0

Using the same method as in Example 7, we see that the graph of f  coincides with the 
line y − x to the right of the y-axis and coincides with the line y − 2x to the left of the 
y-axis (see Figure 16).	 ■

1

x

y

1_1 0

FIGURE 15

For a more extensive review of 
absolute values, see Appendix A.

x

y=| x |

0

y

FIGURE 16
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	 Section  1.1    Four Ways to Represent a Function 	 17

Point-slope form of the equation of 
a line:

y 2 y1 − msx 2 x1 d

See Appendix B.

Example �9�  Find a formula for the function f  graphed in Figure 17.

SOLUTION � The line through s0, 0d and s1, 1d has slope m − 1 and y-intercept b − 0, 
so its equation is y − x. Thus, for the part of the graph of f  that joins s0, 0d to s1, 1d, 
we have

f sxd − x        if  0 < x < 1

The line through s1, 1d and s2, 0d has slope m − 21, so its point-slope form is

y 2 0 − s21dsx 2 2d        or        y − 2 2 x

So we have 	 f sxd − 2 2 x        if  1 , x < 2

We also see that the graph of f  coincides with the x-axis for x . 2. Putting this infor-
mation together, we have the following three-piece formula for f :

f sxd − Hx

2 2 x

0

if  0 < x < 1

if  1 , x < 2

if  x . 2 ■

Example �10�  In Example C at the beginning of this section we considered the cost 
Cswd of mailing a large envelope with weight w. In effect, this is a piecewise defined 
function because, from the table of values on page 13, we have

Cswd −    

0.98

1.19

1.40

1.61

if  0 , w < 1

if  1 , w < 2

if  2 , w < 3

if  3 , w < 4
	 ∙
	 ∙
	 ∙

��The graph is shown in Figure 18. You can see why functions similar to this one are 
called step functions—they jump from one value to the next. Such functions will be 
studied in Chapter 2.	 ■

Symmetry
If a function f  satisfies f s2xd − f sxd for every number x in its domain, then f  is called 
an even function. For instance, the function f sxd − x 2 is even because

f s2xd − s2xd2 − x 2 − f sxd

The geometric significance of an even function is that its graph is symmetric with respect 
to the y-axis (see Figure 19). This means that if we have plotted the graph of f  for x > 0, 
we obtain the entire graph simply by reflecting this portion about the y-axis.

If f  satisfies f s2xd − 2f sxd for every number x in its domain, then f  is called an odd 
function. For example, the function f sxd − x 3 is odd because

f s2xd − s2xd3 − 2x 3 − 2f sxd

x

y

0 1

1

FIGURE 17

FIGURE 19�   
An even function

0 x_x

f(_x) ƒ

x

y

C

0.50

1.00

1.50

0 1 2 3 54 w

figure 18
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18	 Chapter 1    Functions and Models

The graph of an odd function is symmetric about the origin (see Figure 20). If we already 
have the graph of f  for x > 0, we can obtain the entire graph by rotating this portion 
through 1808 about the origin.

Example �11�  Determine whether each of the following functions is even, odd, or 
neither even nor odd.
(a)  f sxd − x 5 1 x      (b)  tsxd − 1 2 x 4      (c)  hsxd − 2x 2 x 2 

SOLUTION
(a)	 f s2xd − s2xd5 1 s2xd − s21d5x 5 1 s2xd

 − 2x 5 2 x − 2sx 5 1 xd

 − 2f sxd

Therefore f  is an odd function.

(b)	 ts2xd − 1 2 s2xd4 − 1 2 x 4 − tsxd
So t is even.

(c)	 hs2xd − 2s2xd 2 s2xd2 − 22x 2 x 2

Since hs2xd ± hsxd and hs2xd ± 2hsxd, we conclude that h is neither even nor odd.	 ■

The graphs of the functions in Example 11 are shown in Figure 21. Notice that the 
graph of h is symmetric neither about the y-axis nor about the origin.

1

1 x

y

h1

1

y

x

g1

_1

1

y

x

f

_1

(a) (b) (c)

Increasing and Decreasing Functions
The graph shown in Figure 22 rises from A to B, falls from B to C, and rises again from C 
to D. The function f  is said to be increasing on the interval fa, bg, decreasing on fb, cg, 
and increasing again on fc, dg. Notice that if x1 and x2 are any two numbers between  
a and b with x1 , x2, then f sx1 d , f sx2 d. We use this as the defining property of an 
increasing function.

A

B

C

D

y=ƒ

f(x¡)

a

y

0 xx¡ x™ b c d

f(x™)

FIGURE 20   
An odd function

0
x

_x ƒ
x

y

figure 21

figure 22
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	 Section  1.1    Four Ways to Represent a Function 	 19

A function f  is called increasing on an interval I if

f sx1 d , f sx2 d      whenever x1 , x2 in I

It is called decreasing on I if

f sx1 d . f sx2 d      whenever x1 , x2 in I

In the definition of an increasing function it is important to realize that the inequality 
f sx1 d , f sx2 d must be satisfied for every pair of numbers x1 and x2 in I with x1 , x2.

You can see from Figure 23 that the function f sxd − x 2 is decreasing on the interval 
s2`, 0g and increasing on the interval f0, `d.figure 23

0

y

x

y=≈

	 1.	�� If f sxd − x 1 s2 2 x  and tsud − u 1 s2 2 u , is it true  
that f − t?

	 2.	�� If

f sxd −
x 2 2 x

x 2 1
        and        tsxd − x

is it true that f − t?

	 3.	�� The graph of a function f  is given.
	 (a)	 State the value of f s1d.
	 (b)	 Estimate the value of f s21d.
	 (c)	 For what values of x is f sxd − 1?
	 (d)	 Estimate the value of x such that f sxd − 0.
	 (e)	 State the domain and range of f.
	 (f) 	 On what interval is f  increasing?

y

0 x1

1

	 4.	�� The graphs of f  and t are given.

g

x

y

0

f
2

2

	 (a)	 State the values of f s24d and ts3d.
	 (b)	 For what values of x is f sxd − tsxd?

	 (c)	 Estimate the solution of the equation f sxd − 21.
	 (d)	 On what interval is f  decreasing?
	 (e)	 State the domain and range of f.
	 (f) 	 State the domain and range of t.

	 5.	�� Figure 1 was recorded by an instrument operated by the 
California Department of Mines and Geology at the University 
Hospital of the University of Southern California in Los 
Angeles. Use it to estimate the range of the vertical ground 
acceleration function at USC during the Northridge earthquake.

	 6.	�� In this section we discussed examples of ordinary, everyday 
functions: Population is a function of time, postage cost is a 
function of weight, water temperature is a function of time. Give 
three other examples of functions from everyday life that are 
described verbally. What can you say about the domain and 
range of each of your functions? If possible, sketch a rough 
graph of each function.

7–10 � �Determine whether the curve is the graph of a function of x.  
If it is, state the domain and range of the function.

7.	 8. y

x0 1

1

y

x0

1

1

y

x0 1

1

y

x0 1

1

	 9.	 10.

1.1�  Exercises
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20	 Chapter 1    Functions and Models

	11.	�� Shown is a graph of the global average temperature T during 
the 20th century. Estimate the following.

	 (a)	 The global average temperature in 1950
	 (b)	 The year when the average temperature was 14.2°C
	 (c)	 The year when the temperature was smallest? Largest?
	 (d)	 The range of T

t

T (•C)

1900 1950 2000

13

14

Source: Adapted from Globe and Mail [Toronto], 5 Dec. 2009. Print.

	12.	�� Trees grow faster and form wider rings in warm years and 
grow more slowly and form narrower rings in cooler years. The 
figure shows ring widths of a Siberian pine from 1500 to 2000.

	 (a)	 What is the range of the ring width function?
	 (b)	� What does the graph tend to say about the temperature 

of the earth? Does the graph reflect the volcanic erup-
tions of the mid-19th century?

R
in

g 
w

id
th

 (
m

m
)

1.6
1.4
1.2

1
0.8
0.6
0.4
0.2

0
1500 1600 1700 1800 1900

Year

2000 t

R

Source: Adapted from G. Jacoby et al., “Mongolian Tree Rings and 20th-
Century Warming,” Science 273 (1996): 771–73.

	13.	�� You put some ice cubes in a glass, fill the glass with cold water, 
and then let the glass sit on a table. Describe how the tempera-
ture of the water changes as time passes. Then sketch a rough 
graph of the temperature of the water as a function of the 
elapsed time.

	14.	�� Three runners compete in a 100-meter race. The graph 
depicts the distance run as a function of time for each runner. 
Describe in words what the graph tells you about this race. 
Who won the race? Did each runner finish the race?

0

100

20

A B C
y

	15.	�� The graph shows the power consumption for a day in Septem-
ber in San Francisco. (P is measured in megawatts; t is mea
sured in hours starting at midnight.)

	 (a)	 What was the power consumption at 6 am? At 6 pm?
	 (b)	� When was the power consumption the lowest? When was 

it the highest? Do these times seem reasonable?

P

0 181512963 t21

400

600

800

200

Pacific Gas & Electric

	16.	�� Sketch a rough graph of the number of hours of daylight as a 
function of the time of year.

	17.	�� Sketch a rough graph of the outdoor temperature as a function 
of time during a typical spring day.

	18.	�� �Sketch a rough graph of the market value of a new car as a 
function of time for a period of 20 years. Assume the car is 
well maintained.

	19.	�� Sketch the graph of the amount of a particular brand of coffee 
sold by a store as a function of the price of the coffee.

	20.	�� You place a frozen pie in an oven and bake it for an hour. 
Then you take it out and let it cool before eating it. Describe 
how the temperature of the pie changes as time passes. 
Then sketch a rough graph of the temperature of the pie as a 
function of time.

	21.	�� A homeowner mows the lawn every Wednesday afternoon. 
Sketch a rough graph of the height of the grass as a function 
of time over the course of a four-week period.

	22.	�� An airplane takes off from an airport and lands an hour later 
at another airport, 400 miles away. If t represents the time in 
minutes since the plane has left the terminal building, let xstd 
be the horizontal distance traveled and ystd be the altitude of 
the plane.

	 (a)	 Sketch a possible graph of xstd.
	 (b)	 Sketch a possible graph of ystd.
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	 (c)	 Sketch a possible graph of the ground speed.
	 (d)	 Sketch a possible graph of the vertical velocity.

	23.	�� Temperature readings T (in °F) were recorded every two hours 
from midnight to 2:00 pm in Atlanta on June 4, 2013. The time 
t was measured in hours from midnight.

t 0 2  4  6 8 10 12 14

T 74 69 68 66 70 78 82 86

	 (a)	� Use the readings to sketch a rough graph of T as a function 
of t.

	 (b)	� Use your graph to estimate the temperature at 9:00 am.

	24.	�� Researchers measured the blood alcohol concentration (BAC) 
of eight adult male subjects after rapid consumption of 30 mL 
of ethanol (corresponding to two standard alcoholic drinks). 
The table shows the data they obtained by averaging the BAC 
(in mgymL) of the eight men.

	 (a)	� Use the readings to sketch the graph of the BAC as a 
function of t.

	 (b)	� Use your graph to describe how the effect of alcohol  
varies with time.

t (hours) BAC t (hours) BAC

0 0 	 1.75 0.22
0.2 0.25 	 2.0 0.18
0.5 0.41 	 2.25 0.15
0.75 0.40 	 2.5 0.12
1.0 0.33 	 3.0 0.07
1.25 0.29 	 3.5 0.03
1.5 0.24 	 4.0 0.01

Source: Adapted from P. Wilkinson et al., “Pharmacokinetics of Ethanol after 
Oral Administration in the Fasting State,” Journal of Pharmacokinetics and 
Biopharmaceutics 5 (1977): 207–24.

	25.	�� If f sxd − 3x 2 2 x 1 2, find f s2d,   f s22d,   f sad,   f s2ad,  
f sa 1 1d, 2 f sad,   f s2ad,   f sa2d, [ f sad]2, and   f sa 1 hd.

	26.	�� A spherical balloon with radius r inches has volume 
Vsrd − 4

3 �r 3. Find a function that represents the amount of 
air required to inflate the balloon from a radius of r inches 
to a radius of r 1 1 inches.

27–30 � Evaluate the difference quotient for the given function.  
Simplify your answer.

	27.	 f sxd − 4 1 3x 2 x 2,      
f s3 1 hd 2 f s3d

h

	28.	� f sxd − x 3,      
f sa 1 hd 2 f sad

h
	

29.	�	 f sxd −
1

x
,      

f sxd 2 f sad
x 2 a

	30.	� f sxd −
x 1 3

x 1 1
,      

f sxd 2 f s1d
x 2 1

31–37 � Find the domain of the function.

	31.	 f sxd −
x 1 4

x 2 2 9
	32 .	 f sxd −

2x 3 2 5

x 2 1 x 2 6

	33.	 f std − s3 2t 2 1 	3 4.	 tstd − s3 2 t 2 s2 1 t 

	35.	 hsxd −
1

s4 x 2 2 5x 
	36 .	 f sud −

u 1 1

1 1
1

u 1 1
	37.	 Fspd − s2 2 sp  

	38.	�� Find the domain and range and sketch the graph of the  
function hsxd − s4 2 x 2 .

39–40 � Find the domain and sketch the graph of the function.

	39.	 f sxd − 1.6x 2 2.4	 40.	 tstd −
t 2 2 1

t 1 1

41–44 � Evaluate f s23d, f s0d, and f s2d for the piecewise defined 
function. Then sketch the graph of the function.

	41.	 f sxd − Hx 1 2

1 2 x

if  x , 0

if  x > 0

	42.	 f sxd − H3 2 1
2 x

2x 2 5

if  x , 2

if  x > 2

	43.	 f sxd − Hx 1 1

x 2

if  x < 21

if  x . 21

	44.	 f sxd − H21

7 2 2x

if  x < 1

if  x . 1

45–50 � Sketch the graph of the function.

	45.	 f sxd − x 1 | x |	 46.	 f sxd − | x 1 2 |
	47.	 tstd − |1 2 3t |	 48.	 hstd − | t | 1 | t 1 1|
	49.	 f sxd − H| x |

1

if  | x | < 1

if  | x | . 1
	50 .	 tsxd − || x | 2 1|

51–56 � Find an expression for the function whose graph is the  
given curve.

	51.	�� The line segment joining the points s1, 23d and s5, 7d

	52.	�� The line segment joining the points s25, 10d and s7, 210d

	53.	�� The bottom half of the parabola x 1 sy 2 1d2 − 0

	54.	�� The top half of the circle x 2 1 sy 2 2d2 − 4
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22	 Chapter 1    Functions and Models

	55.  y

0 x

1

1

 56 .  y

0 x

1

1

57–61 � Find a formula for the described function and state its 
domain.

	57.	�� A rectangle has perimeter 20 m. Express the area of the 
rectangle as a function of the length of one of its sides.

	58.	�� A rectangle has area 16 m2. Express the perimeter of the rect­
angle as a function of the length of one of its sides.

	59.	�� Express the area of an equilateral triangle as a function of the 
length of a side.

	60.	�� A closed rectangular box with volume 8 ft3 has length twice the 
width. Express the height of the box as a function of the width.

	61.	�� An open rectangular box with volume 2 m3 has a square base. 
Express the surface area of the box as a function of the length 
of a side of the base.

	62.	�� A Norman window has the shape of a rectangle surmounted 
by a semicircle. If the perimeter of the window is 30 ft, 
express the area A of the window as a function of the width 
x of the window.

x

	63.	�� A box with an open top is to be constructed from a rectan­
gular piece of cardboard with dimensions 12 in. by 20 in. 
by cutting out equal squares of side x at each corner and 
then folding up the sides as in the figure. Express the vol­
ume V of the box as a function of x.

20

12
x

x

x

x

x x

x x

	64.	�� A cell phone plan has a basic charge of $35 a month. The 
plan includes 400 free minutes and charges 10 cents for each 
additional minute of usage. Write the monthly cost C as a 
function of the number x of minutes used and graph C as a 
function of x for 0 < x < 600.

	65.	�� In a certain state the maximum speed permitted on freeways 
is 65 miyh and the minimum speed is 40 miyh. The fine for 
violating these limits is $15 for every mile per hour above the 
maximum speed or below the minimum speed. Express the 
amount of the fine F as a function of the driving speed x and 
graph Fsxd for 0 < x < 100.

	66.	�� An electricity company charges its customers a base rate 
of $10 a month, plus 6 cents per kilowatt-hour (kWh) for 
the first 1200 kWh and 7 cents per kWh for all usage over 
1200 kWh. Express the monthly cost E as a function of the 
amount x of electricity used. Then graph the function E for 
0 < x < 2000.

	67.	�� In a certain country, income tax is assessed as follows. There 
is no tax on income up to $10,000. Any income over $10,000 
is taxed at a rate of 10%, up to an income of $20,000. Any 
income over $20,000 is taxed at 15%.

	 (a)	� Sketch the graph of the tax rate R as a function of the 
income I.

	 (b)	� How much tax is assessed on an income of $14,000?  
On $26,000?

	 (c)	� Sketch the graph of the total assessed tax T as a function 
of the income I.

	68.	�� The functions in Example 10 and Exercise 67 are called step 
functions because their graphs look like stairs. Give two other 
examples of step functions that arise in everyday life.

69–70 � Graphs of f  and t are shown. Decide whether each func­
tion is even, odd, or neither. Explain your reasoning.

	69.  y

x

f

g
  70.  y

x

f

g

	71.	� (a)	� If the point s5, 3d is on the graph of an even function, 
what other point must also be on the graph?

	 (b)	� If the point s5, 3d is on the graph of an odd function, what 
other point must also be on the graph?

	72.	� �A function f  has domain f25, 5g and a portion of its graph  
is shown.

	 (a)	 Complete the graph of f  if it is known that f  is even.
	 (b)	 Complete the graph of f  if it is known that f  is odd.
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x0

y

5_5

73–78 � Determine whether f  is even, odd, or neither. If you have  
a graphing calculator, use it to check your answer visually.

	73.	 f sxd −
x

x 2 1 1
	 74.	 f sxd −

x 2

x 4 1 1

	75.	 f sxd −
x

x 1 1
	 76.	 f sxd − x | x |

	77.	 f sxd − 1 1 3x 2 2 x 4

	78.	 f sxd − 1 1 3x 3 2 x 5

	79.	�� If f  and t are both even functions, is f 1 t even? If f  and t 
are both odd functions, is f 1 t odd? What if f  is even and t is 
odd? Justify your answers.

	80.	�� If f  and t are both even functions, is the product ft even? If f  
and t are both odd functions, is ft odd? What if f  is even and  
t is odd? Justify your answers.

A mathematical model is a mathematical description (often by means of a function or 
an equation) of a real-world phenomenon such as the size of a population, the demand 
for a product, the speed of a falling object, the concentration of a product in a chemical 
reaction, the life expectancy of a person at birth, or the cost of emission reductions. The 
purpose of the model is to understand the phenomenon and perhaps to make predictions 
about future behavior.

Figure 1 illustrates the process of mathematical modeling. Given a real-world prob-
lem, our first task is to formulate a mathematical model by identifying and naming the 
independent and dependent variables and making assumptions that simplify the phenom-
enon enough to make it mathematically tractable. We use our knowledge of the physical 
situation and our mathematical skills to obtain equations that relate the variables. In 
situations where there is no physical law to guide us, we may need to collect data (either 
from a library or the Internet or by conducting our own experiments) and examine the 
data in the form of a table in order to discern patterns. From this numerical representation 
of a function we may wish to obtain a graphical representation by plotting the data. The 
graph might even suggest a suitable algebraic formula in some cases.

Real-world
problem

Mathematical
model

Real-world
predictions

Mathematical
conclusions

Test

Formulate Solve Interpret

The second stage is to apply the mathematics that we know (such as the calculus 
that will be developed throughout this book) to the mathematical model that we have 
formulated in order to derive mathematical conclusions. Then, in the third stage, we take 
those mathematical conclusions and interpret them as information about the original 
real-world phenomenon by way of offering explanations or making predictions. The final 
step is to test our predictions by checking against new real data. If the predictions don’t 
compare well with reality, we need to refine our model or to formulate a new model and 
start the cycle again.

A mathematical model is never a completely accurate representation of a physical 
situation—it is an idealization. A good model simplifies reality enough to permit math-

FIGURE 1
The modeling process
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24	 Chapter 1    Functions and Models

ematical calculations but is accurate enough to provide valuable conclusions. It is impor­
tant to realize the limitations of the model. In the end, Mother Nature has the final say.

There are many different types of functions that can be used to model relationships  
observed in the real world. In what follows, we discuss the behavior and graphs of these  
functions and give examples of situations appropriately modeled by such functions.

Linear Models
When we say that y is a linear function of x, we mean that the graph of the function is 
a line, so we can use the slope-intercept form of the equation of a line to write a formula 
for the function as

y − f sxd − mx 1 b

where m is the slope of the line and b is the y-intercept.
A characteristic feature of linear functions is that they grow at a constant rate. For 

instance, Figure 2 shows a graph of the linear function f sxd − 3x 2 2 and a table of 
sample values. Notice that whenever x increases by 0.1, the value of f sxd increases by 
0.3. So f sxd increases three times as fast as x. Thus the slope of the graph y − 3x 2 2, 
namely 3, can be interpreted as the rate of change of y with respect to x.

x

y

0

y=3x-2

_2

1

 

x f sxd − 3x 2 2

1.0 1.0
1.1 1.3
1.2 1.6
1.3 1.9
1.4 2.2
1.5 2.5

Example �1� �
(a)  As dry air moves upward, it expands and cools. If the ground temperature is 20°C 
and the temperature at a height of 1 km is 10°C, express the temperature T  (in °C) as a 
function of the height h (in kilometers), assuming that a linear model is appropriate.
(b)  Draw the graph of the function in part (a). What does the slope represent?
(c)  What is the temperature at a height of 2.5 km?

SOLUTION
(a)  Because we are assuming that T  is a linear function of h, we can write

T − mh 1 b

We are given that T − 20 when h − 0, so 

20 − m ? 0 1 b − b

�In other words, the y-intercept is b − 20.
We are also given that T − 10 when h − 1, so

10 − m ? 1 1 20

The slope of the line is therefore m − 10 2 20 − 210 and the required linear function is

T − 210h 1 20

The coordinate geometry of lines is 
reviewed in Appendix B.

figure 2
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�(b)  The graph is sketched in Figure 3. The slope is m − 2 10°Cykm, and this repre- 
sents the rate of change of temperature with respect to height.

�(c)  At a height of h − 2.5 km, the temperature is

	 T − 210s2.5d 1 20 − 2 5°C	 ■

If there is no physical law or principle to help us formulate a model, we construct an 
empirical model, which is based entirely on collected data. We seek a curve that “fits” 
the data in the sense that it captures the basic trend of the data points.

Example �2 � Table 1 lists the average carbon dioxide level in the atmosphere, mea-
sured in parts per million at Mauna Loa Observatory from 1980 to 2012. Use the data 
in Table 1 to find a model for the carbon dioxide level.

SOLUTION � We use the data in Table 1 to make the scatter plot in Figure 4, where t rep-
resents time (in years) and C represents the CO2 level (in parts per million, ppm).

C (ppm)

340

350

360

370

380

390

400

1980 1985 t1990 1995 2000 2005 2010

FIGURE 4 � Scatter plot for the average CO2 level �

Notice that the data points appear to lie close to a straight line, so it’s natural to 
choose a linear model in this case. But there are many possible lines that approximate 
these data points, so which one should we use? One possibility is the line that passes 
through the first and last data points. The slope of this line is

393.8 2 338.7

2012 2 1980
−

55.1

32
− 1.721875 < 1.722

We write its equation as 	

C 2 338.7 − 1.722st 2 1980d
or

1 	 C − 1.722t 2 3070.86

FIGURE 3 

T=_10h+20

T

h0

10

20

1 3

Year
CO2 level
(in ppm) Year

CO2 level
(in ppm)

1980 338.7 1998 366.5
1982 341.2 2000 369.4
1984 344.4 2002 373.2
1986 347.2 2004 377.5
1988 351.5 2006 381.9
1990 354.2 2008 385.6
1992 356.3 2010 389.9
1994 358.6 2012 393.8
1996 362.4

Table 1�
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26	 Chapter 1    Functions and Models

Equation 1 gives one possible linear model for the carbon dioxide level; it is graphed 
in Figure 5.

C (ppm)

340

350

360

370

380

390

400

1980 1985 t1990 1995 2000 2005 2010

Notice that our model gives values higher than most of the actual CO2 levels. A 
better linear model is obtained by a procedure from statistics called linear regression. 
If we use a graphing calculator, we enter the data from Table 1 into the data editor and 
choose the linear regression command. (With Maple we use the fit[leastsquare] com-
mand in the stats package; with Mathematica we use the Fit command.) The machine 
gives the slope and y-intercept of the regression line as

m − 1.71262            b − 23054.14

So our least squares model for the CO2 level is

2 	 C − 1.71262t 2 3054.14

In Figure 6 we graph the regression line as well as the data points. Comparing with 
Figure 5, we see that it gives a better fit than our previous linear model.

	

C (ppm)

340

350

360

370

380

390

400

1980 1985 t1990 1995 2000 2005 2010 	 ■

FIGURE 5�  
Linear model through first  

and last data points�

A computer or graphing calculator 
finds the regression line by the method 
of least squares, which is to minimize 
the sum of the squares of the vertical 
distances between the data points and 
the line. The details are explained in 
Section 14.7.

Figure 6�  
The regression line
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Example �3�  Use the linear model given by Equation 2 to estimate the average CO2 
level for 1987 and to predict the level for the year 2020. According to this model, when 
will the CO2 level exceed 420 parts per million?

Solution � Using Equation 2 with t − 1987, we estimate that the average CO2 level in 
1987 was

Cs1987d − s1.71262ds1987d 2 3054.14 < 348.84

This is an example of interpolation because we have estimated a value between 
observed values. (In fact, the Mauna Loa Observatory reported that the average CO2 
level in 1987 was 348.93 ppm, so our estimate is quite accurate.)

With t − 2020, we get

Cs2020d − s1.71262ds2020d 2 3054.14 < 405.35

So we predict that the average CO2 level in the year 2020 will be 405.4 ppm. This is an 
example of extrapolation because we have predicted a value outside the time frame of 
observations. Consequently, we are far less certain about the accuracy of our prediction.

Using Equation 2, we see that the CO2 level exceeds 420 ppm when

1.71262t 2 3054.14 . 420

Solving this inequality, we get

t .
3474.14

1.71262
< 2028.55

We therefore predict that the CO2 level will exceed 420 ppm by the year 2029. This  
prediction is risky because it involves a time quite remote from our observations. In 
fact, we see from Figure 6 that the trend has been for CO2 levels to increase rather more 
rapidly in recent years, so the level might exceed 420 ppm well before 2029.	 ■

Polynomials
A function P is called a polynomial if

Psxd − an xn 1 an21 xn21 1 ∙ ∙ ∙ 1 a2 x 2 1 a1 x 1 a0

where n is a nonnegative integer and the numbers a0, a1, a2, . . . , an are constants called 
the coefficients of the polynomial. The domain of any polynomial is R − s2`, `d.  
If the leading coefficient an ± 0, then the degree of the polynomial is n. For example, 
the function

Psxd − 2x 6 2 x 4 1 2
5 x 3 1 s2 

is a polynomial of degree 6.
A polynomial of degree 1 is of the form Psxd − mx 1 b and so it is a linear function.  

A polynomial of degree 2 is of the form Psxd − ax 2 1 bx 1 c and is called a quadratic 
function. Its graph is always a parabola obtained by shifting the parabola y − ax 2, as we 
will see in the next section. The parabola opens upward if a . 0 and downward if a , 0.  
(See Figure 7.)

A polynomial of degree 3 is of the form

Psxd − ax 3 1 bx 2 1 cx 1 d        a ± 0

FIGURE 7�  
The graphs of quadratic functions  
are parabolas.

0

y

2

x1

(a) y=≈+x+1

y

2

x1

(b) y=_2≈+3x+1
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and is called a cubic function. Figure 8 shows the graph of a cubic function in part (a) 
and graphs of polynomials of degrees 4 and 5 in parts (b) and (c). We will see later why 
the graphs have these shapes.

(a) y=˛-x+1

x

1

y

10

(b) y=x$-3≈+x

x

2

y

1

(c) y=3x%-25˛+60x

x

20

y

1

Polynomials are commonly used to model various quantities that occur in the natural 
and social sciences. For instance, in Section 3.7 we will explain why economists often use  
a polynomial Psxd to represent the cost of producing x units of a commodity. In the fol-
lowing example we use a quadratic function to model the fall of a ball.

Example �4�  A ball is dropped from the upper observation deck of the CN Tower, 450 m 
above the ground, and its height h above the ground is recorded at 1-second intervals in 
Table 2. Find a model to fit the data and use the model to predict the time at which the 
ball hits the ground.

Solution � We draw a scatter plot of the data in Figure 9 and observe that a linear 
model is inappropriate. But it looks as if the data points might lie on a parabola, so we 
try a quadratic model instead. Using a graphing calculator or computer algebra system 
(which uses the least squares method), we obtain the following quadratic model:

	 3 	 h − 449.36 1 0.96t 2 4.90t 2

2

200

400

4 6 8 t0

200

400

t
(seconds)

0 2 4 6 8

hh (meters)

In Figure 10 we plot the graph of Equation 3 together with the data points and see 
that the quadratic model gives a very good fit.

The ball hits the ground when h − 0, so we solve the quadratic equation

24.90t 2 1 0.96t 1 449.36 − 0

FIGURE 8� 

Time 
(seconds)

Height 
(meters)

0 450
1 445
2 431
3 408
4 375
5 332
6 279
7 216
8 143
9 61

Table 2�

FIGURE 9 �  
Scatter plot for a falling ball

FIGURE 10 �  
Quadratic model for a falling ball
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The quadratic formula gives

t −
20.96 6 ss0.96d2 2 4s24.90d s449.36d

2s24.90d

The positive root is t < 9.67, so we predict that the ball will hit the ground after about 
9.7 seconds.	 ■

Power Functions
A function of the form f sxd − xa, where a is a constant, is called a power function. We 
consider several cases.

(i )  a − n, where n is a positive integer

The graphs of f sxd − xn for n − 1, 2, 3, 4, and 5 are shown in Figure 11. (These are poly-
nomials with only one term.) We already know the shape of the graphs of y − x (a line 
through the origin with slope 1) and y − x 2 [a parabola, see Example 1.1.2(b)].

x

1

y

10

y=x%

x

1

y

10

y=x#

x

1

y

10

y=≈

x

1

y

10

y=x

x

1

y

10

y=x$

The general shape of the graph of f sxd − xn depends on whether n is even or odd. 
If n is even, then f sxd − xn is an even function and its graph is similar to the parabola 
y − x 2. If n is odd, then f sxd − xn is an odd function and its graph is similar to that 
of y − x 3. Notice from Figure 12, however, that as n increases, the graph of y − xn 
becomes flatter near 0 and steeper when | x | > 1. (If x is small, then x 2 is smaller, x 3  
is even smaller, x 4 is smaller still, and so on.)

y=x$

(1, 1)(_1, 1)

y=x^
y=≈

(_1, _1)

(1, 1)

0

y

x

x

y

0

y=x#

y=x%

(i i)  a − 1yn, where n is a positive integer

The function f sxd − x 1yn − sn x  is a root function. For n − 2 it is the square root  
function f sxd − sx  , whose domain is f0, `d and whose graph is the upper half of the  

FIGURE 11 � Graphs of f sxd − x n for n − 1, 2, 3, 4, 5

A family of functions is a collection  
of functions whose equations are 
related. Figure 12 shows two families  
of power functions, one with even  
powers and one with odd powers.

FIGURE 12 �
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parabola x − y 2. [See Figure 13(a).] For other even values of n, the graph of y − sn x  is 
similar to that of y − sx . For n − 3 we have the cube root function f sxd − s3 x  whose 
domain is R (recall that every real number has a cube root) and whose graph is shown 
in Figure 13(b). The graph of y − sn x  for n odd sn . 3d is similar to that of y − s3 x .

(b) ƒ=Œ„x

x

y

0

(1, 1)

(a) ƒ=œ„x

x

y

0

(1, 1)

(iii)  a − 21
The graph of the reciprocal function f sxd − x21 − 1yx is shown in Figure 14. Its 
graph has the equation y − 1yx, or xy − 1, and is a hyperbola with the coordinate axes 
as its asymptotes. This function arises in physics and chemistry in connection with 
Boyle’s Law, which says that, when the temperature is constant, the volume V  of a gas 
is inversely proportional to the pressure P:

V −
C

P

where C is a constant. Thus the graph of V  as a function of P (see Figure 15) has the 
same general shape as the right half of Figure 14.

Power functions are also used to model species-area relationships (Exercises 30–31), 
illumination as a function of distance from a light source (Exercise 29), and the period 
of revolution of a planet as a function of its distance from the sun (Exercise 32).

Rational Functions
A rational function f  is a ratio of two polynomials:

f sxd −
Psxd
Qsxd

where P and Q are polynomials. The domain consists of all values of x such that Qsxd ± 0. 
A simple example of a rational function is the function f sxd − 1yx, whose domain is 
hx | x ± 0j; this is the reciprocal function graphed in Figure 14. The function

f sxd −
2x 4 2 x 2 1 1

x 2 2 4

is a rational function with domain hx | x ± 62j. Its graph is shown in Figure 16.

Algebraic Functions
A function f  is called an algebraic function if it can be constructed using algebraic 
operations (such as addition, subtraction, multiplication, division, and taking roots) start-
ing with polynomials. Any rational function is automatically an algebraic function. Here 
are two more examples:

f sxd − sx 2 1 1            tsxd −
x 4 2 16x 2

x 1 sx 
1 sx 2 2ds3 x 1 1 

FIGURE 13 � 
Graphs of root functions

x

1

y

10

y=∆

Figure �14
The reciprocal function

P

V

0

Figure �15
Volume as a function of pressure  
at constant temperature

ƒ=
2x$-≈+1

≈-4

x

20

y

20

FIGURE 16 
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When we sketch algebraic functions in Chapter 4, we will see that their graphs can 
assume a variety of shapes. Figure 17 illustrates some of the possibilities.

x

2

y

1

(a) ƒ=xœ„„„„x+3

x

1

y

50

(b) ©=$œ„„„„„„≈-25

x

1

y

10

(c) h(x)=x@?#(x-2)@

_3

An example of an algebraic function occurs in the theory of relativity. The mass of a 
particle with velocity v is

m − f svd −
m0

s1 2 v 2yc 2 

where m0 is the rest mass of the particle and c − 3.0 3 105 kmys is the speed of light in a  
vacuum.

Trigonometric Functions
Trigonometry and the trigonometric functions are reviewed on Reference Page 2 and also 
in Appendix D. In calculus the convention is that radian measure is always used (except 
when otherwise indicated). For example, when we use the function f sxd − sin x, it is  
understood that sin x means the sine of the angle whose radian measure is x. Thus the 
graphs of the sine and cosine functions are as shown in Figure 18.

(a) ƒ=sin x

π
2

5π
2

3π
2

π
2

_

x

y

π0_π

1

_1
2π 3π

(b) ©=cos x

x

y

0

1

_1

π_π

2π

3π

π
2

5π
2

3π
2

π
2

_

Notice that for both the sine and cosine functions the domain is s2`, `d and the range 
is the closed interval f21, 1g. Thus, for all values of x, we have

21 < sin x < 1            21 < cos x < 1

or, in terms of absolute values,

| sin x | < 1            | cos x | < 1

Also, the zeros of the sine function occur at the integer multiples of �; that is,

sin x − 0        when        x − n�    n an integer

FIGURE 17

The Reference Pages are located at 
the back of the book.

FIGURE 18
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An important property of the sine and cosine functions is that they are periodic func-
tions and have period 2�. This means that, for all values of x,

 
sinsx 1 2�d − sin x            cossx 1 2�d − cos x

The periodic nature of these functions makes them suitable for modeling repetitive phe-
nomena such as tides, vibrating springs, and sound waves. For instance, in Example 1.3.4  
we will see that a reasonable model for the number of hours of daylight in Philadelphia 
t days after January 1 is given by the function

Lstd − 12 1 2.8 sinF 2�

365
st 2 80dG

Example �5�  What is the domain of the function  f sxd −
1

1 2 2 cos x
?

Solution � This function is defined for all values of x except for those that make the 
denominator 0. But

1 2 2 cos x − 0   &?   cos x −
1

2
    &?   x −

�

3
 1 2n�    or    x −

5�

3
 1 2n�

where n is any integer (because the cosine function has period 2�). So the domain of f  
is the set of all real numbers except for the ones noted above. 	 ■

The tangent function is related to the sine and cosine functions by the equation

tan x −
sin x

cos x

and its graph is shown in Figure 19. It is undefined whenever cos x − 0, that is, when 
x − 6�y2, 63�y2, . . . . Its range is s2`, `d. Notice that the tangent function has period �:

tansx 1 �d − tan x        for all x

The remaining three trigonometric functions (cosecant, secant, and cotangent) are  
the reciprocals of the sine, cosine, and tangent functions. Their graphs are shown in  
Appendix D.

Exponential Functions
The exponential functions are the functions of the form f sxd − bx, where the base b is  
a positive constant. The graphs of y − 2x and y − s0.5dx are shown in Figure 20. In both 
cases the domain is s2`, `d and the range is s0, `d.

Exponential functions will be studied in detail in Section 1.4, and we will see that they  
are useful for modeling many natural phenomena, such as population growth (if b . 1)  
and radioactive decay (if b , 1d.

Logarithmic Functions
The logarithmic functions f sxd − logb x, where the base b is a positive constant, are the  
inverse functions of the exponential functions. They will be studied in Section 1.5. Figure 

figure 19
y − tan xy=tan x

x

y

π0_π

1

π
 2

3π
 2

π
 2

_3π 
2

_

y

x

1

10

y

x
1

10

(a) y=2® (b) y=(0.5)®

figure 20
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21 shows the graphs of four logarithmic functions with various bases. In each case the 
domain is s0, `d, the range is s2`, `d, and the function increases slowly when x . 1.

Example �6�  Classify the following functions as one of the types of functions that we 
have discussed.

(a)  f sxd − 5x	 (b)  tsxd − x 5

(c)  hsxd −
1 1 x

1 2 sx 
	 (d)  ustd − 1 2 t 1 5t 4

SOLUTION  

(a)  f sxd − 5x is an exponential function. (The x is the exponent.)

(b)  tsxd − x 5 is a power function. (The x is the base.) We could also consider it to be a 
polynomial of degree 5.

(c)  hsxd −
1 1 x

1 2 sx 
 is an algebraic function.

(d)  ustd − 1 2 t 1 5t 4 is a polynomial of degree 4.	 ■

1. 2 � Exercises

1–2�  Classify each function as a power function, root function, 
polynomial (state its degree), rational function, algebraic function, 
trigonometric function, exponential function, or logarithmic function.

	 1.	� (a)	 f sxd − log2 x	 (b)	 tsxd − s4 x 

		�  (c)	 hsxd −
2x 3

1 2 x 2 	 (d)	 ustd − 1 2 1.1t 1 2.54t 2

		�  (e)	 vstd − 5 t	 (f )	 ws�d − sin � cos2�

	 2.	� (a)	 y − � x	 (b)	 y − x�

		�  (c)	 y − x 2s2 2 x 3d	 (d)	 y − tan t 2 cos t

		�  (e)	 y −
s

1 1 s
	 (f )	 y −

sx 3 2 1

1 1 s3 x 

3–4�  Match each equation with its graph. Explain your choices. 
(Don’t use a computer or graphing calculator.)

	 3.	� (a)	 y − x 2          (b)	 y − x 5          (c)	 y − x 8

f

0

g
h

y

x

	4 .	� (a)	 y − 3x	 (b)	 y − 3x	 (c)	 y − x 3	 (d)	 y − s3 x 

G

f

g

F
y

x

5–6 � Find the domain of the function.

	5 .	  f sxd −
cos x 

1 2 sin x
	6 .	  tsxd −

1

1 2 tan x

	 7.	� (a)	�	 Find an equation for the family of linear functions with 
slope 2 and sketch several members of the family.

	 (b)	� Find an equation for the family of linear functions such 
that f s2d − 1 and sketch several members of the family.

	 (c)	� Which function belongs to both families?

	 8.	�� What do all members of the family of linear functions 
f sxd − 1 1 msx 1 3d have in common? Sketch several 
members of the family.

0

y

1

x1

y=log£ x

y=log™ x

y=log∞ x
y=log¡¸ x

figure 21
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34	 Chapter 1    Functions and Models

	 9.	�� What do all members of the family of linear functions 
f sxd − c 2 x have in common? Sketch several members of 
the family.

	10.	�� Find expressions for the quadratic functions whose graphs 
are shown.

y

(0, 1)

(1, _2.5)

(_2, 2)
y

x0

(4, 2)

f

g
x0

3

	11.	�� Find an expression for a cubic function f  if f s1d − 6 and 
f s21d − f s0d − f s2d − 0.

	12.	� �Recent studies indicate that the average surface tempera- 
ture of the earth has been rising steadily. Some scientists  
have modeled the temperature by the linear function 
T − 0.02t 1 8.50, where T is temperature in °C and t  
represents years since 1900.

	 (a)	� What do the slope and T-intercept represent?
	 (b)	� Use the equation to predict the average global surface  

temperature in 2100.

	13.	�� If the recommended adult dosage for a drug is D (in mg), 
then to determine the appropriate dosage c for a child of 
age a, pharmacists use the equation c − 0.0417Dsa 1 1d. 
Suppose the dosage for an adult is 200 mg.

	 (a)	� Find the slope of the graph of c. What does it represent?
	 (b)	� What is the dosage for a newborn?

	14.	�� The manager of a weekend flea market knows from past 
experience that if he charges x dollars for a rental space at 
the market, then the number y of spaces he can rent is given 
by the equation y − 200 2 4x.

	 (a)	� Sketch a graph of this linear function. (Remember that 
the rental charge per space and the number of spaces 
rented can’t be negative quantities.)

	 (b)	� What do the slope, the y-intercept, and the x-intercept of 
the graph represent?

	15.	�� The relationship between the Fahrenheit sFd and Celsius 
sCd temperature scales is given by the linear function 
F − 9

5 C 1 32.
	 (a)	 Sketch a graph of this function.
	 (b)	� What is the slope of the graph and what does it repre-

sent? What is the F-intercept and what does it represent?

	16.	� �Jason leaves Detroit at 2:00 pm and drives at a constant speed 
west along I-94. He passes Ann Arbor, 40 mi from Detroit, at 
2:50 pm.

	 (a)	� Express the distance traveled in terms of the time 
elapsed.

	 (b)	� Draw the graph of the equation in part (a).
	 (c)	� What is the slope of this line? What does it represent?

	17.	� ��Biologists have noticed that the chirping rate of crickets of 
a certain species is related to temperature, and the relation-
ship appears to be very nearly linear. A cricket produces 
113 chirps per minute at 70°F and 173 chirps per minute  
at 80°F.

	 (a)	� Find a linear equation that models the temperature T as  
a function of the number of chirps per minute N.

	 (b)	� What is the slope of the graph? What does it represent?
	 (c)	� If the crickets are chirping at 150 chirps per minute, 

estimate the temperature.

	18.	� �The manager of a furniture factory finds that it costs $2200 
to manufacture 100 chairs in one day and $4800 to produce 
300 chairs in one day.

	 (a)	� Express the cost as a function of the number of chairs 
produced, assuming that it is linear. Then sketch the 
graph.

	 (b)	� What is the slope of the graph and what does it represent?
	 (c)	� What is the y-intercept of the graph and what does it  

represent?

	19.	� �At the surface of the ocean, the water pressure is the same  
as the air pressure above the water, 15 lbyin2. Below the sur- 
face, the water pressure increases by 4.34 lbyin2 for every  
10 ft of descent.

	 (a)	� Express the water pressure as a function of the depth 
below the ocean surface.

	 (b)	� At what depth is the pressure 100 lbyin2?

	20.	� �The monthly cost of driving a car depends on the number 
of miles driven. Lynn found that in May it cost her $380 to 
drive 480 mi and in June it cost her $460 to drive 800 mi.

	 (a)	� Express the monthly cost C as a function of the distance 
driven d, assuming that a linear relationship gives a 
suitable model.

	 (b)	�� Use part (a) to predict the cost of driving 1500 miles per 
month.

	 (c)	�� Draw the graph of the linear function. What does the 
slope represent?

	 (d)	� What does the C-intercept represent?
	 (e)	� Why does a linear function give a suitable model in this  

situation?

	�21–22 � For each scatter plot, decide what type of function you 
might choose as a model for the data. Explain your choices.

	21.	�

0 x

y(a)

  0 x

y(b)
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	22.	

0 x

y(a)

  0 x

y(b)

	23.	� �The table shows (lifetime) peptic ulcer rates (per 100 popula-
tion) for various family incomes as reported by the National 
Health Interview Survey.

Income
Ulcer rate  

(per 100 population)

$4,000 	 14.1
$6,000 	 13.0
$8,000 	 13.4

$12,000 	 12.5
$16,000 	 12.0
$20,000 	 12.4
$30,000 	 10.5
$45,000 	 9.4
$60,000 	 8.2

	 (a)	� Make a scatter plot of these data and decide whether a  
linear model is appropriate.

	 (b)	� Find and graph a linear model using the first and last 
data points.

	 (c)	 Find and graph the least squares regression line.
	 (d)	� Use the linear model in part (c) to estimate the ulcer 

rate for an income of $25,000.
	 (e)	� According to the model, how likely is someone with an 

income of $80,000 to suffer from peptic ulcers?
	 (f )	� Do you think it would be reasonable to apply the model 

to someone with an income of $200,000?

	24.	� �Biologists have observed that the chirping rate of crickets of 
a certain species appears to be related to temperature. The 
table shows the chirping rates for various temperatures.

	 (a)	 Make a scatter plot of the data.
	 (b)	 Find and graph the regression line.
	 (c)	� Use the linear model in part (b) to estimate the chirping 

rate at 100°F.

Temperature 
(°F)

Chirping rate 
(chirpsymin)

Temperature 
(°F)

Chirping rate 
(chirpsymin)

50 20 75 140
55 46 80 173
60 79 85 198
65 91 90 211
70 113

;

;

	25.�	� Anthropologists use a linear model that relates human femur 
(thighbone) length to height. The model allows an anthro-
pologist to determine the height of an individual when only a 
partial skeleton (including the femur) is found. Here we find 
the model by analyzing the data on femur length and height 
for the eight males given in the following table.

	 (a)	� Make a scatter plot of the data.
	 (b)	 Find and graph the regression line that models the data.
	 (c)	� An anthropologist finds a human femur of length  

53 cm. How tall was the person?

Femur length 
(cm)

Height 
(cm)

Femur length 
(cm)

Height 
(cm)

50.1 178.5 44.5 168.3
48.3 173.6 42.7 165.0
45.2 164.8 39.5 155.4
44.7 163.7 38.0 155.8

	26.	�� When laboratory rats are exposed to asbestos fibers, some 
of them develop lung tumors. The table lists the results of 
several experiments by different scientists.

	 (a)	� Find the regression line for the data.
	 (b)	� Make a scatter plot and graph the regression line.  

Does the regression line appear to be a suitable model 
for the data?

	 (c)	� What does the y-intercept of the regression line represent?

Asbestos 
exposure 

(fibersymL)

Percent of mice 
that develop 
lung tumors

Asbestos 
exposure 

(fibersymL)

Percent of mice 
that develop 
lung tumors

50 2 1600 42
400 6 1800 37
500 5 2000 38
900 10 3000 50

1100 26

	27.	�� The table shows world average daily oil consumption from 
1985 to 2010 measured in thousands of barrels per day.

	 (a)	� Make a scatter plot and decide whether a linear model 
is appropriate.

	 (b)	� Find and graph the regression line.
	 (c)	� Use the linear model to estimate the oil consumption in 

2002 and 2012.

Years  
since 1985

Thousands of barrels  
of oil per day

0 60,083
5 66,533
10 70,099
15 76,784
20 84,077
25 87,302

Source: �US Energy Information Administration

;

;

;
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	28.	� �The table shows average US retail residential prices of 
electricity from 2000 to 2012, measured in cents per 
kilowatt hour.

	 (a)	� Make a scatter plot. Is a linear model appropriate?
	 (b)	� Find and graph the regression line.
	 (c)	� Use your linear model from part (b) to estimate the 

average retail price of electricity in 2005 and 2013.

Years since 2000 CentsykWh

0 8.24
2 8.44
4 8.95
6 10.40
8 11.26

10 11.54
12 11.58

Source: �US Energy Information Administration

	29.�	� Many physical quantities are connected by inverse square 
laws, that is, by power functions of the form f sxd − kx22.  
In particular, the illumination of an object by a light source 
is inversely proportional to the square of the distance from 
the source. Suppose that after dark you are in a room with 
just one lamp and you are trying to read a book. The light is 
too dim and so you move halfway to the lamp. How much 
brighter is the light?

	30.	� �It makes sense that the larger the area of a region, the larger 
the number of species that inhabit the region. Many ecolo-
gists have modeled the species-area relation with a power 
function and, in particular, the number of species S of bats 
living in caves in central Mexico has been related to the 
surface area A of the caves by the equation S − 0.7A0.3.

	 (a)	� The cave called Misión Imposible near Puebla, 
Mexico, has a surface area of A − 60 m2. How many 
species of bats would you expect to find in that cave?

	 (b)	� If you discover that four species of bats live in a cave, 
estimate the area of the cave.

; 	31.	� �The table shows the number N of species of reptiles and 
amphibians inhabiting Caribbean islands and the area A of 
the island in square miles.

	 (a)	� Use a power function to model N as a function of A.
	 (b)	� The Caribbean island of Dominica has area 291 mi2. 

How many species of reptiles and amphibians would 
you expect to find on Dominica?

Island A N

Saba 	 4 	 5
Monserrat 	 40 	 9
Puerto Rico 	 3,459 	 40
Jamaica 	 4,411 	 39
Hispaniola 	 29,418 	 84
Cuba  	 44,218 	 76

	32.	� �The table shows the mean (average) distances d of the 
planets from the sun (taking the unit of measurement to be 
the distance from the earth to the sun) and their periods T 
(time of revolution in years).

	 (a)	 Fit a power model to the data.
	 (b)	� Kepler’s Third Law of Planetary Motion states that 

“The square of the period of revolution of a planet 
is proportional to the cube of its mean distance from 
the sun.”  
Does your model corroborate Kepler’s Third Law?

Planet d T

Mercury 	 0.387 	 0.241
Venus 	 0.723 	 0.615
Earth 	 1.000 	 1.000
Mars 	 1.523 	 1.881
Jupiter 	 5.203 	 11.861
Saturn 	 9.541 	 29.457
Uranus 	 19.190 	 84.008
Neptune 	 30.086 	 164.784

;

;

In this section we start with the basic functions we discussed in Section 1.2 and obtain 
new functions by shifting, stretching, and reflecting their graphs. We also show how to 
combine pairs of functions by the standard arithmetic operations and by composition.

Transformations of Functions
By applying certain transformations to the graph of a given function we can obtain 
the graphs of related functions. This will give us the ability to sketch the graphs of  
many functions quickly by hand. It will also enable us to write equations for given graphs.

Let’s first consider translations. If c is a positive number, then the graph of y − f sxd 1 c 
is just the graph of y − f sxd shifted upward a distance of c units (because each y-coordi-
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nate is increased by the same number c). Likewise, if tsxd − f sx 2 cd, where c . 0, then 
the value of t at x is the same as the value of f  at x 2 c (c units to the left of x). There- 
fore the graph of y − f sx 2 cd is just the graph of y − f sxd shifted c units to the right 
(see Figure 1).

Vertical and Horizontal Shifts  �Suppose c . 0. To obtain the graph of

 y − f sxd 1 c, shift the graph of y − f sxd a distance c units upward

 y − f sxd 2 c, shift the graph of y − f sxd a distance c units downward

 y − f sx 2 cd, shift the graph of y − f sxd a distance c units to the right

 y − f sx 1 cd, shift the graph of y − f sxd a distance c units to the left

y=   ƒ1
c

x

y

0

y=f(_x)

y=ƒ

y=_ƒ

y=cƒ
(c>1)

x

y

0

y=f(x-c)y=f(x+c) y =ƒ

y=ƒ-c

y=ƒ+c

c

c

c c

Now let’s consider the stretching and reflecting transformations. If c . 1, then the  
graph of y − cf sxd is the graph of y − f sxd stretched by a factor of c in the vertical  
direction (because each y-coordinate is multiplied by the same number c). The graph of 
y − 2f sxd is the graph of y − f sxd reflected about the x-axis because the point sx, yd is 
replaced by the point sx, 2yd. (See Figure 2 and the following chart, where the results of 
other stretching, shrinking, and reflecting transformations are also given.)

Vertical and Horizontal Stretching and Reflecting � Suppose c . 1. To obtain the 
graph of

 y − cf sxd, stretch the graph of y − f sxd vertically by a factor of c

 y − s1ycd f sxd, shrink the graph of y − f sxd vertically by a factor of c

 y − f scxd, shrink the graph of y − f sxd horizontally by a factor of c

 y − f sxycd, stretch the graph of y − f sxd horizontally by a factor of c

 y − 2f sxd, reflect the graph of y − f sxd about the x-axis

 y − f s2xd, reflect the graph of y − f sxd about the y-axis

Figure �2�  Stretching and reflecting the graph of fFigure �1�  Translating the graph of f
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Figure 3 illustrates these stretching transformations when applied to the cosine function 
with c − 2. For instance, in order to get the graph of y − 2 cos x we multiply the y-coordi-
nate of each point on the graph of y − cos x by 2. This means that the graph of y − cos x 
gets stretched vertically by a factor of 2.

x

1

2

y

0

y=cos x

y=cos 2xy=cos    x1
2

x

1

2

y

0

y=2 cos x

y=cos x

y=    cos x1
2

1

Example �1�  Given the graph of y − sx , use transformations to graph y − sx 2 2, 

y − sx 2 2 , y − 2sx , y − 2sx , and y − s2x .

SOLUTION � The graph of the square root function y − sx , obtained from Fig- 
ure 1.2.13(a), is shown in Figure 4(a). In the other parts of the figure we sketch 
y − sx 2 2 by shifting 2 units downward, y − sx 2 2  by shifting 2 units to the 
right, y − 2sx  by reflecting about the x-axis, y − 2sx  by stretching vertically by a 
factor of 2, and y − s2x  by reflecting about the y-axis.

(a) y=œ„x (b) y=œ„-2x (c) y=œ„„„„x-2 (d) y=_œ„x (e) y=2œ„x (f ) y=œ„„_x

0 x

y

0 x

y

0 x

y

20 x

y

_2

0 x

y

1

10 x

y

	
■

Example �2�  Sketch the graph of the function f sxd − x 2 1 6x 1 10.

SOLUTION � Completing the square, we write the equation of the graph as

y − x 2 1 6x 1 10 − sx 1 3d2 1 1

This means we obtain the desired graph by starting with the parabola y − x 2 and shift-
ing 3 units to the left and then 1 unit upward (see Figure 5).

(a) y=≈ (b) y=(x+3)@+1

x0_1_3

1

y

(_3, 1)

x0

y

■

Figure �3

Figure �4

Figure �5
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Example �3�  Sketch the graphs of the following functions.
(a)  y − sin 2x	 (b)  y − 1 2 sin x

SOLUTION
(a)  We obtain the graph of y − sin 2x from that of y − sin x by compressing horizon-
tally by a factor of 2. (See Figures 6 and 7.) Thus, whereas the period of y − sin x is  
2�, the period of y − sin 2x is 2�y2 − �.

x0

y

1

π
2

π
4

π

y=sin 2x

FIGURE 7

(b)  To obtain the graph of y − 1 2 sin x, we again start with y − sin x. We reflect  
about the x-axis to get the graph of y − 2sin x and then we shift 1 unit upward to get 
y − 1 2 sin x. (See Figure 8.)

x

1

2

y

π0 2π

y=1-sin x

π
2

3π
2 	 ■

Example �4�  Figure 9 shows graphs of the number of hours of daylight as functions of 
the time of the year at several latitudes. Given that Philadelphia is located at approxi-
mately 408N latitude, find a function that models the length of daylight at Philadelphia.

0

2

4

6

8

10

12

14

16

18

20

Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

Hours

60° N

50° N
40° N
30° N
20° N

FIGURE 6

x0

y

1

π
2

π

y=sin x

FIGURE 8

FIGURE 9 
 � Graph of the length of daylight from 

March 21 through December 21  
at various latitudes 

Source: Adapted from L. Harrison,  
Daylight, Twilight, Darkness and Time � 
(New York: Silver, Burdett, 1935), 40.
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SOLUTION � Notice that each curve resembles a shifted and stretched sine function. 
By looking at the blue curve we see that, at the latitude of Philadelphia, daylight 
lasts about 14.8 hours on June 21 and 9.2 hours on December 21, so the amplitude 
of the curve (the factor by which we have to stretch the sine curve vertically) is 
1
2 s14.8 2 9.2d − 2.8.

By what factor do we need to stretch the sine curve horizontally if we measure the 
time t in days? Because there are about 365 days in a year, the period of our model 
should be 365. But the period of y − sin t is 2�, so the horizontal stretching factor  
is 2�y365.

We also notice that the curve begins its cycle on March 21, the 80th day of the 
year, so we have to shift the curve 80 units to the right. In addition, we shift it 12 units 
upward. Therefore we model the length of daylight in Philadelphia on the tth day of the 
year by the function

Lstd − 12 1 2.8 sinF 2�

365
st 2 80dG

■

Another transformation of some interest is taking the absolute value of a function. If 
y − | f sxd|, then according to the definition of absolute value, y − f sxd when f sxd > 0 
and y − 2f sxd when f sxd , 0. This tells us how to get the graph of y − | f sxd| from the 
graph of y − f sxd: The part of the graph that lies above the x-axis remains the same; the 
part that lies below the x-axis is reflected about the x-axis.

Example �5�  Sketch the graph of the function y − | x 2 2 1 |.
SOLUTION � We first graph the parabola y − x 2 2 1 in Figure 10(a) by shifting the 
parabola y − x 2 downward 1 unit. We see that the graph lies below the x-axis when 
21 , x , 1, so we reflect that part of the graph about the x-axis to obtain the graph of 
y − | x 2 2 1| in Figure 10(b).	 ■

Combinations of Functions
Two functions f  and t can be combined to form new functions f 1 t, f 2 t, ft, and fyt  
in a manner similar to the way we add, subtract, multiply, and divide real numbers. The 
sum and difference functions are defined by

s f 1 tdsxd − f sxd 1 tsxd             s f 2 tdsxd − f sxd 2 tsxd

If the domain of f  is A and the domain of t is B, then the domain of f 1 t is the inter-
section A > B because both f sxd and tsxd have to be defined. For example, the domain
of f sxd − sx  is A − f0, `d and the domain of tsxd − s2 2 x  is B − s2`, 2g, so the
domain of s f 1 tdsxd − sx 1 s2 2 x  is A > B − f0, 2g.

Similarly, the product and quotient functions are defined by

s ftdsxd − f sxdtsxd            S  f

tDsxd −
 f sxd
tsxd

The domain of ft is A > B, but we can’t divide by 0 and so the domain of fyt is 
hx [ A > B | tsxd ± 0j. For instance, if f sxd − x 2 and tsxd − x 2 1, then the domain 
of the rational function s fytdsxd − x 2ysx 2 1d is hx | x ± 1j, or s2`, 1d ø s1, `d. 

There is another way of combining two functions to obtain a new function. For
example, suppose that y − f sud − su  and u − tsxd − x 2 1 1. Since y is a function 
of u and u is, in turn, a function of x, it follows that y is ultimately a function of x. 

figure 10

0 x

y

_1 1

(a) y=≈-1

(b) y=| ≈-1 |

0 x

y

_1 1
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We compute this by substitution:

y − f sud − f stsxdd − f sx 2 1 1d − sx 2 1 1

The procedure is called composition because the new function is composed of the two 
given functions f  and t.

In general, given any two functions f  and t, we start with a number x in the domain 
of t and calculate tsxd. If this number tsxd is in the domain of f, then we can calculate 
the value of f stsxdd. Notice that the output of one function is used as the input to the next 
function. The result is a new function hsxd − f stsxdd obtained by substituting t into f. It is  
called the composition (or composite) of f  and t and is denoted by f 8 t (“ f  circle t”).

Definition � Given two functions f  and t, the composite function f 8 t (also called 
the composition of f  and t) is defined by

s f 8 tdsxd − f stsxdd

The domain of f 8 t is the set of all x in the domain of t such that tsxd is in the domain  
of f. In other words, s f 8 tdsxd is defined whenever both tsxd and f stsxdd are defined. 
Figure 11 shows how to picture f 8 t in terms of machines.

Example �6�  If f sxd − x 2 and tsxd − x 2 3, find the composite functions f 8 t and t 8 f.

SOLUTION � We have

 s f 8 tdsxd − f stsxdd − f sx 2 3d − sx 2 3d2

 st 8 f dsxd − ts f sxdd − tsx 2 d − x 2 2 3	 n

NOTE � You can see from Example 6 that, in general, f 8 t ± t 8 f. Remember, the 
notation f 8 t means that the function t is applied first and then f  is applied second. In 
Example 6, f 8 t is the function that first subtracts 3 and then squares; t 8 f  is the function 
that first squares and then subtracts 3.

Example �7�  If f sxd − sx  and tsxd − s2 2 x , find each of the following functions 
and their domains.
(a)  f 8 t            (b)  t 8 f             (c)  f 8 f             (d)  t 8 t

SOLUTION
(a)	 s f 8 tdsxd − f stsxdd − f (s2 2 x) − ss2 2 x − s4 2 2 x 

The domain of f 8 t is hx | 2 2 x > 0j − hx | x < 2j − s2`, 2g.

(b)	 st 8 f dsxd − ts f sxdd − t(sx ) − s2 2 sx 

For sx  to be defined we must have x > 0. For s2 2 sx  to be defined we must have
2 2 sx > 0, that is, sx < 2, or x < 4. Thus we have 0 < x < 4, so the domain of 
t 8 f  is the closed interval f0, 4g.

(c)	 s f 8 f dsxd − f s f sxdd − f (sx ) − ssx − s4 x 

The domain of f 8 f  is f0, `d.

FIGURE 11 �  
The f 8 t machine is composed of 
the t machine (first) and then the  
f  machine.

f

g

f{©}

f • g

x

©

(input)

(output)

If 0 < a < b, then a 2 < b 2.
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	 (a)	 y − f sx 2 4d	 (b)	 y − f sxd 1 3
	 (c)	 y − 1

3 f sxd	 (d)	 y − 2f sx 1 4d
	 (e)	 y − 2 f sx 1 6d

!@

$

%

#f

y

3

_3

6

0 x3_3_6 6

	 1.	� �Suppose the graph of f  is given. Write equations for the graphs 
that are obtained from the graph of f  as follows.

	 (a)	 Shift 3 units upward.
	 (b)	 Shift 3 units downward.
	 (c)	 Shift 3 units to the right.
	 (d)	 Shift 3 units to the left.
	 (e)	 Reflect about the x-axis.
	 (f )	 Reflect about the y-axis.
	 (g)	 Stretch vertically by a factor of 3.
	 (h)	 Shrink vertically by a factor of 3.

	 2.	�� Explain how each graph is obtained from the graph of y − f sxd.
	 (a)	 y − f sxd 1 8	 (b)	 y − f sx 1 8d
	 (c)	 y − 8 f sxd	 (d)	 y − f s8xd
	 (e)	 y − 2f sxd 2 1	 (f)	 y − 8 f s 1

8 xd
	3 .	�� The graph of y − f sxd is given. Match each equation with its 

graph and give reasons for your choices.

(d)	 st 8 tdsxd − tstsxdd − t(s2 2 x ) − s2 2 s2 2 x 

This expression is defined when both 2 2 x > 0 and 2 2 s2 2 x > 0. The first 
inequality means x < 2, and the second is equivalent to s2 2 x < 2, or 2 2 x < 4, or 
x > 22. Thus 22 < x < 2, so the domain of t 8 t is the closed interval f22, 2g.	 ■

It is possible to take the composition of three or more functions. For instance, the 
composite function f 8 t 8 h is found by first applying h, then t, and then f  as follows:

s f 8 t 8 hdsxd − f stshsxddd

Example �8�  Find f 8 t 8 h if f sxd − xysx 1 1d, tsxd − x 10, and hsxd − x 1 3.

SOLUTIOn
 s f 8 t 8 hdsxd − f stshsxddd − f stsx 1 3dd

	  − f ssx 1 3d10 d −
sx 1 3d10

sx 1 3d10 1 1
	 ■

So far we have used composition to build complicated functions from simpler ones. 
But in calculus it is often useful to be able to decompose a complicated function into 
simpler ones, as in the following example.

Example �9�  Given Fsxd − cos2sx 1 9d, find functions f , t, and h such that F − f 8 t 8 h.

SOLUTION � Since Fsxd − fcossx 1 9dg2, the formula for F says: First add 9, then take 
the cosine of the result, and finally square. So we let

hsxd − x 1 9            tsxd − cos x            f sxd − x 2

Then	  s f 8 t 8 hdsxd − f stshsxddd − f stsx 1 9dd − f scossx 1 9dd

 	  − fcossx 1 9dg2 − Fsxd	 ■

1. 3  �Exercises
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	4 .	� �The graph of f  is given. Draw the graphs of the following 
functions.

	 (a)	 y − f sxd 2 3	 (b)	 y − f sx 1 1d

	 (c)	 y − 1
2 f sxd	 (d)	 y − 2f sxd

x

y

0 1

2

	 5.	� �The graph of f  is given. Use it to graph the following  
functions.

	 (a)	 y − f s2xd	 (b)	 y − f s 1
2xd

	 (c)	 y − f s2xd	 (d)	 y − 2f s2xd

x

y

0 1

1

	�6–7 � The graph of y − s3x 2 x 2  is given. Use transformations  
to create a function whose graph is as shown.

1.5 y=œ„„„„„„3x-≈

x

y

30

	6 .	

5 x

y

20

3

  7. 

_4
_1

_2.5

x

y

_1 0

	 8.	� (a)	� How is the graph of y − 2 sin x related to the graph of 
y − sin x? Use your answer and Figure 6 to sketch the  
graph of y − 2 sin x.

	 (b)	� How is the graph of y − 1 1 sx   related to the graph of 
y − sx

  

? Use your answer and Figure 4(a) to sketch the 
graph of y − 1 1 sx .

9–24 � Graph the function by hand, not by plotting points, but by 
starting with the graph of one of the standard functions given in 
Section 1.2, and then applying the appropriate transformations.

	 9.	 y − 2x 2	 10.	 y − sx 2 3d2

	11.	 y − x 3 1 1	 12.	 y − 1 2
1

x

	13.	 y − 2 cos 3x	 14.	 y − 2sx 1 1 

	15.	 y − x 2 2 4x 1 5	 16.	 y − 1 1 sin �x

	17.	 y − 2 2 sx 	 18.	 y − 3 2 2 cos x

	19.	 y − sin( 1
2 x)	 20.	 y − | x | 2 2

	21.	 y − | x 2 2 |	 22.	 y −
1

4
 tanSx 2

�

4 D
	23.	 y − | sx 2 1 |	 24.	 y − | cos �x |

	25.	�� The city of New Orleans is located at latitude 30°N. Use 
Figure 9 to find a function that models the number of hours 
of daylight at New Orleans as a function of the time of year. 
To check the accuracy of your model, use the fact that on 
March 31 the sun rises at 5:51 am and sets at 6:18 pm in 
New Orleans. 

	26.	�� A variable star is one whose brightness alternately increases 
and decreases. For the most visible variable star, Delta 
Cephei, the time between periods of maximum brightness is 
5.4 days, the average brightness (or magnitude) of the star 
is 4.0, and its brightness varies by 60.35 magnitude. Find 
a function that models the brightness of Delta Cephei as a 
function of time.

	27.	� �Some of the highest tides in the world occur in the Bay of 
Fundy on the Atlantic Coast of Canada. At Hopewell Cape 
the water depth at low tide is about 2.0 m and at high tide  
it is about 12.0 m. The natural period of oscillation is  
about 12 hours and on June 30, 2009, high tide occurred  
at 6:45 am. Find a function involving the cosine function  
that models the water depth Dstd (in meters) as a function  
of time t (in hours after midnight) on that day.

	28.	�� In a normal respiratory cycle the volume of air that moves 
into and out of the lungs is about 500 mL. The reserve and 
residue volumes of air that remain in the lungs occupy 
about 2000 mL and a single respiratory cycle for an average 
human takes about 4 seconds. Find a model for the total 
volume of air Vstd in the lungs as a function of time.

	29.	� (a)	� How is the graph of y − f (| x |) related to the graph of f ?
	 (b)	 Sketch the graph of y − sin | x |.
	 (c)	 Sketch the graph of y − s| x |.
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	52.	� Use the table to evaluate each expression.
	 (a)	� f sts1dd	 (b)	 ts f s1dd	 (c)	 f s f s1dd
	 (d)	 tsts1dd	 (e)	 st 8 f ds3d	 (f )	 s f 8 tds6d

x 1 2 3 4 5 6

f sxd 3 1 4 2 2 5

tsxd 6 3 2 1 2 3

	53.	�� Use the given graphs of f  and t to evaluate each expression, or 
explain why it is undefined.

	� (a)	 f sts2dd	 (b)	 ts f s0dd	 (c)	 s f 8 tds0d
	 (d)	 st 8 f ds6d	 (e)	 st 8 tds22d	 (f )	 s f 8 f ds4d

x

y

0

fg

2

2

	54.	� �Use the given graphs of f  and t to estimate the value of 
f stsxdd for x − 25, 24, 23, . . . , 5. Use these estimates to 
sketch a rough graph of f 8 t.

g

f

x

y

0 1

1

	55.	�� A stone is dropped into a lake, creating a circular ripple that 
travels outward at a speed of 60 cmys.

	 (a)	� Express the radius r of this circle as a function of the  
time t (in seconds).

	 (b)	� If A is the area of this circle as a function of the radius, 
find A 8 r and interpret it.

	56.	�� A spherical balloon is being inflated and the radius of the 
balloon is increasing at a rate of 2 cmys.

	 (a)	� Express the radius r of the balloon as a function of the  
time t (in seconds).

	 (b)	� If V is the volume of the balloon as a function of the 
radius, find V 8 r and interpret it.

	57.	�� A ship is moving at a speed of 30 kmyh parallel to a straight 
shoreline. The ship is 6 km from shore and it passes a light-
house at noon.

	 (a)	� Express the distance s between the lighthouse and the ship 

	30.	�� Use the given graph of f  to sketch the graph of y − 1yf sxd. 
Which features of f  are the most important in sketching 
y − 1yf sxd? Explain how they are used.

1

10 x

y
	

31–32 � Find (a) f 1 t, (b) f 2 t, (c) ft, and (d) fyt and state their 
domains.

	31.	 �f sxd − x 3 1 2x 2,  tsxd − 3x 2 2 1

	32.	� f sxd − s3 2 x ,  tsxd − sx 2 2 1

	33–38 � Find the functions (a) f 8 t, (b) t 8 f , (c) f 8 f , and (d) t 8 t 
and their domains.

	33.	� f sxd − 3x 1 5,  tsxd − x 2 1 x

	34.	� f sxd − x 3 2 2,  tsxd − 1 2 4x 

	35.	� f sxd − sx 1 1,  tsxd − 4x 2 3

	36.	� f sxd − sin x,  tsxd − x 2 1 1

	37.	� f sxd − x 1
1

x
,  tsxd −

x 1 1

x 1 2

	38.	� f sxd −
x

1 1 x
,  tsxd − sin 2x

	39–42 � Find f 8 t 8 h.

	39.	� f sxd − 3x 2 2,  tsxd − sin x,    hsxd − x 2

	40.	� f sxd − | x 2 4 |,  tsxd − 2 x,    hsxd − sx 

	41.	� f sxd − sx 2 3 ,  tsxd − x 2,    hsxd − x 3 1 2

	42.	� f sxd − tan x,  tsxd −
x

x 2 1
,    hsxd − s3 x 

	43–48 � Express the function in the form f 8 t.

	43.	 Fsxd − s2x 1 x 2d4	 44.	 Fsxd − cos2x

	45.	 Fsxd −
s3 x 

1 1 s3 x 
	 46.	 Gsxd −   3Î x

1 1 x
 

	47.	 vstd − secst 2d tanst 2d	 48.	 ustd −
tan t

1 1 tan t

	49–51 � Express the function in the form f 8 t 8 h.

	49.	 Rsxd − ssx 2 1 	 50.	 Hsxd − s8 2 1 | x | 
	51.	 Sstd − sin2scos td
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In Appendix G we present an alterna-
tive approach to the exponential and 
logarithmic functions using integral 
calculus.

as a function of d, the distance the ship has traveled since 
noon; that is, find f  so that s − f sdd.

	 (b)	� Express d as a function of t, the time elapsed since noon; 
that is, find t so that d − tstd.

	 (c)	� Find f 8 t. What does this function represent?

	58.	�� An airplane is flying at a speed of 350 miyh at an altitude of 
one mile and passes directly over a radar station at time t − 0.

	 (a)	� Express the horizontal distance d (in miles) that the plane 
has flown as a function of t.

	 (b)	� Express the distance s between the plane and the radar  
station as a function of d.

	 (c)	 Use composition to express s as a function of t.

	59.	� The Heaviside function H is defined by

Hstd − H0

1

if  t , 0

if  t > 0

		��  It is used in the study of electric circuits to represent the 
sudden surge of electric current, or voltage, when a switch is 
instantaneously turned on.

	 (a)	 Sketch the graph of the Heaviside function.
	 (b)	� Sketch the graph of the voltage Vstd in a circuit if the 

switch is turned on at time t − 0 and 120 volts are  
applied instantaneously to the circuit. Write a formula  
for Vstd in terms of Hstd.

	 (c)	� Sketch the graph of the voltage Vstd in a circuit if the 
switch is turned on at time t − 5 seconds and 240 volts 
are applied instantaneously to the circuit. Write a formula 
for Vstd in terms of Hstd. (Note that starting at t − 5  
corresponds to a translation.)

	60.	�� The Heaviside function defined in Exercise 59 can also 
be used to define the ramp function y − ctHstd, which 

The function f sxd − 2x is called an exponential function because the variable, x, is the 
exponent. It should not be confused with the power function tsxd − x 2, in which the 
variable is the base.

In general, an exponential function is a function of the form

f sxd − bx

where b is a positive constant. Let’s recall what this means.
If x − n, a positive integer, then

bn − b ? b ? ∙ ∙ ∙ ? b 
   

    n factors

If x − 0, then b 0 − 1, and if x − 2n, where n is a positive integer, then

b2n −
1

bn

represents a gradual increase in voltage or current in a circuit.
	 (a)	 Sketch the graph of the ramp function y − tHstd.
	 (b)	� Sketch the graph of the voltage Vstd in a circuit if the 

switch is turned on at time t − 0 and the voltage is gradu-
ally increased to 120 volts over a 60-second time interval. 
Write a formula for Vstd in terms of Hstd for t < 60.

	 (c)	� Sketch the graph of the voltage Vstd in a circuit if the 
switch is turned on at time t − 7 seconds and the voltage 
is gradually increased to 100 volts over a period of 25 sec-
onds. Write a formula for Vstd in terms of Hstd for t < 32.

	61.	�� Let f  and t be linear functions with equations f sxd − m1x 1 b1 
and tsxd − m2 x 1 b2. Is f 8 t also a linear function? If so, 
what is the slope of its graph?

	62.	�� If you invest x dollars at 4% interest compounded annually,  
then the amount Asxd of the investment after one year is 
Asxd − 1.04x. Find A 8 A, A 8 A 8 A, and A 8 A 8 A 8 A. What 
do these compositions represent? Find a formula for the com-
position of n copies of A.

	63.	� (a)	� If tsxd − 2x 1 1 and hsxd − 4x 2 1 4x 1 7, find a func-
tion f  such that f 8 t − h. (Think about what operations 
you would have to perform on the formula for t to end up 
with the formula for h.)

	 (b)	� If f sxd − 3x 1 5 and hsxd − 3x 2 1 3x 1 2, find a func-
tion t such that f 8 t − h.

	64.	�� If f sxd − x 1 4 and hsxd − 4x 2 1, find a function t such  
that t 8 f − h.

	65.	�� Suppose t is an even function and let h − f 8 t. Is h always an 
even function?

	66.	� �Suppose t is an odd function and let h − f 8 t. Is h always an 
odd function? What if f  is odd? What if f  is even?
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If x is a rational number, x − pyq, where p and q are integers and q . 0, then

bx − bpyq − sq bp 
− ssq b d p

But what is the meaning of bx if x is an irrational number? For instance, what is meant 
by 2s3 or 5�?

To help us answer this question we first look at the graph of the function y − 2x,  
where x is rational. A representation of this graph is shown in Figure 1. We want to 
enlarge the domain of y − 2x to include both rational and irrational numbers.

There are holes in the graph in Figure 1 corresponding to irrational values of x. We 
want to fill in the holes by defining f sxd − 2x, where x [ R, so that f  is an increasing 
function. In particular, since the irrational number s3  satisfies

1.7 , s3 , 1.8

we must have	 21.7 , 2s3 , 21.8

and we know what 21.7 and 21.8 mean because 1.7 and 1.8 are rational numbers. Similarly,  
if we use better approximations for s3 , we obtain better approximations for 2s3:

 1.73 , s3 , 1.74  ?  21.73 , 2s3 , 21.74

 1.732 , s3 , 1.733  ?  21.732 , 2s3 , 21.733

 1.7320 , s3 , 1.7321  ?  21.7320 , 2s3 , 21.7321

 1.73205 , s3 , 1.73206 ? 21.73205 , 2s3 , 21.73206

	 .	 .	 .	 .
	 .	 .	 .	 .
	 .	 .	 .	 .

It can be shown that there is exactly one number that is greater than all of the numbers

21.7,     21.73,     21.732,     21.7320,     21.73205,     . . .

and less than all of the numbers

21.8,     21.74,     21.733,     21.7321,     21.73206,     . . .

We define 2s3 to be this number. Using the preceding approximation process we can 
compute it correct to six decimal places:

2s3 < 3.321997

Similarly, we can define 2x (or bx, if b . 0) where x is any irrational number. Figure 
2 shows how all the holes in Figure 1 have been filled to complete the graph of the 
function f sxd − 2x, x [ R.

x10

y

1

A proof of this fact is given in  
J. Marsden and A. Weinstein, 
Calculus Unlimited (Menlo Park, CA: 
Benjamin/Cummings, 1981). 

FIGURE 2  
�y − 2 x, x real 

FIGURE 1 �  
Representation of y − 2x, x rational

x0

y

1

1
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The graphs of members of the family of functions y − bx are shown in Figure 3 for 
various values of the base b. Notice that all of these graphs pass through the same point 
s0, 1d because b 0 − 1 for b ± 0. Notice also that as the base b gets larger, the exponential 
function grows more rapidly (for x . 0).

0

1®

1.5®2®4®10®”   ’®1
4”   ’®1

2

x

y

1

You can see from Figure 3 that there are basically three kinds of exponential functions 
y − bx. If 0 , b , 1, the exponential function decreases; if b − 1, it is a constant; and 
if b . 1, it increases. These three cases are illustrated in Figure 4. Observe that if b ± 1, 
then the exponential function y − bx has domain R and range s0, `d. Notice also that, 
since s1ybdx − 1ybx − b2x, the graph of y − s1ybdx is just the reflection of the graph of 
y − bx about the y-axis.

(a) y=b®,  0<b<1 (b) y=1® (c) y=b®,  b>1

1
(0, 1)

(0, 1)

x0

y y

x0x0

y

One reason for the importance of the exponential function lies in the following proper-
ties. If x and y are rational numbers, then these laws are well known from elementary  
algebra. It can be proved that they remain true for arbitrary real numbers x and y. 

Laws of Exponents � If a and b are positive numbers and x and y are any real 
numbers, then

1.  bx1y − bxby      2.  bx2y −
bx

by       3.  sbx dy − bxy      4.  sabdx − axbx

Example �1�  Sketch the graph of the function y − 3 2 2x and determine its domain 
and range.

SOLUTION � First we reflect the graph of y − 2x [shown in Figures 2 and 5(a)] about the 
x-axis to get the graph of y − 22x in Figure 5(b). Then we shift the graph of y − 22x 

figure 3

If 0 , b , 1, then b x approaches 0 
as x becomes large. If b . 1, then b x 
approaches 0 as x decreases through 
negative values. In both cases the  
x-axis is a horizontal asymptote. These 
matters are discussed in Section 2.6.

figure 4

www.stewartcalculus.com
For review and practice using the 
Laws of Exponents, click on Review 
of Algebra.

For a review of reflecting and shifting 
graphs, see Section 1.3.
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�upward 3 units to obtain the graph of y − 3 2 2x in Figure 5(c). The domain is R and 
the range is s2`, 3d.

	

0

1

(a) y=2®

x

y

0

_1

(b) y=_2®

x

y

y=3

0

2

(c) y=3-2®

x

y

■

Example �2�  Use a graphing device to compare the exponential function f sxd − 2x 
and the power function tsxd − x 2. Which function grows more quickly when x is large?

SOLUTION � Figure 6 shows both functions graphed in the viewing rectangle f22, 6g  
by f0, 40g. We see that the graphs intersect three times, but for x . 4 the graph of 
f sxd − 2x stays above the graph of tsxd − x 2. Figure 7 gives a more global view and 
shows that for large values of x, the exponential function y − 2x grows far more rapidly 
than the power function y − x 2.

250

0 8

y=2®

y=≈

40

0
_2 6

y=2® y=≈

figure 6	 figure 7	 ■

Applications of Exponential Functions
The exponential function occurs very frequently in mathematical models of nature and  
society. Here we indicate briefly how it arises in the description of population growth 
and radioactive decay. In later chapters we will pursue these and other applications in 
greater detail.

First we consider a population of bacteria in a homogeneous nutrient medium. Suppose 
that by sampling the population at certain intervals it is determined that the population  
doubles every hour. If the number of bacteria at time t is pstd, where t is measured in 
hours, and the initial population is ps0d − 1000, then we have

 ps1d − 2ps0d − 2 3 1000

 ps2d − 2ps1d − 22 3 1000

 ps3d − 2ps2d − 23 3 1000

figure 5

Example 2 shows that y − 2x increases 
more quickly than y − x 2. To demon-
strate just how quickly f sxd − 2x 
increases, let’s perform the following 
thought experiment. Suppose we start 
with a piece of paper a thousandth of  
an inch thick and we fold it in half 50 
times. Each time we fold the paper in 
half, the thickness of the paper doubles, 
so the thickness of the resulting paper 
would be 250y1000 inches. How thick  
do you think that is? It works out to  
be more than 17 million miles!
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It seems from this pattern that, in general,

pstd − 2t 3 1000 − s1000d2 t

This population function is a constant multiple of the exponential function y − 2t, so it  
exhibits the rapid growth that we observed in Figures 2 and 7. Under ideal conditions  
(unlimited space and nutrition and absence of disease) this exponential growth is typical 
of what actually occurs in nature.

What about the human population? Table 1 shows data for the population of the world 
in the 20th century and Figure 8 shows the corresponding scatter plot.

5x10'

P

t20 40 60 80 100 1200

Years since 1900

The pattern of the data points in Figure 8 suggests exponential growth, so we use a graph- 
ing calculator with exponential regression capability to apply the method of least squares 
and obtain the exponential model

P − s1436.53d ? s1.01395d t

where t − 0 corresponds to 1900. Figure 9 shows the graph of this exponential function  
together with the original data points. We see that the exponential curve fits the data rea-
sonably well. The period of relatively slow population growth is explained by the two 
world wars and the Great Depression of the 1930s.

5x10'

20 40 60 80 100 120

P

t0

Years since 1900

figure 8 � 
Scatter plot for world  

population growth

FIGURE 9 � 
Exponential model for  

population growth

t
(years since 1900)

Population 
(millions)

0 1650
10 1750
20 1860
30 2070
40 2300
50 2560
60 3040
70 3710
80 4450
90 5280

100 6080
110 6870

Table 1�
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In 1995 a paper appeared detailing the effect of the protease inhibitor ABT-538 on the 
human immunodeficiency virus HIV-1.1 Table 2 shows values of the plasma viral load 
Vstd of patient 303, measured in RNA copies per mL, t days after ABT-538 treatment was 
begun. The corresponding scatter plot is shown in Figure 10.
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 c
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40
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t (days)

Figure 10�  Plasma viral load in patient 303

The rather dramatic decline of the viral load that we see in Figure 10 reminds us of 
the graphs of the exponential function y − bx in Figures 3 and 4(a) for the case where the 
base b is less than 1. So let’s model the function Vstd by an exponential function. Using 
a graphing calculator or computer to fit the data in Table 2 with an exponential function 
of the form y − a ? bt, we obtain the model

V − 96.39785 ? s0.818656dt

In Figure 11 we graph this exponential function with the data points and see that the 
model represents the viral load reasonably well for the first month of treatment.
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We could use the graph in Figure 11 to estimate the half-life of V, that is, the time 
required for the viral load to be reduced to half its initial value (see Exercise 33). In the 
next example we are given the half-life of a radioactive element and asked to find the 
mass of a sample at any time.

Example �3�  The half-life of strontium-90, 90Sr, is 25 years. This means that half of 
any given quantity of 90Sr will disintegrate in 25 years.
(a)	 If a sample of 90Sr has a mass of 24 mg, find an expression for the mass mstd that 
remains after t years.
(b)	 Find the mass remaining after 40 years, correct to the nearest milligram.
(c)	 Use a graphing device to graph mstd and use the graph to estimate the time required 
for the mass to be reduced to 5 mg.

Table 2

t (days) Vstd

	 1 	 76.0

	 4 	 53.0

	 8 	 18.0

11 	 9.4

15 	 5.2

22 	 3.6

Figure 11 
�Exponential model for viral load

1. D. Ho et al., “Rapid Turnover of Plasma Virions and CD4 Lymphocytes in HIV-1 Infection,” Nature 373 
(1995): 123–26.
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Solution �
(a)	 The mass is initially 24 mg and is halved during each 25-year period, so

 ms0d − 24

 ms25d −
1

2
s24d

 ms50d −
1

2
?

1

2
s24d −

1

22 s24d

 ms75d −
1

2
?

1

22 s24d −
1

23 s24d

 ms100d −
1

2
?

1

23 s24d −
1

24 s24d

From this pattern, it appears that the mass remaining after t years is

mstd −
1

2ty25 s24d − 24 ? 22ty25 − 24 ? s221y25dt

This is an exponential function with base b − 221y25 − 1y21y25.

(b)	 The mass that remains after 40 years is

ms40d − 24 ? 2240y25 < 7.9 mg

(c)	 We use a graphing calculator or computer to graph the function mstd − 24 ? 22ty25 
in Figure 12. We also graph the line m − 5 and use the cursor to estimate that mstd − 5 
when t < 57. So the mass of the sample will be reduced to 5 mg after about 57 years.	 ■

The Number e
Of all possible bases for an exponential function, there is one that is most convenient 
for the purposes of calculus. The choice of a base b is influenced by the way the graph 
of y − bx crosses the y-axis. Figures 13 and 14 show the tangent lines to the graphs of 
y − 2x and y − 3x at the point s0, 1d. (Tangent lines will be defined precisely in Section 
2.7. For present purposes, you can think of the tangent line to an exponential graph at a 
point as the line that touches the graph only at that point.) If we measure the slopes of 
these tangent lines at s0, 1d, we find that m < 0.7 for y − 2x and m < 1.1 for y − 3x.

0

1

mÅ1.1

0

y=2®

1
mÅ0.7

x

y
y=3®

x

y

figure 13 	 figure 14

It turns out, as we will see in Chapter 3, that some of the formulas of calculus will be 
greatly simplified if we choose the base b so that the slope of the tangent line to y − bx 

m=24 · 2_t/25

m=5

30

0 100

Figure �12

41550_ch01_ptg1_hr_025-051.indd   51 10/14/14   3:47 PM



52	 Chapter 1    Functions and Models

at s0, 1d is exactly 1. (See Figure 15.) In fact, there is such a number and it is denoted by 
the letter e. (This notation was chosen by the Swiss mathematician Leonhard Euler in 
1727, probably because it is the first letter of the word exponential.) In view of Figures 
13 and 14, it comes as no surprise that the number e lies between 2 and 3 and the graph 
of y − ex lies between the graphs of y − 2x and y − 3x. (See Figure 16.) In Chapter 3 
we will see that the value of e, correct to five decimal places, is

e < 2.71828

We call the function f sxd − ex the natural exponential function.

0

1

y=2®

y=e®

y=3®y

x

Example �4�  Graph the function y − 1
2 e2x 2 1 and state the domain and range.

SOLUTION � We start with the graph of y − ex from Figures 15 and 17(a) and reflect about 
the y-axis to get the graph of y − e2x in Figure 17(b). (Notice that the graph crosses the  
y-axis with a slope of 21). Then we compress the graph vertically by a factor of 2 to  
obtain the graph of y − 1

2 e2x in Figure 17(c). Finally, we shift the graph downward one 
unit to get the desired graph in Figure 17(d). The domain is R and the range is s21, `d. 

1
2(d) y=   e–®-1

y=_1
0

1

1
2(c) y=   e–®

0

1

0

(b) y=e–®

1

x0

y

(a) y=´

1

y

x

y

x

y

x

■

How far to the right do you think we would have to go for the height of the graph 
of y − ex to exceed a million? The next example demonstrates the rapid growth of this 
function by providing an answer that might surprise you.

Example �5�  Use a graphing device to find the values of x for which ex . 1,000,000.

0

y=´

1

m=1

x

y

FIGURE 15 
�The natural exponential function 
crosses the y-axis with a slope of 1.

FIGURE 16

FIGURE 17

TEC � Module 1.4 enables you to graph 
exponential functions with various 
bases and their tangent lines in order 
to estimate more closely the value of b 
for which the tangent has slope 1.
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SOLUTION � In Figure 18 we graph both the function y − ex and the horizontal line 
y − 1,000,000. We see that these curves intersect when x < 13.8. Thus ex . 106 when 
x . 13.8. It is perhaps surprising that the values of the exponential function have 
already surpassed a million when x is only 14. 

	

1.5x10^

0 15

y=´

y=10^

	 ■FIGURE 18

	�1–4 � Use the Law of Exponents to rewrite and simplify the  
expression.

	 1.	� (a)	
423

228 	 (b)	
1

s3 x 4 

	 2.	� (a)	 8 4y3	 (b)	 xs3x 2d3

	 3.	� (a)	 b8s2bd4	 (b)	
s6y3d4

2y 5

	 4.	� (a)	
x 2n ? x 3n21

x n12 	 (b)	
sasb 

s3 ab 

	 5.	� (a)	� Write an equation that defines the exponential function 
with base b . 0.

	 (b)	 What is the domain of this function?
	 (c)	 If b ± 1, what is the range of this function?
	 (d)	� Sketch the general shape of the graph of the exponential 

function for each of the following cases.
	 (i)	 b . 1
	 (ii)	 b − 1
	 (iii)	 0 , b , 1

	 6.	� (a)	� How is the number e defined?
	 (b)	 What is an approximate value for e?
	 (c)	 What is the natural exponential function?

	7–10 � Graph the given functions on a common screen. How are 
these graphs related?

	 7.	� y − 2x,    y − e x,    y − 5x,    y − 20 x

	 8.	� y − e x,    y − e 2x,    y − 8x,    y − 82x

;

	 9.	� y − 3x,    y − 10 x,    y − ( 1
3)x

,    y − ( 1
10 )x

	10.	� y − 0.9 x,    y − 0.6x,    y − 0.3x,    y − 0.1x

	�11–16 � Make a rough sketch of the graph of the function. Do not 
use a calculator. Just use the graphs given in Figures 3 and 13 
and, if necessary, the transformations of Section 1.3.

	11.	 y − 4x 2 1	 12.	 y − s0.5dx 21

	13.	 y − 222x	 14.	 y − e | x |

	15.	 y − 1 2 1
2 e2x	 16.	 y − 2s1 2 e x d

	17.	�� Starting with the graph of y − e x, write the equation of the 
graph that results from

	 (a)	 shifting 2 units downward.
	 (b)	 shifting 2 units to the right.
	 (c)	 reflecting about the x-axis.
	 (d)	 reflecting about the y-axis.
	 (e)	 reflecting about the x-axis and then about the y-axis.

	18.	�� Starting with the graph of y − e x, find the equation of the 
graph that results from

	 (a)	 reflecting about the line y − 4.
	 (b)	 reflecting about the line x − 2.

	�19–20 � Find the domain of each function.

	19.	� (a)	 f sxd −
1 2 e x 2

1 2 e12x 2	 (b)	 f sxd −
1 1 x

e cos x

	20.	� (a)	 tstd − s10 t 2 100 	 (b)	 tstd − sinse t 2 1d
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	21–22 � Find the exponential function f sxd − Cb x whose graph  
is given.

	21.		  22.	

0

(1, 6)

(3, 24)
y

x

(_1, 3)

”1,    ’4
3

0

y

x

 

 	23.	� �If f sxd − 5x, show that

 f sx 1 hd 2 f sxd
h

− 5xS 5h 2 1

h D
	24.	�� Suppose you are offered a job that lasts one month. Which 

of the following methods of payment do you prefer?
	 I.	 One million dollars at the end of the month.
	 II.	� One cent on the first day of the month, two cents on the 

second day, four cents on the third day, and, in general, 
2n21 cents on the nth day.

	25.	�� Suppose the graphs of f sxd − x 2 and tsxd − 2x are drawn 
on a coordinate grid where the unit of measurement is  
1 inch. Show that, at a distance 2 ft to the right of the origin, 
the height of the graph of f  is 48 ft but the height of the 
graph of t is about 265 mi.

	26.	� �Compare the functions f sxd − x 5 and tsxd − 5x by graph-
ing both functions in several viewing rectangles. Find all 
points of intersection of the graphs correct to one decimal 
place. Which function grows more rapidly when x is large?

	27.	� �Compare the functions f sxd − x 10 and tsxd − e x by 
graphing both f  and t in several viewing rectangles. When 
does the graph of t finally surpass the graph of f ?

	28.	� �Use a graph to estimate the values of x such that 
e x . 1,000,000,000.

	29.	� �A researcher is trying to determine the doubling time for 
a population of the bacterium Giardia lamblia. He starts 
a culture in a nutrient solution and estimates the bacteria 
count every four hours. His data are shown in the table.

Time (hours) 0 4 8 12 16 20 24

Bacteria count
sCFUymLd 37 47 63 78 105 130 173

	 (a)	� Make a scatter plot of the data.
	 (b)	� Use a graphing calculator to find an exponential curve 

f std − a ? bt that models the bacteria population  
t hours later.

;

;

;

;

	 (c)	� Graph the model from part (b) together with the scatter 
plot in part (a). Use the TRACE feature to determine 
how long it takes for the bacteria count to double.

©
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G. lamblia

30.	���	� A bacteria culture starts with 500 bacteria and doubles in 
size every half hour.

	 (a)	� How many bacteria are there after 3 hours?
	 (b)	� How many bacteria are there after t hours?
	 (c)	� How many bacteria are there after 40 minutes?
	 (d)	� Graph the population function and estimate the time 

for the population to reach 100,000.

	31.	�� �The half-life of bismuth-210, 210Bi, is 5 days.
	 (a)	� If a sample has a mass of 200 mg, find the amount 

remaining after 15 days.
	 (b)	� Find the amount remaining after t days.
	 (c)	� Estimate the amount remaining after 3 weeks.
	 (d)	� Use a graph to estimate the time required for the mass 

to be reduced to 1 mg.

	32.	�� �An isotope of sodium, 24Na, has a half-life of 15 hours. A 
sample of this isotope has mass 2 g.

	 (a)	� Find the amount remaining after 60 hours.
	 (b)	� Find the amount remaining after t hours.
	 (c)	� Estimate the amount remaining after 4 days.
	 (d)	� Use a graph to estimate the time required for the mass 

to be reduced to 0.01 g.

	33.	�� Use the graph of V in Figure 11 to estimate the half-life 
of the viral load of patient 303 during the first month of 
treatment.

	34.	�� After alcohol is fully absorbed into the body, it is metabo-
lized with a half-life of about 1.5 hours. Suppose you have 
had three alcoholic drinks and an hour later, at midnight, 
your blood alcohol concentration (BAC) is 0.6 mgymL.

	 (a)	� Find an exponential decay model for your BAC t hours 
after midnight.

	 (b)	� Graph your BAC and use the graph to determine when 
your BAC is 0.08 mgymL.

Source: Adapted from P. Wilkinson et al., “Pharmacokinetics of Ethanol after 
Oral Administration in the Fasting State,” Journal of Pharmacokinetics and 
Biopharmaceutics 5 (1977): 207–24.

	35.	� �Use a graphing calculator with exponential regression 
capability to model the population of the world with the 

;

;

;

;

;
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data from 1950 to 2010 in Table 1 on page 49. Use the 
model to estimate the population in 1993 and to predict 
the population in the year 2020.

	36.	�� The table gives the population of the United States, in mil-
lions, for the years 1900–2010. Use a graphing calculator 

Year Population Year Population

1900 	 76 1960 	 179
1910 	 92 1970 	 203
1920 	 106 1980 	 227
1930 	 123 1990 	 250
1940 	 131 2000 	 281
1950 150 2010 310

;

with exponential regression capability to model the US 
population since 1900. Use the model to estimate the 
population in 1925 and to predict the population in the  
year 2020.

	37.	� �If you graph the function

f sxd −
1 2 e 1yx

1 1 e 1yx

you’ll see that f  appears to be an odd function. Prove it.

	38.	� �Graph several members of the family of functions

f sxd −
1

1 1 ae bx

�where a . 0. How does the graph change when b changes? 
How does it change when a changes?

;

;

Table 1 gives data from an experiment in which a bacteria culture started with 100 bac-
teria in a limited nutrient medium; the size of the bacteria population was recorded at 
hourly intervals. The number of bacteria N is a function of the time t: N − f std.

Suppose, however, that the biologist changes her point of view and becomes inter-
ested in the time required for the population to reach various levels. In other words, she is 
thinking of t as a function of N. This function is called the inverse function of f , denoted 
by f 21, and read “ f  inverse.” Thus t − f 21sNd is the time required for the population 
level to reach N. The values of f 21 can be found by reading Table 1 from right to left or 
by consulting Table 2. For instance, f 21s550d − 6 because f s6d − 550.

t 
(hours)

 N − f std
 − population at time t

0 100
1 168
2 259
3 358
4 445
5 509
6 550
7 573
8 586

Table 1�  N as a function of t

  

N
 t − f 21 sNd
 − time to reach N bacteria

100 0
168 1
259 2
358 3
445 4
509 5
550 6
573 7
586 8

Table 2�  t as a function of N

Not all functions possess inverses. Let’s compare the functions f  and t whose arrow  
diagrams are shown in Figure 1. Note that f  never takes on the same value twice (any two 
inputs in A have different outputs), whereas t does take on the same value twice (both 2  
and 3 have the same output, 4). In symbols,

ts2d − ts3d

but	 f sx1 d ± f sx 2 d        whenever x1 ± x 2

Functions that share this property with f  are called one-to-one functions.

4

3

2

1

10

4

2
g

4

3

2

1

10

7

4

2
f

FIGURE 1 �  
f  is one-to-one; t is not.
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56	 Chapter 1    Functions and Models

1 �  Definition  A function f  is called a one-to-one function if it never takes on 
the same value twice; that is,

f sx1 d ± f sx2 d        whenever x1 ± x2

In the language of inputs and outputs, 
this definition says that f  is one-to-one 
if each output corresponds to only one 
input.

If a horizontal line intersects the graph of f  in more than one point, then we see from 
Figure 2 that there are numbers x1 and x2 such that f sx1 d − f sx2 d. This means that f  is 
not one-to-one. 

0

‡fl

y=ƒ

y

x⁄ ¤

Therefore we have the following geometric method for determining whether a func-
tion is one-to-one.

�Horizontal Line Test � A function is one-to-one if and only if no horizontal line 
intersects its graph more than once.

Example �1�  Is the function f sxd − x 3 one-to-one?

SOLUTION 1 � If x1 ± x 2, then x 3
1 ± x 3

2  (two different numbers can’t have the same 
cube). Therefore, by Definition 1, f sxd − x 3 is one-to-one.

SOLUTION 2 � From Figure 3 we see that no horizontal line intersects the graph of 
f sxd − x 3 more than once. Therefore, by the Horizontal Line Test, f  is one-to-one.	 ■

Example �2�  Is the function tsxd − x 2 one-to-one?

SOLUTION 1 � This function is not one-to-one because, for instance,

ts1d − 1 − ts21d

and so 1 and 21 have the same output.

SOLUTION 2�  From Figure 4 we see that there are horizontal lines that intersect the graph 
of t more than once. Therefore, by the Horizontal Line Test, t is not one-to-one.	 ■

One-to-one functions are important because they are precisely the functions that pos-
sess inverse functions according to the following definition.

2 �  Definition � Let f  be a one-to-one function with domain A and range B.
Then its inverse function f 21 has domain B and range A and is defined by

f 21syd − x    &?    f sxd − y

for any y in B.

FIGURE 2 � 
This function is not one-to-one  

because f sx1d − f sx2d.

FIGURE 3 �  
f sxd − x 3 is one-to-one.

0

y=˛

y

x

FIGURE 4 �  
tsxd − x 2 is not one-to-one.

0

y=≈

x

y
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This definition says that if f  maps x into y, then f 21 maps y back into x. (If f  were 
not one-to-one, then f 21 would not be uniquely defined.) The arrow diagram in Figure 5 
indicates that f 21 reverses the effect of f. Note that

 domain of f 21 − range of f

 range of f 21 − domain of f

For example, the inverse function of f sxd − x 3 is f 21sxd − x 1y3 because if y − x 3, 
 then

f 21syd − f 21sx 3 d − sx 3 d1y3 − x

CAUTION � Do not mistake the 21 in f 21 for an exponent. Thus

f 21sxd    does not mean  
1

f sxd

The reciprocal 1yf sxd could, however, be written as f f sxdg21.

Example �3�  If f s1d − 5, f s3d − 7, and f s8d − 210, find f 21s7d, f 21s5d, and 
f 21s210d.

SOLUTION � From the definition of f 21 we have

f 21s7d − 3        because        f s3d − 7

f 21s5d − 1        because        f s1d − 5

f 21s210d − 8        because        f s8d − 210

The diagram in Figure 6 makes it clear how f 21 reverses the effect of f  in this case.	 ■

The letter x is traditionally used as the independent variable, so when we concentrate 
on f 21 rather than on f, we usually reverse the roles of x and y in Definition 2 and write

3 �

	

f 21sxd − y    &?    f syd − x

By substituting for y in Definition 2 and substituting for x in (3), we get the follow-
ing cancellation equations:

4 �

	

 f 21s f sxdd − x for every x in A

 f s f 21sxdd − x for every x in B

FIGURE 5 �

x

y

A

B

f – !f

B

5

7

_10

f

A

1

3

8

A

1

3

8

f –!

B

5

7

_10

FIGURE 6 �  
The inverse function reverses inputs 
and outputs.
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58	 Chapter 1    Functions and Models

The first cancellation equation says that if we start with x, apply f, and then apply f 21, 
we arrive back at x, where we started (see the machine diagram in Figure 7). Thus f 21 
undoes what f  does. The second equation says that f  undoes what f 21 does.

x xf ƒ f –!

For example, if f sxd − x 3, then f 21sxd − x 1y3 and so the cancellation equations 
become

 f 21s f sxdd − sx 3 d1y3 − x

 f s f 21sxdd − sx 1y3 d3 − x

These equations simply say that the cube function and the cube root function cancel each 
other when applied in succession.

Now let’s see how to compute inverse functions. If we have a function y − f sxd and 
are able to solve this equation for x in terms of y, then according to Definition 2 we must 
have x − f 21syd. If we want to call the independent variable x, we then interchange x and 
y and arrive at the equation y − f 21sxd.

5 �  How to Find the Inverse Function of a One-to-One Function f

Step 1�  Write y − f sxd.

Step 2�  Solve this equation for x in terms of y (if possible).

Step 3� � To express f 21 as a function of x, interchange x and y. 
The resulting equation is y − f 21sxd.

Example �4�  Find the inverse function of f sxd − x 3 1 2.

SOLUTION � According to (5) we first write

y − x 3 1 2

Then we solve this equation for x:

 x 3 − y 2 2

 x − s3 y 2 2 

Finally, we interchange x and y:

 y − s3 x 2 2 

Therefore the inverse function is f 21sxd − s3 x 2 2 .	 ■

The principle of interchanging x and y to find the inverse function also gives us the 
method for obtaining the graph of f 21 from the graph of f. Since f sad − b if and only  
if f 21sbd − a, the point sa, bd is on the graph of f  if and only if the point sb, ad is on the 

figure 7

In Example 4, notice how f 21 reverses 
the effect of f . The function f  is the 
rule “Cube, then add 2”; f 21 is the rule 
“Subtract 2, then take the cube root.”
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graph of f 21. But we get the point sb, ad from sa, bd by reflecting about the line y − x. 
(See Figure 8.)

0

y

x

(b, a)

(a, b)

y=x

0

y

x

f –!

y=x f

	figure  8	 figure 9

Therefore, as illustrated by Figure 9:

The graph of f 21 is obtained by reflecting the graph of f  about the line y − x.

Example �5�  Sketch the graphs of f sxd − s21 2 x  and its inverse function using the 
same coordinate axes.

SOLUTION � First we sketch the curve y − s21 2 x  (the top half of the parabola 
y 2 − 21 2 x, or x − 2y 2 2 1) and then we reflect about the line y − x to get the  
graph of f 21. (See Figure 10.) As a check on our graph, notice that the expression for 
f 21 is f 21sxd − 2x 2 2 1, x > 0. So the graph of f 21 is the right half of the parabola 
y − 2x 2 2 1 and this seems reasonable from Figure 10.	 ■

Logarithmic Functions
If b . 0 and b ± 1, the exponential function f sxd − bx is either increasing or decreasing 
and so it is one-to-one by the Horizontal Line Test. It therefore has an inverse function 
f 21, which is called the logarithmic function with base b and is denoted by logb. If we 
use the formulation of an inverse function given by (3),

f 21sxd − y    &?    f syd − x

then we have 

6 �

	

logb x − y    &?    by − x

Thus, if x . 0, then logb x is the exponent to which the base b must be raised to give x. 
For example, log10 0.001 − 23 because 1023 − 0.001.

The cancellation equations (4), when applied to the functions f sxd − bx and 
f 21sxd − logb x, become

7 �

	

 logbsbx d − x for every x [ R

 blogb x − x for every x . 0

0

y=x
y=ƒ

(0, _1)

y=f –!(x)

(_1, 0)

y

x

FIGURE 10 
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60	 Chapter 1    Functions and Models

The logarithmic function logb has domain s0, `d and range R. Its graph is the reflec-
tion of the graph of y − bx about the line y − x.

Figure 11 shows the case where b . 1. (The most important logarithmic functions have  
base b . 1.) The fact that y − bx is a very rapidly increasing function for x . 0 is  
reflected in the fact that y − logb x is a very slowly increasing function for x . 1.

Figure 12 shows the graphs of y − logb x with various values of the base  b . 1. Since 
logb 1 − 0, the graphs of all logarithmic functions pass through the point s1, 0d.

0

y

1

x1

y=log£ x

y=log™ x

y=log∞ x
y=log¡¸ x

The following properties of logarithmic functions follow from the corresponding 
properties of exponential functions given in Section 1.4.

Laws of Logarithms�  If x and y are positive numbers, then�

	 1.	� logbsxyd − logb x 1 logb y  

	 2.	� logbS x

yD − logb x 2 logb y

	 3.	� logbsxrd − r logb x        (where r is any real number)

Example �6�  Use the laws of logarithms to evaluate log2 80 2 log2 5.

SOLUTION � Using Law 2, we have

log2 80 2 log2 5 − log2S 80

5 D − log2 16 − 4

because 24 − 16.	 ■

Natural Logarithms
Of all possible bases b for logarithms, we will see in Chapter 3 that the most convenient 
choice of a base is the number e, which was defined in Section 1.4. The logarithm with 
base e is called the natural logarithm and has a special notation:

loge x − ln x

If we put b − e and replace loge with “ln” in (6) and (7), then the defining properties 
of the natural logarithm function become

FIGURE 11

0

y=x

y=b®,  b>1

y=logb x,  b>1

y

x

FIGURE 12

Notation for Logarithms
Most textbooks in calculus and the 
sciences, as well as calculators,  
use the notation ln x for the natural 
logarithm and log x for the “common 
logarithm,” log10 x. In the more 
advanced mathematical and scientific 
literature and in computer languages, 
however, the notation log x usually 
denotes the natural logarithm.
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8 �

	
ln x − y    &?    ey − x

9 �

	

	  lnsex d − x x [ R

	  e ln x − x x . 0

In particular, if we set x − 1, we get

ln e − 1

Example �7�  Find x if ln x − 5.

SOLUTION 1 � From (8) we see that

ln x − 5        means        e 5 − x

Therefore x − e 5.
(If you have trouble working with the “ln” notation, just replace it by loge. Then the 

equation becomes loge x − 5; so, by the definition of logarithm, e 5 − x.)

SOLUTION 2 � Start with the equation

ln x − 5

and apply the exponential function to both sides of the equation:

e ln x − e 5

But the second cancellation equation in (9) says that e ln x − x. Therefore x − e 5.	 ■

Example �8�  Solve the equation e 523x − 10.

SOLUTION � We take natural logarithms of both sides of the equation and use (9):

 lnse 523x d − ln 10

 5 2 3x − ln 10

 3x − 5 2 ln 10

 x − 1
3 s5 2 ln 10d

Since the natural logarithm is found on scientific calculators, we can approximate the 
solution: to four decimal places, x < 0.8991.	 ■

Example �9�  Express ln a 1 1
2 ln b as a single logarithm.

SOLUTION � Using Laws 3 and 1 of logarithms, we have

 ln a 1 1
2 ln b − ln a 1 ln b 1y2

 − ln a 1 lnsb 

	  − ln(asb )	 ■
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The following formula shows that logarithms with any base can be expressed in terms 
of the natural logarithm.

10 � � Change of Base Formula  For any positive number b sb ± 1d, we have

logb x −
ln x

ln b
 

Proof � Let y − logb x. Then, from (6), we have by − x. Taking natural logarithms of 
both sides of this equation, we get y ln b − ln x. Therefore

	 y −
ln x

ln b
	 ■

Scientific calculators have a key for natural logarithms, so Formula 10 enables us 
to use a calculator to compute a logarithm with any base (as shown in the following 
example). Similarly, Formula 10 allows us to graph any logarithmic function on a graph-
ing calculator or computer (see Exercises 43 and 44).

Example �10�  Evaluate log8 5 correct to six decimal places.

SOLUTION � Formula 10 gives

	 log8 5 −
ln 5

ln 8
< 0.773976	

■

Graph and Growth of the Natural Logarithm
The graphs of the exponential function y − ex and its inverse function, the natural loga-
rithm function, are shown in Figure 13. Because the curve y − ex crosses the y-axis with  
a slope of 1, it follows that the reflected curve y − ln x crosses the x-axis with a slope of 1.

In common with all other logarithmic functions with base greater than 1, the natural 
logarithm is an increasing function defined on s0, `d and the y-axis is a vertical asymp-
tote. (This means that the values of ln x become very large negative as x approaches 0.)

Example �11�  Sketch the graph of the function y − lnsx 2 2d 2 1.

SOLUTION � We start with the graph of y − ln x as given in Figure 13. Using the transfor- 
mations of Section 1.3, we shift it 2 units to the right to get the graph of y − lnsx 2 2d 
and then we shift it 1 unit downward to get the graph of y − lnsx 2 2d 2 1. (See 
Figure 14.)

0

y

2 x(3, 0)

x=2

y=ln(x-2)

0

y

x

y=ln x

(1, 0) 0

y

2 x

x=2

(3, _1)

y=ln(x-2)-1

y

1
0

x1

y=x
y=´

y=ln x

FIGURE 13�   
The graph of y − ln x is the reflection 
of the graph of y − ex about the line 
y − x .

FIGURE 14�  	 ■
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Although ln x is an increasing function, it grows very slowly when x . 1. In fact, ln x  
grows more slowly than any positive power of x. To illustrate this fact, we compare  
approximate values of the functions y − ln x and y − x 1y2 − sx  in the following table 
and we graph them in Figures 15 and 16. You can see that initially the graphs of y − sx  
and y − ln x grow at comparable rates, but eventually the root function far surpasses 
the logarithm.

x 1 2 5 10 50 100 500 1000 10,000 100,000

ln x 0 0.69 1.61 2.30 3.91 4.6 6.2 6.9 9.2 11.5

sx 1 1.41 2.24 3.16 7.07 10.0 22.4 31.6 100 316

ln x

sx 
0 0.49 0.72 0.73 0.55 0.46 0.28 0.22 0.09 0.04

x0

y

1000

20

y=œ„x

y=ln x

x0

y

1

1

y=œ„x

y=ln x

FIGURE 15	� FIGURE 16

Inverse Trigonometric Functions
When we try to find the inverse trigonometric functions, we have a slight difficulty:  
Because the trigonometric functions are not one-to-one, they don’t have inverse func-
tions. The difficulty is overcome by restricting the domains of these functions so that 
they become one-to-one.

You can see from Figure 17 that the sine function y − sin x is not one-to-one (use 
the Horizontal Line Test). But the function f sxd − sin x, 2�y2 < x < �y2, is one-to-
one (see Figure 18). The inverse function of this restricted sine function f  exists and is 
denoted by sin21 or arcsin. It is called the inverse sine function or the arcsine function.

y

0_π π xπ
2

y=sin x

0

y

x

_ π
2

π
2

	 Figure 18   
	 y − sin x, 2�

2 < x < �
2� 

figure 17
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Since the definition of an inverse function says that

f 21sxd − y    &?    f syd − x

we have

sin21x − y    &?    sin y − x    and    2
�

2
< y <

�

2

Thus, if 21 < x < 1, sin21x is the number between 2�y2 and �y2 whose sine is x.

Example �12�  Evaluate (a) sin21s1
2d and (b) tansarcsin 13 d.

SOLUTION

(a)  We have
sin21s1

2d −
�

6

because sins�y6d − 1
2 and �y6 lies between 2�y2 and �y2.

(b)  Let � − arcsin 13, so sin � − 1
3. Then we can draw a right triangle with angle � as  

in Figure 19 and deduce from the Pythagorean Theorem that the third side has length 
s9 2 1 − 2s2 . This enables us to read from the triangle that

tansarcsin 13 d − tan � −
1

2s2 
■

The cancellation equations for inverse functions become, in this case,

 sin21ssin xd − x    for 2
�

2
< x <

�

2

 sinssin21xd − x    for 21 < x < 1

The inverse sine function, sin21, has domain f21, 1g and range f2�y2, �y2g, and  
its graph, shown in Figure 20, is obtained from that of the restricted sine function (Fig
ure 18) by reflection about the line y − x.

The inverse cosine function is handled similarly. The restricted cosine function 
f sxd − cos x, 0 < x < �, is one-to-one (see Figure 21) and so it has an inverse function 
denoted by cos21 or arccos.

cos21x − y    &?    cos y − x    and    0 < y < �

The cancellation equations are

 cos21scos xd − x    for 0 < x < �

 cosscos21xd − x    for 21 < x < 1

sin21x ±
1

sin x

2 œ„2

3

¨

1

figure 19

0

y

x1_1

π
2

_ π
2

figure 20�� 
y − sin21 x − arcsin x

FIGURE 21�   
y − cos x, 0 < x < �

0

y

x

1

ππ
2

0

y

x1

π

_1

π
2
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The inverse cosine function, cos21, has domain f21, 1g and range f0, �g. Its graph is 
shown in Figure 22.

The tangent function can be made one-to-one by restricting it to the interval 
s2�y2, �y2d. Thus the inverse tangent function is defined as the inverse of the func-
tion f sxd − tan x, 2�y2 , x , �y2. (See Figure 23.) It is denoted by tan21 or arctan.

tan21x − y    &?    tan y − x    and    2
�

2
, y ,

�

2

Example �13�  Simplify the expression cosstan21xd.

SOLUTION 1 � Let y − tan21x. Then tan y − x and 2�y2 , y , �y2. We want to find 
cos y but, since tan y is known, it is easier to find sec y first:

 sec2 y − 1 1 tan2 y − 1 1 x 2

 sec y − s1 1 x 2         ssince sec y . 0 for 2�y2 , y , �y2d

Thus	 cosstan21xd − cos y −
1

sec y
−

1

s1 1 x 2 

SOLUTION 2 � Instead of using trigonometric identities as in Solution 1, it is perhaps 
easier to use a diagram. If y − tan21x, then tan y − x, and we can read from Figure 24 
(which illustrates the case y . 0) that

	 cosstan21xd − cos y −
1

s1 1 x 2 
 	 ■

The inverse tangent function, tan21 − arctan, has domain R and range s2�y2, �y2d. 
Its graph is shown in Figure 25.

π
2

_ π
2

y

0
x

We know that the lines x − 6�y2 are vertical asymptotes of the graph of tan. Since 
the graph of tan21 is obtained by reflecting the graph of the restricted tangent function 
about the line y − x, it follows that the lines y − �y2 and y − 2�y2 are horizontal 
asymptotes of the graph of tan21.

FIGURE 25 � 
y − tan21 x − arctan x

�FIGURE 22�   
y − cos21x − arccos x

0

y

x

1

ππ
2

0

y

x1

π

_1

π
2

FIGURE 24 �

œ„„„„„1+≈

1
y

x

figure 23�   
y − tan x, 2�

2  , x , �2

π
2

π
2_

y

0 x
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	 1.	�� (a)	 What is a one-to-one function?
	 (b)	� How can you tell from the graph of a function whether it 

is one-to-one?

	 2.	� (a)	� Suppose f  is a one-to-one function with domain A and 
range B. How is the inverse function f 21 defined? What is 
the domain of f 21? What is the range of f 21?

	 (b)	� If you are given a formula for f, how do you find a  
formula for f 21?

	 (c)	� If you are given the graph of f, how do you find the graph 
of f 21?

	�3–14 � A function is given by a table of values, a graph, a formula, 
or a verbal description. Determine whether it is one-to-one.

	 3.	 x 1 2 3 4 5 6

f sxd 1.5 2.0 3.6 5.3 2.8 2.0

	4 .	 x 1 2 3 4 5 6

f sxd 1.0 1.9 2.8 3.5 3.1 2.9

	 5.	 6.	 y

x
x

y

y

xx

y

	 7.	 8.	

y

x
x

y

y

xx

y

	 9.	 f sxd − 2x 2 3	 10.	 f sxd − x 4 2 16

	11.	 tsxd − 1 2 sin x	 12.	 tsxd − s3 x 

	13.	� f std is the height of a football t seconds after kickoff.

	14.	� f std is your height at age t.

	15.	�� Assume that f  is a one-to-one function.
	 (a)	� If f s6d − 17, what is f 21s17d?
	 (b)	�� If f 21s3d − 2, what is f s2d?

	16.	�� If f sxd − x 5 1 x 3 1 x, find f 21s3d and f s f 21s2dd.

	17.	� If tsxd − 3 1 x 1 e x, find t21s4d.

	18.	� The graph of f  is given.
	 (a)	 Why is f  one-to-one?
	 (b)	 What are the domain and range of f 21?
	 (c)	 What is the value of f 21s2d?
	 (d)	 Estimate the value of f 21s0d.

y

x0 1

1

	19.	�� The formula C − 5
9 sF 2 32d, where F > 2459.67, 

expresses the Celsius temperature C as a function of the 
Fahrenheit temperature F. Find a formula for the inverse 
function and interpret it. What is the domain of the inverse 
function?

The remaining inverse trigonometric functions are not used as frequently and are 
summarized here.

11 �   y − csc21x (| x | > 1)    &?    csc y − x  and    y [ s0, �y2g ø s�, 3�y2g

	  y − sec21x (| x | > 1)    &?    sec y − x  and    y [ f0, �y2d ø f�, 3�y2d

	  y − cot21x sx [ Rd      &?    cot y − x  and    y [ s0, �d

The choice of intervals for y in the definitions of csc21 and sec21 is not universally 
agreed upon. For instance, some authors use y [ f0, �y2d ø s�y2, �g in the definition 
of sec21. [You can see from the graph of the secant function in Figure 26 that both this 
choice and the one in (11) will work.]

0

y

x
_1

2ππ

FIGURE 26   
�y − sec x
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	20.	�� In the theory of relativity, the mass of a particle with speed � is

m − f svd −
m 0

s1 2 v 2yc 2 

	� where m 0 is the rest mass of the particle and c is the speed of 
light in a vacuum. Find the inverse function of f  and explain 
its meaning.

	21–26 � Find a formula for the inverse of the function.

	21.	 f sxd − 1 1 s2 1 3x	 22.	 f sxd −
4x 2 1

2x 1 3

	23.	 f sxd − e 2x21	 24.	� y − x 2 2 x,    x > 1
2

	25.	 y − lnsx 1 3d	 26.	 y −
1 2 e2x

1 1 e2x

	27–28	� Find an explicit formula for f 21 and use it to graph f 21, 
f, and the line y − x on the same screen. To check your work, see 
whether the graphs of f  and f 21 are reflections about the line.

	27.	 f sxd − s4x 1 3 	 28.	 f sxd − 1 1 e2x

	29–30 � Use the given graph of f  to sketch the graph of f 21.

	29.	 30.	y

x0 1

1

y

x0 2

1

	31.	� Let f sxd − s1 2 x 2 ,  0 < x < 1.
	 (a)	 Find f 21. How is it related to f ?
	 (b)	 Identify the graph of f  and explain your answer to part (a).

	32.	� Let tsxd − s3 1 2 x 3  .
	 (a)	 Find t21. How is it related to t?
	 (b)	� Graph t. How do you explain your answer to part (a)?

	33.	� (a)	 How is the logarithmic function y − logb x defined?
	 (b)	 What is the domain of this function?
	 (c)	 What is the range of this function?
	 (d)	� Sketch the general shape of the graph of the function  

y − logb x if b . 1.

	34.	� (a)	 What is the natural logarithm?
	 (b)	 What is the common logarithm?
	 (c)	� Sketch the graphs of the natural logarithm function and the 

natural exponential function with a common set of axes.

	35–38 � Find the exact value of each expression.

	35.	� (a)	 log2 32	 (b)	 log8 2

	36.	� (a)	 log5  
1

125	 (b)	 lns1ye 2 d

	37.	� (a)	 log10 40 1 log10 2.5
	 (b)	 log 8 60 2 log 8 3 2 log 8 5

;

;

	38.	� (a)	 e2ln 2	 (b)	 e lnsln e3d

	39–41 � Express the given quantity as a single logarithm.

	39.	 ln 10 1 2 ln 5	 40.	ln b 1 2 ln c 2 3 ln d

	41.	 1
3 lnsx 1 2d3 1 1

2 fln x 2 lnsx 2 1 3x 1 2d2g

	42.	�� Use Formula 10 to evaluate each logarithm correct to six 
decimal places.

	 (a)	 log5 10	 (b)	 log3 57

	43–44	� Use Formula 10 to graph the given functions on a 
common screen. How are these graphs related?

	43.	� y − log1.5 x,    y − ln x,    y − log10 x,    y − log50 x

	44.	� y − ln x,    y − log10 x,    y − e x,    y − 10 x

	45.	�� Suppose that the graph of y − log2 x is drawn on a coordi-
nate grid where the unit of measurement is an inch. How 
many miles to the right of the origin do we have to move 
before the height of the curve reaches 3 ft?

	46.	� �Compare the functions f sxd − x 0.1 and tsxd − ln x by 
graphing both f  and t in several viewing rectangles.  
When does the graph of f  finally surpass the graph of t?

	�47–48 � Make a rough sketch of the graph of each function.  
Do not use a calculator. Just use the graphs given in Figures 12 
and 13 and, if necessary, the transformations of Section 1.3.

	47.	� (a)	 y − log10sx 1 5d	 (b)	 y − 2ln x

	48.	� (a)	 y − lns2xd	 (b)	 y − ln | x |

	�49–50 � (a)	 What are the domain and range of f ?
(b)	 What is the x-intercept of the graph of f ?
(c)	 Sketch the graph of f.

	49.	 f sxd − ln x 1 2	 50.	 f sxd − lnsx 2 1d 2 1

51–54 � Solve each equation for x.

	51.	� (a)	 e724x − 6	 (b)	 lns3x 2 10d − 2

	52.	� (a)	 lnsx 2 2 1d − 3	 (b)	 e 2x 2 3e x 1 2 − 0

	53.	� (a)	 2x25 − 3	 (b)	 ln x 1 lnsx 2 1d − 1

	54.	� (a)	 lnsln xd − 1	 (b)	 e ax − Ce bx,  where a ± b

55–56 � Solve each inequality for x.

	55.	� (a)	 ln x , 0	 (b)	 e x . 5

	56.	� (a)	 1 , e 3x21 , 2	 (b)	 1 2 2 ln x , 3

	57.	� (a)	� Find the domain of f sxd − lnse x 2 3d.
	 (b)	� Find f 21 and its domain.

;

;
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	58.	� (a)	� What are the values of e ln 300 and lnse 300d?
	 (b)	� Use your calculator to evaluate e ln 300 and lnse 300d. What 

do you notice? Can you explain why the calculator has 
trouble?

	59.	� �Graph the function f sxd − sx 3 1 x 2 1 x 1 1 and explain 
why it is one-to-one. Then use a computer algebra system 
to find an explicit expression for f 21sxd. (Your CAS will 
produce three possible expressions. Explain why two of 
them are irrelevant in this context.)

	60.	� �(a)	� If tsxd − x 6 1 x 4, x > 0, use a computer algebra sys
tem to find an expression for t 21sxd.

	 (b)	� Use the expression in part (a) to graph y − tsxd, y − x, 
and y − t 21sxd on the same screen.

	61.	�� If a bacteria population starts with 100 bacteria and doubles 
every three hours, then the number of bacteria after t hours 
is n − f std − 100 ∙ 2 ty3. 

	 (a)	� Find the inverse of this function and explain its meaning.
	 (b)	 When will the population reach 50,000?

	62.	�� When a camera flash goes off, the batteries immediately 
begin to recharge the flash’s capacitor, which stores electric 
charge given by

Qstd − Q0s1 2 e 2tya d

	� (The maximum charge capacity is Q0 and t is measured in 
seconds.)

	 (a)	� Find the inverse of this function and explain its meaning.
	 (b)	� How long does it take to recharge the capacitor to 90% 

of capacity if a − 2?

63–68 � Find the exact value of each expression.

	63.	� (a)	 cos21 s21d	 (b)	 sin21s0.5d

	64.	� (a)	 tan21 s3 	 (b)	 arctans21d

CAS

CAS

	65.	� (a)	 csc21 s2 	 (b)	 arcsin 1

	66.	� (a)	 sin21(21ys2 )	 (b)	 cos21(s3 y2)
	67.	� (a)	 cot21(2s3 )	 (b)	 sec21 2

	68.	� (a)	 arcsinssins5�y4dd	 (b)	 cos(2 sin21 ( 5
13))

	69.	� Prove that cosssin21 xd − s1 2 x 2 .

70–72 � Simplify the expression.

	70.	 tanssin21xd	 71.	 sinstan21xd	 72.	 sins2 arccos xd

73-74 � Graph the given functions on the same screen. How are 
these graphs related?

	73.	� y − sin x,  2�y2 < x < �y2;    y − sin21x;    y − x

	74.	� y − tan x,  2�y2 , x , �y2;    y − tan21x;    y − x

	75.	�� Find the domain and range of the function

tsxd − sin21s3x 1 1d

	76.	� (a)	� Graph the function f sxd − sinssin21xd and explain the 
appearance of the graph.

	 (b)	� Graph the function tsxd − sin21ssin xd. How do you 
explain the appearance of this graph?

	77.	� (a)	� If we shift a curve to the left, what happens to its 
reflection about the line y − x? In view of this geo-
metric principle, find an expression for the inverse of 
tsxd − f sx 1 cd, where f  is a one-to-one function.

	 (b)	� Find an expression for the inverse of hsxd − f scxd,  
where c ± 0.

;

;

CONCEPT CHECK	 Answers to the Concept Check can be found on the back endpapers.

1	 Review

	 1.	� (a)	 What is a function? What are its domain and range?
	 (b)	 What is the graph of a function?
	 (c)	� How can you tell whether a given curve is the graph of  

a function?

	 2.	�� Discuss four ways of representing a function. Illustrate your 
discussion with examples.

	 3.	�� (a)	� What is an even function? How can you tell if a function 
is even by looking at its graph? Give three examples of an 
even function.

	 (b)	� What is an odd function? How can you tell if a function 
is odd by looking at its graph? Give three examples of  
an odd function.

	4 .	� What is an increasing function?

	5 .	� What is a mathematical model?

	 6.	� Give an example of each type of function.
	 (a)	 Linear function	 (b)	 Power function
	 (c)	 Exponential function	 (d)	 Quadratic function
	 (e)	 Polynomial of degree 5	 (f )	 Rational function

	 7.	� �Sketch by hand, on the same axes, the graphs of the following 
functions.

	 (a)	 f sxd − x	 (b)	 tsxd − x 2

	 (c)	 hsxd − x 3	 (d)	 jsxd − x 4
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true-false quiz

Determine whether the statement is true or false. If it is true, 
explain why. If it is false, explain why or give an example that 
disproves the statement.

	 1.	� If f  is a function, then f ss 1 td − f ssd 1 f std.

	 2.	� If f ssd − f std, then s − t.

	 3.	� If f  is a function, then f s3xd − 3 f sxd.

	 4.	�� If x1 , x2 and f  is a decreasing function, then f sx1 d . f sx2 d.

	 5.	�� A vertical line intersects the graph of a function at most once.

	 6.	� If f  and t are functions, then f 8 t − t 8 f.

	 7.	�� If f  is one-to-one, then f 21sxd −
1

 f sxd
.

	 8.	� You can always divide by e x.

	 9.	� If 0 , a , b, then ln a , ln b.

	10.	� If x . 0, then sln xd6 − 6 ln x.

	11.	� If x . 0 and a . 1, then 
ln x

ln a
− ln 

x

a
 .

	12.	� tan21s21d − 3�y4

	13.	� tan21x −
sin21x

cos21x
	14.	� If x is any real number, then sx 2 − x.

	 8.	﻿� �Draw, by hand, a rough sketch of the graph of each function.
	 (a)	 y − sin x	 (b)	 y − tan x	 (c)	 y − e x

	 (d)	 y − ln x	 (e)	 y − 1yx	 (f )	 y − | x |
	 (g)	 y − sx 	 (h)	 y − tan21x

	 9.	�� Suppose that f  has domain A and t has domain B.
	 (a)	 What is the domain of f 1 t?
	 (b)	 What is the domain of f t?
	 (c)	 What is the domain of fyt?

	10.	� �How is the composite function f 8 t defined? What is its 
domain?

	11.	� �Suppose the graph of f  is given. Write an equation for each of 
the graphs that are obtained from the graph of f  as follows.

	 (a)	 Shift 2 units upward.	 (b)	 Shift 2 units downward.
	 (c)	 Shift 2 units to the right.	 (d)	 Shift 2 units to the left.
	 (e)	 Reflect about the x-axis.	

	 (f )	 Reflect about the y-axis.
	 (g)	 Stretch vertically by a factor of 2.
	 (h)	 Shrink vertically by a factor of 2.
	 (i)	 Stretch horizontally by a factor of 2.
	 ( j)	 Shrink horizontally by a factor of 2.

	12.	� (a)	� What is a one-to-one function? How can you tell if a 
function is one-to-one by looking at its graph?

	 (b)	� If f  is a one-to-one function, how is its inverse function  
f 21 defined? How do you obtain the graph of f 21 from  
the graph of f ?

	13.	� (a)	� How is the inverse sine function f sxd − sin21x defined? 
What are its domain and range?

	 (b)	� How is the inverse cosine function f sxd − cos21x  
defined? What are its domain and range?

	 (c)	� How is the inverse tangent function f sxd − tan21x  
defined? What are its domain and range?

	 (f)	 Is f  one-to-one? Explain.
	 (g)	 Is f  even, odd, or neither even nor odd? Explain.

	 2.	�� The graph of t is given.

gy

x0 1

1

	 (a)	 State the value of ts2d.
	 (b)	 Why is t one-to-one?
	 (c)	 Estimate the value of t21s2d.
	 (d)	 Estimate the domain of t21.
	 (e)	 Sketch the graph of t21.

EXERCISES

	 1.�	 Let f  be the function whose graph is given.

y

x1

1

f

	 (a)	 Estimate the value of f s2d.
	 (b)	 Estimate the values of x such that f sxd − 3.
	 (c)	 State the domain of f.
	 (d)	 State the range of f.
	 (e)	 On what interval is f  increasing?
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	21.	�� Life expectancy improved dramatically in the 20th century. 
The table gives the life expectancy at birth (in years) of males 
born in the United States. Use a scatter plot to choose an 
appropriate type of model. Use your model to predict the life 
span of a male born in the year 2010.

Birth year Life expectancy Birth year Life expectancy

1900 48.3 1960 66.6
1910 51.1 1970 67.1
1920 55.2 1980 70.0
1930 57.4 1990 71.8
1940 62.5 2000 73.0
1950 65.6

	22.	�� A small-appliance manufacturer finds that it costs $9000 to 
produce 1000 toaster ovens a week and $12,000 to produce 
1500 toaster ovens a week.

	 (a)	� Express the cost as a function of the number of toaster 
ovens produced, assuming that it is linear. Then sketch 
the graph.

	 (b)	� What is the slope of the graph and what does it represent?
	 (c)	� What is the y-intercept of the graph and what does it  

represent?

	23.	� If f sxd − 2x 1 ln x, find f 21s2d.

	24.	� Find the inverse function of f sxd −
x 1 1

2x 1 1
.

	25.	� Find the exact value of each expression.
	 (a)	 e 2 ln 3	 (b)	 log10 25 1 log10 4

	 (c)	 tansarcsin 12 d	 (d)	 sinscos21 s4
5dd

	26.	� Solve each equation for x.
	 (a)	 e x − 5	 (b)	 ln x − 2

	 (c)	 eex
− 2	 (d)	 tan21x − 1

	27.	�� The half-life of palladium-100, 100Pd, is four days. (So half of 
any given quantity of 100Pd will disintegrate in four days.) The 
initial mass of a sample is one gram.

	 (a)	� Find the mass that remains after 16 days.
	 (b)	� Find the mass mstd that remains after t days.
	 (c)	� Find the inverse of this function and explain its meaning.
	 (d)	 When will the mass be reduced to 0.01g?

	28.	�� The population of a certain species in a limited environment 
with initial population 100 and carrying capacity 1000 is

Pstd −
100,000

100 1 900e2t

	 where t is measured in years.
	 (a)	� Graph this function and estimate how long it takes for the 

population to reach 900.
	 (b)	� Find the inverse of this function and explain its meaning.
	 (c)	� Use the inverse function to find the time required for  

the population to reach 900. Compare with the result of 
part (a).

;

	 3.	�� If f sxd − x 2 2 2x 1 3, evaluate the difference quotient

f sa 1 hd 2 f sad
h

	4 .	�� Sketch a rough graph of the yield of a crop as a function of the 
amount of fertilizer used.

5–8 � Find the domain and range of the function. Write your answer 
in interval notation.

	5 .	 f sxd − 2ys3x 2 1d	 6.	 tsxd − s16 2 x 4 

	 7.	 hsxd − lnsx 1 6d	 8.	 Fstd − 3 1 cos 2t

	 9.	�� Suppose that the graph of f  is given. Describe how the graphs 
of the following functions can be obtained from the graph of f.

	 (a)	 y − f sxd 1 8	 (b)	 y − f sx 1 8d
	 (c)	 y − 1 1 2 f sxd	 (d)	 y − f sx 2 2d 2 2
	 (e)	 y − 2f sxd	 (f )	 y − f 21sxd

	10.	�� The graph of f  is given. Draw the graphs of the following 
functions.

	 (a)	 y − f sx 2 8d	 (b)	 y − 2f sxd
	 (c)	 y − 2 2 f sxd	 (d)	 y − 1

2 f sxd 2 1
	 (e)	 y − f 21sxd	 (f )	 y − f 21sx 1 3d

y

x0 1

1

11–16 � Use transformations to sketch the graph of the function.

	11.	 y − sx 2 2d3	 12.	 y − 2sx 

	13.	 y − x 2 2 2x 1 2	 14.	 y − lnsx 1 1d

	15.	 f sxd − 2cos 2x	 16.	 f sxd − H2x

e x 2 1

if  x , 0

if  x > 0

	17.	� Determine whether f  is even, odd, or neither even nor odd.

	 (a)	 f sxd − 2x 5 2 3x 2 1 2

	 (b)	 f sxd − x 3 2 x 7

	 (c)	 f sxd − e2x2

	 (d)	 f sxd − 1 1 sin x

	18.	�� Find an expression for the function whose graph consists of 
the line segment from the point s22, 2d to the point s21, 0d 
together with the top half of the circle with center the origin 
and radius 1.

	19.	�� If f sxd − ln x and tsxd − x 2 2 9, find the functions  
(a) f 8 t, (b) t 8 f , (c) f 8 f , (d) t 8 t, and their domains.

	20.	�� Express the function Fsxd − 1ysx 1 sx  as a composition of 
three functions.
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Principles of 
Problem Solving

There are no hard and fast rules that will ensure success in solving problems. However, 
it is possible to outline some general steps in the problem-solving process and to give 
some principles that may be useful in the solution of certain problems. These steps and 
principles are just common sense made explicit. They have been adapted from George 
Polya’s book How To Solve It.

The first step is to read the problem and make sure that you understand it clearly. Ask 
yourself the following questions:

What is the unknown?

What are the given quantities?

What are the given conditions?

For many problems it is useful to 

draw a diagram

and identify the given and required quantities on the diagram.
Usually it is necessary to

introduce suitable notation

In choosing symbols for the unknown quantities we often use letters such as a, b, c, m, n,  
x, and y, but in some cases it helps to use initials as suggestive symbols; for instance, V  
for volume or t for time. 

Find a connection between the given information and the unknown that will enable you 
to calculate the unknown. It often helps to ask yourself explicitly: “How can I relate the 
given to the unknown?” If you don’t see a connection immediately, the following ideas 
may be helpful in devising a plan.

Try to Recognize Something Familiar � Relate the given situation to previous knowledge. 
Look at the unknown and try to recall a more familiar problem that has a similar unknown.

Try to Recognize Patterns � Some problems are solved by recognizing that some kind of 
pattern is occurring. The pattern could be geometric, or numerical, or algebraic. If you 
can see regularity or repetition in a problem, you might be able to guess what the con-
tinuing pattern is and then prove it.

Use Analogy � Try to think of an analogous problem, that is, a similar problem, a related 
problem, but one that is easier than the original problem. If you can solve the similar, 
simpler problem, then it might give you the clues you need to solve the original, more 
difficult problem. For instance, if a problem involves very large numbers, you could first 
try a similar problem with smaller numbers. Or if the problem involves three-dimensional 
geometry, you could look for a similar problem in two-dimensional geometry. Or if the 
problem you start with is a general one, you could first try a special case.

Introduce Something Extra � It may sometimes be necessary to introduce something new, 
an auxiliary aid, to help make the connection between the given and the unknown. For 
instance, in a problem where a diagram is useful the auxiliary aid could be a new line 
drawn in a diagram. In a more algebraic problem it could be a new unknown that is 
related to the original unknown.

Take Cases � We may sometimes have to split a problem into several cases and give a 
different argument for each of the cases. For instance, we often have to use this strategy 
in dealing with absolute value.

1  Understand the Problem

2  think of a plan
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Work Backward � Sometimes it is useful to imagine that your problem is solved and 
work backward, step by step, until you arrive at the given data. Then you may be able 
to reverse your steps and thereby construct a solution to the original problem. This pro-
cedure is commonly used in solving equations. For instance, in solving the equation 
3x 2 5 − 7, we suppose that x is a number that satisfies 3x 2 5 − 7 and work back-
ward. We add 5 to each side of the equation and then divide each side by 3 to get x − 4. 
Since each of these steps can be reversed, we have solved the problem.

Establish Subgoals � In a complex problem it is often useful to set subgoals (in which the 
desired situation is only partially fulfilled). If we can first reach these subgoals, then we 
may be able to build on them to reach our final goal.

Indirect Reasoning � Sometimes it is appropriate to attack a problem indirectly. In using 
proof by contradiction to prove that P implies Q, we assume that P is true and Q is false 
and try to see why this can’t happen. Somehow we have to use this information and arrive 
at a contradiction to what we absolutely know is true.

Mathematical Induction � In proving statements that involve a positive integer n, it is 
frequently helpful to use the following principle.

Principle of Mathematical Induction � Let Sn be a statement about the positive  
integer n. Suppose that

1.  �S1 is true.

2. �� Sk11 is true whenever Sk is true.

�Then Sn is true for all positive integers n.

This is reasonable because, since S1 is true, it follows from condition 2 swith k − 1d 
that S2 is true. Then, using condition 2 with k − 2, we see that S3 is true. Again using 
condition 2, this time with k − 3, we have that S4 is true. This procedure can be followed 
indefinitely.

In Step 2 a plan was devised. In carrying out that plan we have to check each stage of the 
plan and write the details that prove that each stage is correct.

Having completed our solution, it is wise to look back over it, partly to see if we have 
made errors in the solution and partly to see if we can think of an easier way to solve the 
problem. Another reason for looking back is that it will familiarize us with the method 
of solution and this may be useful for solving a future problem. Descartes said, “Every 
problem that I solved became a rule which served afterwards to solve other problems.”

These principles of problem solving are illustrated in the following examples. Before 
you look at the solutions, try to solve these problems yourself, referring to these Principles 
of Problem Solving if you get stuck. You may find it useful to refer to this section from 
time to time as you solve the exercises in the remaining chapters of this book.

Example �1� � Express the hypotenuse h of a right triangle with area 25 m2 as a function 
of its perimeter P.

SOLUTION � Let’s first sort out the information by identifying the unknown quantity and 
the data:

 Unknown: hypotenuse h

 Given quantities: perimeter P, area 25 m 2

3  Carry Out the Plan

4  Look Back

PS   Understand the problem
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It helps to draw a diagram and we do so in Figure 1.

a

h
b

In order to connect the given quantities to the unknown, we introduce two extra 
variables a and b, which are the lengths of the other two sides of the triangle. This 
enables us to express the given condition, which is that the triangle is right-angled, by 
the Pythagorean Theorem:

h 2 − a 2 1 b 2

The other connections among the variables come by writing expressions for the area 
and perimeter:

25 − 1
2 ab            P − a 1 b 1 h

Since P is given, notice that we now have three equations in the three unknowns a, b,  
and h:

1 � 	   h 2 − a 2 1 b 2

2 � 	   25 − 1
2 ab

3 � 	   P − a 1 b 1 h

Although we have the correct number of equations, they are not easy to solve in a 
straightforward fashion. But if we use the problem-solving strategy of trying to recog-
nize something familiar, then we can solve these equations by an easier method. Look 
at the right sides of Equations 1, 2, and 3. Do these expressions remind you of anything 
familiar? Notice that they contain the ingredients of a familiar formula:

sa 1 bd2 − a 2 1 2ab 1 b 2

Using this idea, we express sa 1 bd2 in two ways. From Equations 1 and 2 we have

sa 1 bd2 − sa 2 1 b 2 d 1 2ab − h 2 1 4s25d

From Equation 3 we have

sa 1 bd2 − sP 2 hd2 − P2 2 2Ph 1 h 2

Thus	  h 2 1 100 − P2 2 2Ph 1 h 2

	  2Ph − P2 2 100

	  h −
P2 2 100

2P

This is the required expression for h as a function of P.	 ■

As the next example illustrates, it is often necessary to use the problem-solving prin
ciple of taking cases when dealing with absolute values.

Example �2�  Solve the inequality | x 2 3 | 1 | x 1 2 | , 11.

Solution � Recall the definition of absolute value:

| x | − Hx

2x

if x > 0

if x , 0

PS   Draw a diagram

FIGURE 1 �

PS   Connect the given with the 
unknown
PS   Introduce something extra

PS   Relate to the familiar
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It follows that

 | x 2 3 | − Hx 2 3

2sx 2 3d
if  x 2 3 > 0

if  x 2 3 , 0

 − Hx 2 3

2x 1 3

if  x > 3

if  x , 3

Similarly

 | x 1 2 | − Hx 1 2

2sx 1 2d
if  x 1 2 > 0

if  x 1 2 , 0

 − Hx 1 2

2x 2 2

if  x > 22

if  x , 22

These expressions show that we must consider three cases:

x , 22            22 < x , 3            x > 3

Case I  If x , 22, we have

 | x 2 3 | 1 | x 1 2 | , 11

 2x 1 3 2 x 2 2 , 11

 22x , 10

 x . 25

Case II  If 22 < x , 3,  the given inequality becomes

 2x 1 3 1 x 1 2 , 11

 5 , 11    (always true)

Case iii  If x > 3, the inequality becomes

 x 2 3 1 x 1 2 , 11

 2x , 12

 x , 6

Combining cases I, II, and III, we see that the inequality is satisfied when 25 , x , 6.  
So the solution is the interval s25, 6d.	� ■

In the following example we first guess the answer by looking at special cases and 
recognizing a pattern. Then we prove our conjecture by mathematical induction.

In using the Principle of Mathematical Induction, we follow three steps:

Step 1	� Prove that Sn is true when n − 1.

Step 2	� Assume that Sn is true when n − k and deduce that Sn is true when n − k 1 1.

Step 3	� Conclude that Sn is true for all n by the Principle of Mathematical Induction.

PS   Take cases
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Example �3�  If f0sxd − xysx 1 1d and fn11 − f0 8 fn for n − 0, 1, 2, . . . , find a formula 
for fnsxd.

Solution � We start by finding formulas for fnsxd for the special cases n − 1, 2, and 3.

	   f1sxd − s f0 8 f0dsxd − f0( f0sxd) − f0S x

x 1 1D
 −

x

x 1 1

x

x 1 1
1 1

−

x

x 1 1

2x 1 1

x 1 1

−
x

2x 1 1

	   f2sxd − s f0 8 f1 dsxd − f0( f1sxd) − f0S x

2x 1 1D
 −

x

2x 1 1

x

2x 1 1
1 1

−

x

2x 1 1

3x 1 1

2x 1 1

−
x

3x 1 1

	   f3sxd − s f0 8 f2 dsxd − f0( f2sxd) − f0S x

3x 1 1D
 −

x

3x 1 1

x

3x 1 1
1 1

−

x

3x 1 1

4x 1 1

3x 1 1

−
x

4x 1 1

We notice a pattern: The coefficient of x in the denominator of fnsxd is  n 1 1 in the 
three cases we have computed. So we make the guess that, in general,

4 � 	  fnsxd −
x

sn 1 1dx 1 1

To prove this, we use the Principle of Mathematical Induction. We have already verified 
that (4) is true for n − 1. Assume that it is true for n − k, that is,

fksxd −
x

sk 1 1dx 1 1

Then	   fk11sxd − s f0 8 fk dsxd − f0( fksxd) − f0S x

sk 1 1dx 1 1D
	  −

x

sk 1 1dx 1 1

x

sk 1 1dx 1 1
1 1

−

x

sk 1 1dx 1 1

sk 1 2dx 1 1

sk 1 1dx 1 1

−
x

sk 1 2dx 1 1

This expression shows that (4) is true for n − k 1 1. Therefore, by mathematical 
induction, it is true for all positive integers n.	� ■

PS   Analogy: Try a similar, simpler 
problem

PS   Look for a pattern
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	 1.	� �One of the legs of a right triangle has length 4 cm. Express the length of the altitude perpen-
dicular to the hypotenuse as a function of the length of the hypotenuse.

	 2.	� �The altitude perpendicular to the hypotenuse of a right triangle is 12 cm. Express the length 
of the hypotenuse as a function of the perimeter.

	 3.	� �Solve the equation | 2x 2 1 | 2 | x 1 5 | − 3.

	4 .	� Solve the inequality | x 2 1 | 2 | x 2 3 | > 5.

	5 .	� Sketch the graph of the function f sxd − | x 2 2 4 | x | 1 3 |.
	 6.	� Sketch the graph of the function tsxd − | x 2 2 1 | 2 | x 2 2 4 |.
	 7.	� Draw the graph of the equation x 1 | x | − y 1 | y |.
	 8.	� Sketch the region in the plane consisting of all points sx, yd such that 

| x 2 y | 1 | x | 2 | y | < 2

	 9.	� �The notation maxha, b, . . .j means the largest of the numbers a, b, . . . . Sketch the graph of 
each function.

		�  (a)	� f sxd − maxhx, 1yxj
		�  (b)	 f sxd − maxhsin x, cos xj
		�  (c)	 f sxd − maxhx 2, 2 1 x, 2 2 xj

	10.	� �Sketch the region in the plane defined by each of the following equations or inequalities.
		�  (a)	� maxhx, 2yj − 1

		�  (b)	 21 < maxhx, 2yj < 1

		�  (c)	 maxhx, y 2j − 1

	11.	� Evaluate slog2 3dslog3 4dslog4 5d ∙ ∙ ∙ slog31 32d.

	12.	� (a)	 Show that the function f sxd − ln(x 1 sx 2 1 1 ) is an odd function.

		�  (b)	 Find the inverse function of f.

	13.	� Solve the inequality lnsx 2 2 2x 2 2d < 0.

	14.	� Use indirect reasoning to prove that log2 5 is an irrational number.

	15.	� �A driver sets out on a journey. For the first half of the distance she drives at the leisurely  
pace of 30 miyh; she drives the second half at 60 miyh. What is her average speed on  
this trip?

	16.	� Is it true that f 8 st 1 hd − f 8 t 1 f 8 h?

	17.	� Prove that if n is a positive integer, then 7n 2 1 is divisible by 6.

	18.	� Prove that 1 1 3 1 5 1 ∙ ∙ ∙ 1 s2n 2 1d − n2.

	19.	� If f0sxd − x 2 and fn11sxd − f0s fnsxdd for n − 0, 1, 2, . . . , find a formula for fnsxd.

	20.	� (a)	� If f0sxd −
1

2 2 x
 and fn11 − f0 8  fn for n − 0, 1, 2, . . . ,  find an expression for fnsxd and 

use mathematical induction to prove it.

	� 	 (b)	� Graph f0, f1, f2, f3 on the same screen and describe the effects of repeated composition.;

Problems
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The maximum sustain-
able swimming speed S of 

salmon depends on the water 
temperature T. Exercise 58 in 

Section 2.7 asks you to analyze 
how S varies as T changes by 

estimating the derivative of S 
with respect to T.

In A Preview of Calculus  �(page 1) we saw how the idea of a limit underlies the various 
branches of calculus. It is therefore appropriate to begin our study of calculus by investigating 
limits and their properties. The special type of limit that is used to find tangents and velocities 
gives rise to the central idea in differential calculus, the derivative.

© Jody Ann / Shutterstock.com

Limits and Derivatives2
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78	 Chapter 2    Limits and Derivatives

In this section we see how limits arise when we attempt to find the tangent to a curve or 
the velocity of an object.

The Tangent Problem
The word tangent is derived from the Latin word tangens, which means “touching.” Thus 
a tangent to a curve is a line that touches the curve. In other words, a tangent line should 
have the same direction as the curve at the point of contact. How can this idea be made 
precise?

For a circle we could simply follow Euclid and say that a tangent is a line that 
intersects the circle once and only once, as in Figure 1(a). For more complicated curves 
this definition is inadequate. Figure l(b) shows two lines l and t passing through a point 
P on a curve C. The line l intersects C only once, but it certainly does not look like what 
we think of as a tangent. The line t, on the other hand, looks like a tangent but it intersects 
C twice.

To be specific, let’s look at the problem of trying to find a tangent line t to the parabola 
y − x 2 in the following example.

Example �1�  Find an equation of the tangent line to the parabola y − x 2 at the  
point Ps1, 1d.

SOLUTION � We will be able to find an equation of the tangent line t as soon as we know 
its slope m. The difficulty is that we know only one point, P, on t, whereas we need two 
points to compute the slope. But observe that we can compute an approximation to m 
by choosing a nearby point Qsx, x 2 d on the parabola (as in Figure 2) and computing the 
slope mPQ of the secant line PQ. [A secant line, from the Latin word secans, meaning 
cutting, is a line that cuts (intersects) a curve more than once.]

We choose x ± 1 so that Q ± P. Then

mPQ −
x 2 2 1

x 2 1

For instance, for the point Qs1.5, 2.25d we have

mPQ −
2.25 2 1

1.5 2 1
−

1.25

0.5
− 2.5

The tables in the margin show the values of mPQ for several values of x close to 1. The 
closer Q is to P, the closer x is to 1 and, it appears from the tables, the closer mPQ is to 
2. This suggests that the slope of the tangent line t should be m − 2.

We say that the slope of the tangent line is the limit of the slopes of the secant lines, 
and we express this symbolically by writing

lim
Q lP

 mPQ − m        and        lim
x l 1

 
x 2 2 1

x 2 1
− 2

Assuming that the slope of the tangent line is indeed 2, we use the point-slope form 
of the equation of a line [y 2 y1 − msx 2 x1d, see Appendix B] to write the equation of 
the tangent line through s1, 1d as

y 2 1 − 2sx 2 1d        or        y − 2x 2 1

(a)

(b)

t

P
Ct

l

FIGURE 1 �

x

y

0

y=≈

tQ{x, ≈}

P(1, 1)

FIGURE 2 

x mPQ

2 3
1.5 2.5
1.1 2.1
1.01 2.01
1.001 2.001

x mPQ

0 1
0.5 1.5
0.9 1.9
0.99 1.99
0.999 1.999
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Figure 3 illustrates the limiting process that occurs in this example. As Q approaches 
P along the parabola, the corresponding secant lines rotate about P and approach the 
tangent line t.

Q approaches P from the right

Q approaches P from the left

P

y

x0

Q

t

P

y

x0

Q

t

P

y

x0

Q

t

P

y

x0
Q

t

P

y

x0

Q

t

x0

P

y
Q

t

	 ■

Many functions that occur in science are not described by explicit equations; they are 
defined by experimental data. The next example shows how to estimate the slope of the 
tangent line to the graph of such a function.

Example �2�  The flash unit on a camera operates by storing charge on a capacitor and 
releasing it suddenly when the flash is set off. The data in the table describe the charge 
Q remaining on the capacitor (measured in microcoulombs) at time t (measured in 
seconds after the flash goes off). Use the data to draw the graph of this function and 
estimate the slope of the tangent line at the point where t − 0.04. [Note: The slope of 
the tangent line represents the electric current flowing from the capacitor to the flash 
bulb (measured in microamperes).]

SOLUTION � In Figure 4 we plot the given data and use them to sketch a curve that 
approximates the graph of the function.

t

Q

0 0.02 0.04 0.06 0.08 0.1

90

100

60

70

80

50

(seconds)

(microcoulombs)

FIGURE 3 �

TEC � In Visual 2.1 you can see how 
the process in Figure 3 works for 
additional functions.

t Q

0.00 100.00
0.02   81.87
0.04   67.03
0.06   54.88
0.08   44.93
0.10   36.76

FIGURE 4 �
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Given the points Ps0.04, 67.03d and Rs0.00, 100.00d on the graph, we find that the 
slope of the secant line PR is

mPR −
100.00 2 67.03

0.00 2 0.04
− 2824.25

The table at the left shows the results of similar calculations for the slopes of other 
secant lines. From this table we would expect the slope of the tangent line at t − 0.04 
to lie somewhere between 2742 and 2607.5. In fact, the average of the slopes of the 
two closest secant lines is

1
2 s2742 2 607.5d − 2674.75

So, by this method, we estimate the slope of the tangent line to be about 2675.
Another method is to draw an approximation to the tangent line at P and measure 

the sides of the triangle ABC, as in Figure 5.

t

Q

A

B C

P

0 0.02 0.04 0.06 0.08 0.1

90

100

60

70

80

50

(seconds)

(microcoulombs)

This gives an estimate of the slope of the tangent line as

2 | AB |
| BC | < 2

80.4 2 53.6

0.06 2 0.02
− 2670

	 ■

The Velocity Problem
If you watch the speedometer of a car as you travel in city traffic, you see that the 
speed doesn’t stay the same for very long; that is, the velocity of the car is not constant. 
We assume from watching the speedometer that the car has a definite velocity at each 
moment, but how is the “instantaneous” velocity defined? Let’s investigate the example 
of a falling ball.

Example �3�  Suppose that a ball is dropped from the upper observation deck of  
the CN Tower in Toronto, 450 m above the ground. Find the velocity of the ball after  
5 seconds.

SOLUTION � Through experiments carried out four centuries ago, Galileo discovered that 
the distance fallen by any freely falling body is proportional to the square of the time it 
has been falling. (This model for free fall neglects air resistance.) If the distance fallen 

R mPR

(0.00, 100.00) 2824.25
(0.02, 81.87) 2742.00
(0.06, 54.88) 2607.50
(0.08, 44.93) 2552.50
(0.10, 36.76) 2504.50

FIGURE 5 �

�The physical meaning of the answer 
in Example 2 is that the electric cur-
rent flowing from the capacitor to 
the flash bulb after 0.04 seconds is 
about 2670 microamperes.
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The CN Tower in Toronto was the 
tallest freestanding building in the 
world for 32 years.

after t seconds is denoted by sstd and measured in meters, then Galileo’s law is 
expressed by the equation

sstd − 4.9t 2

The difficulty in finding the velocity after 5 seconds is that we are dealing with a 
single instant of time st − 5d, so no time interval is involved. However, we can approxi-
mate the desired quantity by computing the average velocity over the brief time interval 
of a tenth of a second from t − 5 to t − 5.1:

 average velocity −
change in position

time elapsed

 −
ss5.1d 2 ss5d

0.1

 −
4.9s5.1d2 2 4.9s5d2

0.1
− 49.49 mys

The following table shows the results of similar calculations of the average velocity 
over successively smaller time periods.

Time interval Average velocity smysd

5 < t < 6 53.9

5 < t < 5.1 49.49

5 < t < 5.05 49.245

5 < t < 5.01 49.049

5 < t < 5.001 49.0049

It appears that as we shorten the time period, the average velocity is becoming closer to 
49 mys. The instantaneous velocity when t − 5 is defined to be the limiting value of 
these average velocities over shorter and shorter time periods that start at t − 5. Thus it 
appears that the (instantaneous) velocity after 5 seconds is

v − 49 mys	 ■

You may have the feeling that the calculations used in solving this problem are very 
similar to those used earlier in this section to find tangents. In fact, there is a close 
connection between the tangent problem and the problem of finding velocities. If we 
draw the graph of the distance function of the ball (as in Figure 6) and we consider the 
points Psa, 4.9a 2 d and Qsa 1 h, 4.9sa 1 hd2 d on the graph, then the slope of the secant 
line PQ is

mPQ −
4.9sa 1 hd2 2 4.9a 2

sa 1 hd 2 a

which is the same as the average velocity over the time interval fa, a 1 hg. Therefore 
the velocity at time t − a (the limit of these average velocities as h approaches 0) must 
be equal to the slope of the tangent line at P (the limit of the slopes of the secant lines).

Examples 1 and 3 show that in order to solve tangent and velocity problems we must 
be able to find limits. After studying methods for computing limits in the next five sec-
tions, we will return to the problems of finding tangents and velocities in Section 2.7.FIGURE 6 �

t

s

Q

a a+h0

slope of secant line
� average velocity

P

s=4.9t @

t

s

0 a

slope of tangent line
� instantaneous velocityP

s=4.9t @
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Exercises

	1 .	� �A tank holds 1000 gallons of water, which drains from the  
bottom of the tank in half an hour. The values in the table 
show the volume V of water remaining in the tank (in gallons) 
after t minutes.

t smind 5 10 15 20 25 30

V sgald 694 444 250 111 28 0

	 (a)	� If P is the point s15, 250d on the graph of V, find the 
slopes of the secant lines PQ when Q is the point on the 
graph with t − 5, 10, 20, 25, and 30.

	 (b)	� Estimate the slope of the tangent line at P by averaging 
the slopes of two secant lines.

	 (c)	� Use a graph of the function to estimate the slope of the  
tangent line at P. (This slope represents the rate at which 
the water is flowing from the tank after 15 minutes.)

	2 .	� �A cardiac monitor is used to measure the heart rate of a patient 
after surgery. It compiles the number of heartbeats after t min
utes. When the data in the table are graphed, the slope of the 
tangent line represents the heart rate in beats per minute.

t smind 36 38 40 42 44

Heartbeats 2530 2661 2806 2948 3080

The monitor estimates this value by calculating the slope of 
a secant line. Use the data to estimate the patient’s heart rate 
after 42 minutes using the secant line between the points with 
the given values of t.

	 (a)	 t − 36    and    t − 42	 (b)	 t − 38    and    t − 42
	 (c)	 t − 40    and    t − 42	 (d)	 t − 42    and    t − 44

What are your conclusions?

	3 .	� �The point Ps2, 21d lies on the curve y − 1ys1 2 xd.
	 (a)	� If Q is the point sx, 1ys1 2 xdd, use your calculator to find 

the slope of the secant line PQ (correct to six decimal 
places) for the following values of x :

	 (i)	 1.5	 (ii)	 1.9	 (iii)	 1.99	 (iv)	 1.999
	 (v)	 2.5	 (vi)	 2.1	 (vii)	 2.01	 (viii)	 2.001
	 (b)	� Using the results of part (a), guess the value of the slope 

of the tangent line to the curve at Ps2, 21d.
	 (c)	� Using the slope from part (b), find an equation of the 

tangent line to the curve at Ps2, 21d.

	 4.	� �The point Ps0.5, 0d lies on the curve y − cos �x.
	 (a)	� If Q is the point sx, cos �xd, use your calculator to find the 

slope of the secant line PQ (correct to six decimal places) 
for the following values of x :
	 (i)	 0	 (ii)	 0.4	 (iii)	 0.49
	(iv)	 0.499	 (v)	 1	 (vi)	 0.6
	(vii)	 0.51	 (viii)	 0.501

  	 (b)	�� Using the results of part (a), guess the value of the 
slope of the tangent line to the curve at Ps0.5, 0d.

	 (c)	� Using the slope from part (b), find an equation of the 
tangent line to the curve at Ps0.5, 0d.

	 (d)	� Sketch the curve, two of the secant lines, and the 
tangent line.

	 5.	� �If a ball is thrown into the air with a velocity of 40 ftys, its 
height in feet t seconds later is given by y − 40t 2 16t 2.

	 (a)	� Find the average velocity for the time period beginning 
when t − 2 and lasting

	 (i)	 0.5 seconds	 (ii)	 0.1 seconds
	 (iii)	 0.05 seconds	 (iv)	 0.01 seconds
	 (b)	 Estimate the instantaneous velocity when t − 2.

	 6.	� �If a rock is thrown upward on the planet Mars with a 
velocity of 10 mys, its height in meters t seconds later is 
given by y − 10t 2 1.86t 2.

	 (a)	 Find the average velocity over the given time intervals:
	 (i)	 [1, 2]	 (ii)	 [1, 1.5]
	 (iii)	 [1, 1.1]	 (iv)	 [1, 1.01]
	 (v)	 [1, 1.001]
	 (b)	 Estimate the instantaneous velocity when t − 1.

	 7.	� �The table shows the position of a motorcyclist after acceler
ating from rest.

t ssecondsd 0 1 2 3 4 5 6

s (feet) 0 4.9 20.6 46.5 79.2 124.8 176.7

	 (a)	� Find the average velocity for each time period:
		  (i)  f2, 4g        (ii)  f3, 4g        (iii)  f4, 5g        (iv)  f4, 6g
	 (b)	� Use the graph of s as a function of t to estimate the 

instantaneous velocity when t − 3.

	 8.	� �The displacement (in centimeters) of a particle moving 
back and forth along a straight line is given by the equation 
of motion s − 2 sin �t 1 3 cos �t, where t is measured in 
seconds.

	 (a)	� Find the average velocity during each time period:
	 (i)	 [1, 2]	 (ii)	 [1, 1.1]
	 (iii)	 [1, 1.01]	 (iv)	 [1, 1.001]
	 (b)	� Estimate the instantaneous velocity of the particle  

when t − 1.

	 9.	� The point Ps1, 0d lies on the curve y − sins10�yxd.
	 (a)	� If Q is the point sx, sins10�yxdd, find the slope of the 

secant line PQ (correct to four decimal places) for 
x − 2, 1.5, 1.4, 1.3, 1.2, 1.1, 0.5, 0.6, 0.7, 0.8, and 0.9. 
Do the slopes appear to be approaching a limit?

	 (b)	� Use a graph of the curve to explain why the slopes of 
the secant lines in part (a) are not close to the slope of 
the tangent line at P.

	 (c)	� By choosing appropriate secant lines, estimate the slope 
of the tangent line at P.

;
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Having seen in the preceding section how limits arise when we want to find the tangent 
to a curve or the velocity of an object, we now turn our attention to limits in general and 
numerical and graphical methods for computing them.

Let’s investigate the behavior of the function f  defined by f sxd − x 2 2 x 1 2 for 
values of x near 2. The following table gives values of f sxd for values of x close to 2 but 
not equal to 2.

x f sxd x f sxd

1.0 2.000000 3.0 8.000000
1.5 2.750000 2.5 5.750000
1.8 3.440000 2.2 4.640000
1.9 3.710000 2.1 4.310000
1.95 3.852500 2.05 4.152500
1.99 3.970100 2.01 4.030100
1.995 3.985025 2.005 4.015025
1.999 3.997001 2.001 4.003001

From the table and the graph of f  (a parabola) shown in Figure 1 we see that the closer 
x is to 2 (on either side of 2), the closer f sxd is to 4. In fact, it appears that we can make the 
values of f sxd as close as we like to 4 by taking x sufficiently close to 2. We express this by  
saying “the limit of the function f sxd − x 2 2 x 1 2 as x approaches 2 is equal to 4.” The 
notation for this is

lim
x l

 

2
 sx 2 2 x 1 2d − 4

In general, we use the following notation.

1 �  Intuitive Definition of a Limit � Suppose f sxd is defined when x is near the 
number a. (This means that f  is defined on some open interval that contains a, 
except possibly at a itself.) Then we write

lim
x l a

 f sxd − L

and say	 “the limit of f sxd, as x approaches a, equals L”

if we can make the values of f sxd arbitrarily close to L (as close to L as we like) by 
restricting x to be sufficiently close to a (on either side of a) but not equal to a.

Roughly speaking, this says that the values of f sxd approach L as x approaches a. In 
other words, the values of f sxd tend to get closer and closer to the number L as x gets 
closer and closer to the number a (from either side of a) but x ± a. (A more precise defi-
nition will be given in Section 2.4.)

An alternative notation for

lim
x l a

 f sxd − L

is	 f sxd l L        as        x l a

which is usually read “ f sxd approaches L as x approaches a.”

fiGure 1

4
ƒ

approaches
4.

x

y

2
As x approaches 2,

y=≈-x+2

0
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Notice the phrase “but x ± a” in the definition of limit. This means that in finding the 
limit of f sxd as x approaches a, we never consider x − a. In fact, f sxd need not even be 
defined when x − a. The only thing that matters is how f  is defined near a.

Figure 2 shows the graphs of three functions. Note that in part (c), f sad is not defined 
and in part (b), f sad ± L. But in each case, regardless of what happens at a, it is true  
that  lim x l a f sxd − L.

(c)

x

y

0

L

a

(b)

x

y

0

L

a

(a)

x

y

0

L

a

Example �1�  Guess the value of lim
x l1

 
x 2 1

x 2 2 1
.

SOLUTION � Notice that the function f sxd − sx 2 1dysx 2 2 1d is not defined when x − 1, 
but that doesn’t matter because the definition of lim x l a f sxd says that we consider 
values of x that are close to a but not equal to a.

The tables at the left give values of f sxd (correct to six decimal places) for values of 
x that approach 1 (but are not equal to 1). On the basis of the values in the tables, we 
make the guess that

	 lim
x l 1

 
x 2 1

x 2 2 1
− 0.5	 ■

Example 1 is illustrated by the graph of f  in Figure 3. Now let’s change f  slightly by 
giving it the value 2 when x − 1 and calling the resulting function t:

tsxd − H x 2 1

x 2 2 1
if x ± 1

2 if x − 1

This new function t still has the same limit as x approaches 1. (See Figure 4.)

0 1

0.5

x-1
≈-1y=

0 1

0.5

y=©

2

y

x

y

x

figure 3	 Figure 4

figure 2�  lim
x l a

 f sxd − L in all three cases

x , 1 f sxd

0.5 0.666667
0.9 0.526316
0.99 0.502513
0.999 0.500250
0.9999 0.500025

x . 1 f sxd

1.5 0.400000
1.1 0.476190
1.01 0.497512
1.001 0.499750
1.0001 0.499975

1 0.5
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Example �2�  Estimate the value of lim
t l 0

 
st 2 1 9 2 3

t 2 .

SOLUTION � The table lists values of the function for several values of t near 0.

t st 2 1 9 2 3

t 2

61.0 0.162277 . . .

60.5 0.165525 . . .

60.1 0.166620 . . .

60.05 0.166655 . . .

60.01 0.166666 . . .

As t approaches 0, the values of the function seem to approach 0.1666666 . . . and so 
we guess that

	 lim
t l 0

 
st 2 1 9 2 3

t 2 −
1

6
	 ■

In Example 2 what would have happened if we had taken even smaller values of t? The 
table in the margin shows the results from one calculator; you can see that something 
strange seems to be happening.

If you try these calculations on your own calculator you might get different values, 
but eventually you will get the value 0 if you make t sufficiently small. Does this mean 
that the answer is really 0 instead of 16 ? No, the value of the limit is 16, as we will show in 
the next section. The problem is that the calculator gave false values because st 2 1 9  is 
very close to 3 when t is small. (In fact, when t is sufficiently small, a calculator’s value 
for st 2 1 9  is 3.000. . . to as many digits as the calculator is capable of carrying.)

Something similar happens when we try to graph the function

f std −
st 2 1 9 2 3

t 2

of Example 2 on a graphing calculator or computer. Parts (a) and (b) of Figure 5 show 
quite accurate graphs of f , and when we use the trace mode (if available) we can estimate 
easily that the limit is about 16. But if we zoom in too much, as in parts (c) and (d), then we 
get inaccurate graphs, again because of rounding errors from the subtraction.

0.1

0.2

0.1

0.2

sad 25 < t < 5  sbd 20.1 < t < 0.1  scd 21026 < t < 1026  sdd 21027 < t < 1027

t st 2 1 9 2 3

t 2

60.001 0.166667
60.0001 0.166670
60.00001 0.167000
60.000001 0.000000

www.stewartcalculus.com
For a further explanation of why 
calculators sometimes give false 
values, click on Lies My Calculator 
and Computer Told Me. In particu-
lar, see the section called The Perils 
of Subtraction.

FIGURE 5 �
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86	 Chapter 2    Limits and Derivatives

Example �3�  Guess the value of lim 
x l 0

 
sin x

x
.

SOLUTION � The function f sxd − ssin xdyx is not defined when x − 0. Using a calcula-
tor (and remembering that, if x [ R, sin x means the sine of the angle whose radian 
measure is x), we construct a table of values correct to eight decimal places. From the 
table at the left and the graph in Figure 6 we guess that

 lim 
x l 0

sin x

x
− 1

This guess is in fact correct, as will be proved in Chapter 3 using a geometric argument. 

	
0 x_1 1

y
sin x

xy=1

	
■

Example �4�  Investigate lim 
x l 0

 sin 
�

x
.

SOLUTION � Again the function f sxd − sins�yxd is undefined at 0. Evaluating the 
function for some small values of x, we get

 f s1d − sin � − 0              f (1
2) − sin 2� − 0

 f (1
3) − sin 3� − 0              f (1

4) − sin 4� − 0

 f s0.1d − sin 10� − 0             f s0.01d − sin 100� − 0

Similarly, f s0.001d − f s0.0001d − 0. On the basis of this information we might be 
tempted to guess that

 lim 
x l 0

 sin 
�

x
− 0

but this time our guess is wrong. Note that although f s1ynd − sin n� − 0 for any 
integer n, it is also true that f sxd − 1 for infinitely many values of x (such as 2y5 or 
2y101) that approach 0. You can see this from the graph of f  shown in Figure 7.

y=sin(π/x)

x

y

1

1

_1

_1

x
sin x

x

61.0 0.84147098
60.5 0.95885108
60.4 0.97354586
60.3 0.98506736
60.2 0.99334665
60.1 0.99833417
60.05 0.99958339
60.01 0.99998333
60.005 0.99999583
60.001 0.99999983

figure 6

Computer Algebra Systems
Computer algebra systems (CAS) 
have commands that compute limits. 
In order to avoid the types of pitfalls 
demonstrated in Examples 2, 4, and 
5, they don’t find limits by numerical 
experimentation. Instead, they use more 
sophisticated techniques such as com- 
puting infinite series. If you have access 
to a CAS, use the limit command to 
compute the limits in the examples of 
this section and to check your answers 
in the exercises of this chapter.

figure 7
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The dashed lines near the y-axis indicate that the values of sins�yxd oscillate 
between 1 and 21 infinitely often as x approaches 0. (See Exercise 51.) 

Since the values of f sxd do not approach a fixed number as x approaches 0,

	
lim
x l 0

 sin 
�

x
does not exist

	 ■

Example �5�  Find lim
x l 0

 Sx 3 1
cos 5x

10,000D.

SOLUTION � As before, we construct a table of values. From the first table in the margin 
it appears that

lim
x l 0

 Sx 3 1
cos 5x

10,000D − 0

But if we persevere with smaller values of x, the second table suggests that

 lim 
x l 0

 Sx 3 1
cos 5x

10,000D − 0.000100 −
1

10,000

Later we will see that lim x l 0 cos 5x − 1; then it follows that the limit is 0.0001.	 ■

Examples 4 and 5 illustrate some of the pitfalls in guessing the value of a limit. It is 
easy to guess the wrong value if we use inappropriate values of x, but it is difficult to 
know when to stop calculating values. And, as the discussion after Example 2 shows, 
sometimes calculators and computers give the wrong values. In the next section, how-
ever, we will develop foolproof methods for calculating limits.

One-Sided Limits

Example �6�  The Heaviside function H is defined by

Hstd − H0

1

if t , 0

if t > 0

[This function is named after the electrical engineer Oliver Heaviside (1850–1925) and 
can be used to describe an electric current that is switched on at time t − 0.] Its graph 
is shown in Figure 8.

As t approaches 0 from the left, Hstd approaches 0. As t approaches 0 from the right, 
Hstd approaches 1. There is no single number that Hstd approaches as t approaches 0. 
Therefore lim t l 0 Hstd does not exist.	 ■

We noticed in Example 6 that Hstd approaches 0 as t approaches 0 from the left and 
Hstd approaches 1 as t approaches 0 from the right. We indicate this situation symboli-
cally by writing

lim
t l 02

 Hstd − 0        and        lim
t l 01

 Hstd − 1

The notation t l 02 indicates that we consider only values of t that are less than 0. Like-
wise, t l 01 indicates that we consider only values of t that are greater than 0.

x x 3 1
cos 5x

10,000

1 1.000028
0.5 0.124920
0.1 0.001088
0.05 0.000222
0.01 0.000101

x x 3 1
cos 5x

10,000

0.005 0.00010009
0.001 0.00010000

t

y

1

0

FIGURE 8 �  
The Heaviside function
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88	 Chapter 2    Limits and Derivatives

2 �  Definition of One-Sided Limits � We write

lim
x la2

 f sxd − L

and say the left-hand limit of f sxd as x approaches a [or the limit of f sxd as  
x approaches a from the left] is equal to L if we can make the values of f sxd  
arbitrarily close to L by taking x to be sufficiently close to a with x less than a.

Notice that Definition 2 differs from Definition 1 only in that we require x to be less 
than a. Similarly, if we require that x be greater than a, we get “the right-hand limit of 
f sxd as x approaches a is equal to L” and we write

lim
x l

 

a1
 f sxd − L

Thus the notation x l a1 means that we consider only x greater than a. These defini-
tions are illustrated in Figure 9.

0 x

y

L

xa0 x

y

ƒ L

x a

ƒ

x    a+x    a_
(a) lim  ƒ=L (b) lim  ƒ=L

By comparing Definition l with the definitions of one-sided limits, we see that the 
following is true.

3 ��      lim
x l a

 f sxd − L      if and only if      lim
x l

 

a2
 f sxd − L    and    lim

x l
 

a1
 f sxd − L

Example �7�  The graph of a function t is shown in Figure 10. Use it to state the values 
(if they exist) of the following:

(a)  lim
x l 22

 tsxd            (b)  lim
x l 21

 tsxd            (c)  lim
x l 2

 tsxd

(d)  lim
x l 52

 tsxd            (e)  lim
x l 51

 tsxd            (f )  lim
x l 5

 tsxd

SOLUTION � From the graph we see that the values of tsxd approach 3 as x approaches 2 
from the left, but they approach 1 as x approaches 2 from the right. Therefore

(a)  lim
x l 22

 tsxd − 3        and        (b)  lim
x l 21

 tsxd − 1

(c)  Since the left and right limits are different, we conclude from (3) that limx l 2 tsxd 
does not exist.

The graph also shows that

(d)  lim
x l 52

 tsxd − 2        and        (e)  lim
x l 51

 tsxd − 2

FIGURE 9 �

FIGURE 10 �

y

0 x

y=©

1 2 3 4 5

1

3

4
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(f )  This time the left and right limits are the same and so, by (3), we have

lim
x l 5

 tsxd − 2

Despite this fact, notice that ts5d ± 2.	 ■

Infinite Limits

Example �8�  Find lim
x l 0

 
1

x 2  if it exists.

SOLUTION � As x becomes close to 0, x 2 also becomes close to 0, and 1yx 2 becomes very 
large. (See the table in the margin.) In fact, it appears from the graph of the function 
f sxd − 1yx 2 shown in Figure 11 that the values of f sxd can be made arbitrarily large 
by taking x close enough to 0. Thus the values of f sxd do not approach a number, so 
lim x l 0 s1yx 2 d does not exist.	 ■

To indicate the kind of behavior exhibited in Example 8, we use the notation

lim 
x l 0

 
1

x 2 − `

This does not mean that we are regarding ` as a number. Nor does it mean that the limit  
exists. It simply expresses the particular way in which the limit does not exist: 1yx 2 can 
be made as large as we like by taking x close enough to 0.

In general, we write symbolically

 lim 
x l a

 f sxd − `

to indicate that the values of f sxd tend to become larger and larger (or “increase without 
bound”) as x becomes closer and closer to a.

4 �  Intuitive Definition of an Infinite Limit � Let f  be a function defined on both 
sides of a, except possibly at a itself. Then

 lim 
x l a

 f sxd − `

means that the values of f sxd can be made arbitrarily large (as large as we please) 
by taking x sufficiently close to a, but not equal to a.

Another notation for limx l a f sxd − ` is

f sxd l `        as        x l a

Again, the symbol ̀  is not a number, but the expression lim x l a f sxd − ` is often read as

“the limit of f sxd, as x approaches a, is infinity”

or	 “ f sxd becomes infinite as x approaches a”

or	 “ f sxd increases without bound as x approaches a”

This definition is illustrated graphically in Figure 12.

x
1

x 2

61 1
60.5 4
60.2 25
60.1 100
60.05 400
60.01 10,000
60.001 1,000,000

figure 11 �

y=

0

y

x

1
≈

figure 12 �
lim
x l a

 f sxd − `

x

y

x=a

y=ƒ

a0
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90	 Chapter 2    Limits and Derivatives

A similar sort of limit, for functions that become large negative as x gets close to a, is 
defined in Definition 5 and is illustrated in Figure 13.

5 �  Definition � Let f  be a function defined on both sides of a, except possibly at 
a itself. Then

 lim 
x l a

 f sxd − 2`

means that the values of f sxd can be made arbitrarily large negative by taking x 
sufficiently close to a, but not equal to a.

The symbol limx l a f sxd − 2` can be read as “the limit of f sxd, as x approaches a, is 
negative infinity” or “ f sxd decreases without bound as x approaches a.” As an example 
we have

lim
x l

 

0
 S2

1

x 2D − 2`

Similar definitions can be given for the one-sided infinite limits

	 lim
x l

 

a2
 f sxd − `	 lim

x l
 

a1
 f sxd − `

	 lim
x l

 

a2
 f sxd − 2`	 lim

x l
 

a1
 f sxd − 2`

remembering that x l a2 means that we consider only values of x that are less than a,  
and similarly x l a1 means that we consider only x . a. Illustrations of these four 
cases are given in Figure 14.

(d) lim  ƒ=_`

a

y

0 x

x a+x a_
(c) lim  ƒ=_`

y

0 a x

(a) lim  ƒ=`

y

0 a x

x a_
(b) lim  ƒ=`

a

y

x

x a+

0

6 �  Definition � The vertical line x − a is called a vertical asymptote of the  
curve y − f sxd if at least one of the following statements is true:

	 lim
x l

 

a
 f sxd − `	 lim

x l
 

a2
 f sxd − ` 	 lim

x l
 

a1
 f sxd − `

	 lim
x l

 

a
 f sxd − 2`	 lim

x l
 

a2
 f sxd − 2`	 lim

x l
 

a1
 f sxd − 2`

For instance, the y-axis is a vertical asymptote of the curve y − 1yx 2 because 
limx l 0 s1yx 2 d − `. In Figure 14 the line x − a is a vertical asymptote in each of 

When we say a number is “large nega-
tive,” we mean that it is negative but its 
magnitude (absolute value) is large.

FIGURE 14 �

0 x

y

x=a

y=ƒ

a

figure 13 
�lim
x l a

 f sxd − 2`
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the four cases shown. In general, knowledge of vertical asymptotes is very useful in 
sketching graphs.

Example �9�  Find lim
x l

 

31
 

2x

x 2 3
 and lim

x l
 

32
 

2x

x 2 3
.

SOLUTION � If x is close to 3 but larger than 3, then the denominator x 2 3 is a small 
positive number and 2x is close to 6. So the quotient 2xysx 2 3d is a large positive 
number. [For instance, if x − 3.01 then 2xysx 2 3d − 6.02y0.01 − 602.] Thus, intui-
tively, we see that

lim
x l

 

31
 

2x

x 2 3
− `

Likewise, if x is close to 3 but smaller than 3, then x 2 3 is a small negative number 
but 2x is still a positive number (close to 6). So 2xysx 2 3d is a numerically large nega-
tive number. Thus

  lim
x l

 

32
 

2x

x 2 3
− 2`

The graph of the curve y − 2xysx 2 3d is given in Figure 15. The line x − 3 is a verti-
cal asymptote.	 ■

Example �10�  Find the vertical asymptotes of f sxd − tan x.

SOLUTION � Because

tan x −
sin x

cos x

there are potential vertical asymptotes where cos x − 0. In fact, since cos x l 01 as 
x l s�y2d2 and cos x l 02 as x l s�y2d1, whereas sin x is positive (near 1) when x 
is near �y2, we have

lim
x l

 

s�y2d2
 tan x − `        and        lim

x l
 

s�y2d1
 tan x − 2`

This shows that the line x − �y2 is a vertical asymptote. Similar reasoning shows  
that the lines x − �y2 1 n�, where n is an integer, are all vertical asymptotes of 
f sxd − tan x. The graph in Figure 16 confirms this.	 ■

Another example of a function whose graph has a vertical asymptote is the natural 
logarithmic function y − ln x. From Figure 17 we see that

lim
x l

 

01
 ln x − 2`

and so the line x − 0 (the y-axis) is a vertical asymptote. In fact, the same is true for 
y − log b x provided that b . 1. (See Figures 1.5.11 and 1.5.12.)

Figure 16�   
y − tan x

__
x

y

π0_π

1

π
2

3π
 2

π
2

3π
 2

Figure 17�   
The y-axis is a vertical asymptote of  
the natural logarithmic function.

x0

y

1

y=ln x

Figure 15� 

5

2x
x-3y=

0 x

y

x=3
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92	 Chapter 2    Limits and Derivatives

 	  1.	� Explain in your own words what is meant by the equation

lim
x l 2

 f sxd − 5

		��  Is it possible for this statement to be true and yet f s2d − 3? 
Explain.

	  2.	� Explain what it means to say that

lim
x l 12

f sxd − 3        and         lim
x l11

 f sxd − 7

		��  In this situation is it possible that limx l 1 f sxd exists?  
Explain.

	  3.	�� Explain the meaning of each of the following.

	 (a)	 lim
x l

 

23
f sxd − `	 (b)	 lim

x l 41
f sxd − 2`

	 4.	�� Use the given graph of f  to state the value of each quantity,  
�if it exists. If it does not exist, explain why.

	 (a)	 lim
x l

 

22
f sxd	 (b)	 lim

x l 21
f sxd	 (c)	 lim

x l 2
 f sxd

	 (d)	 f s2d	 (e)	 lim
x l 4

 f sxd	 (f )	 f s4d

y

0 x2 4

4

2

	 5.	�� For the function f  whose graph is given, state the value of 
each quantity, if it exists. If it does not exist, explain why.

	 (a)	 lim
x l 1

 f sxd	 (b)	 lim
x l 32

f sxd	 (c)	 lim
x l 31

f sxd

	 (d)	 lim
x l 3

 f sxd	 (e)	 f s3d

y

0 x2 4

4

2

	 6.	�� For the function h whose graph is given, state the value of 
each quantity, if it exists. If it does not exist, explain why.

	 (a)	 lim
x l 232

hsxd	 (b)	 lim
x l 231

hsxd	 (c)	 lim
x l 23

hsxd

	 (d)	 hs23d	 (e)	 lim
xl

 

02 
hsxd	 (f )	 lim

x l
 

01 
hsxd

	 (g)	 lim
x l 0

 hsxd	 (h)	 hs0d	 (i)	 lim
x l 2

 hsxd

	 ( j)	 hs2d	 (k)	 lim
x l

 

51
hsxd	 (l)	 lim

x l
 

52 
hsxd

y

0 x2_2_4 4 6

	  7.	�� For the function t whose graph is given, state the value of 
each quantity, if it exists. If it does not exist, explain why.

	 (a)	 lim
t l 02

tstd	 (b)	 lim
t l 01

tstd	 (c)	 lim
t l 0

tstd

	 (d)	 lim
t l 22

tstd	 (e)	 lim
t l 21

tstd	 (f )	 lim
t l 2

tstd

	 (g)	 ts2d	 (h)	 lim
t l 4

 tstd

y

t2 4

4

2

	 8.	�� For the function A whose graph is shown, state the following.

	 (a)	  lim 
x l23

 Asxd	 (b)	 lim
x l22

 Asxd	

	 (c)	 lim
x l21

 Asxd	 (d)	  lim 
x l21

 Asxd

	 (e)	 The equations of the vertical asymptotes

0

y

x2_3 5

	 9.	�� For the function f  whose graph is shown, state the following.

	 (a)	 lim 
x l27

 f sxd	 (b)	 lim 
x l23 

 f sxd	 (c)	 lim
x l 0 

 f sxd

	 (d)	 lim
x l 62

f sxd	 (e)	 lim
x l 61

f sxd

41550_ch02_ptg1_hr_077-105.indd   92 2/17/15   12:11 PM



	 Section  2.2    The Limit of a Function	 93

	 (f )	 The equations of the vertical asymptotes.

x

y

0 6_3_7

	10.	� �A patient receives a 150-mg injection of a drug every 
4 hours. The graph shows the amount f std of the drug in 
the bloodstream after t hours. Find

lim
tl 122

 f std        and        lim
tl 121

 f std

and explain the significance of these one-sided limits.

4 8 12 16 t

f(t)

150

0

300

11–12 � Sketch the graph of the function and use it to determine 
the values of a for which limx l a f sxd exists.

	11.	 f sxd − H1 1 x

x 2

2 2 x

if x , 21

if  21 < x , 1

if x > 1

	12.	 f sxd − H1 1 sin x

cos x

sin x

if x , 0

if  0 < x < �

if x . �

	13–14 � Use the graph of the function f  to state the value of 
each limit, if it exists. If it does not exist, explain why.

(a)  lim
x l 02 

f sxd      (b)  lim
x l 01 

f sxd      (c)  lim
x l 0 

f sxd

	13.	 f sxd −
1

1 1 e 1yx 	 14.	 f sxd −
x 2 1 x

sx 3 1 x 2 

15–18 � Sketch the graph of an example of a function f  that  
satisfies all of the given conditions.

	15.	� lim
x l 02

 f sxd − 21,    lim
x l 01

 f sxd − 2,    f s0d − 1

	16.	� lim
x l 0

 f sxd − 1,    lim
x l 32

 f sxd − 22,    lim
x l 31

 f sxd − 2,

	� f s0d − 21,    f s3d − 1

;

	17.	� lim
x l 31

 f sxd − 4,    lim
x l 32

 f sxd − 2,    lim
x l 22

 f sxd − 2,

	� f s3d − 3,    f s22d − 1

	18.	� lim
x l 02

 f sxd − 2,    lim
x l 01

 f sxd − 0,    lim
x l 42

 f sxd − 3,

	 lim
x l 41

 f sxd − 0,    f s0d − 2,    f s4d − 1

19–22 � Guess the value of the limit (if it exists) by evaluating 
the function at the given numbers (correct to six decimal places).

	19.	�� lim
x l

 

3
 
x 2 2 3x

x 2 2 9
,  

	 x − 3.1, 3.05, 3.01, 3.001, 3.0001,	

	 2.9, 2.95, 2.99, 2.999, 2.9999

	20.	� �lim
x l

 

23
 
x 2 2 3x

x 2 2 9
,

	 x − 22.5, 22.9, 22.95, 22.99, 22.999, 22.9999,

	 23.5, 23.1, 23.05, 23.01, 23.001, 23.0001

	21.	�� lim
tl 0

 
e5 t 2 1

t
,    t − 60.5, 60.1, 60.01, 60.001, 60.0001

	22.	� lim
hl 0

 
s2 1 hd5 2 32

h
,

h − 60.5, 60.1, 60.01, 60.001, 60.0001

23–28 � Use a table of values to estimate the value of the limit. 
If you have a graphing device, use it to confirm your result 
graphically.

	23.	 lim
x l 4

 
ln x 2 ln 4

x 2 4
	 24.	 lim

p l 21
 

1 1 p 9

1 1 p 15

	25.	� lim
� l 0

 
sin 3�

tan 2�
	 26.	 lim

t l 0
 
5 t 2 1

t

	27.	� lim
x l01

 x x 	 28.	 lim
x l01

 x 2 ln x

	29.	� �(a)	� By graphing the function f sxd − scos 2x 2 cos xdyx 2 
and zooming in toward the point where the graph 
crosses the y-axis, estimate the value of lim x l 0 f sxd.

	 (b)	� Check your answer in part (a) by evaluating f sxd for  
values of x that approach 0.

	30.	� �(a)	� Estimate the value of

lim
x l 0

 
sin x

sin �x

	�� by graphing the function f sxd − ssin xdyssin �xd. 
State your answer correct to two decimal places.

	 (b)	� Check your answer in part (a) by evaluating f sxd for  
values of x that approach 0.

;

;
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31– 43 � Determine the infinite limit.

	31.	  lim
x l51

 
x 1 1

x 2 5
	32 .	 lim

x l
 

52
 
x 1 1

x 2 5

	33.	 lim
x l

 

1
 

2 2 x

sx 2 1d2 	3 4.	 lim
x l32

 
sx 

sx 2 3d5

	35.	 lim
x l

 

31
 lnsx 2 2 9d	3 6.	 lim

x l 01
 lnssin xd

	37.	 lim
xls�y2d1

 
1

x
 sec x	3 8.	 lim

x l�2
 cot x

	39.	 lim
x l2�2

 x csc x	 40.	 lim
x l

 

22
 

x 2 2 2x

x 2 2 4x 1 4

41.		 lim
x l21

 
x 2 2 2x 2 8

x 2 2 5x 1 6

	42.	 lim
xl01

 S 1

x
2 ln xD

43.		 lim
xl0

 sln x 2 2 x22d

	44.	� �(a)	 Find the vertical asymptotes of the function

y −
x 2 1 1

3x 2 2x 2

	 (b)	� Confirm your answer to part (a) by graphing the  
function.

	45.	� Determine lim
x l

 

12
 

1

x 3 2 1
 and lim

x l
 

11
 

1

x 3 2 1

	 (a)	� by evaluating f sxd − 1ysx 3 2 1d for values of x that 
approach 1 from the left and from the right,

	 (b)	 by reasoning as in Example 9, and
	 (c)	 from a graph of f.

	46.	� �(a)	� By graphing the function f sxd − stan 4xdyx and 
zooming in toward the point where the graph crosses 
the y-axis, estimate the value of lim x l 0 f sxd.

	 (b)	� Check your answer in part (a) by evaluating f sxd for  
values of x that approach 0.

	47.	� (a)	� Estimate the value of the limit lim x l 0 s1 1 xd1yx to 
five decimal places. Does this number look familiar?

	 (b)	� Illustrate part (a) by graphing the function 
y − s1 1 xd1yx.

	48.	� (a)	� Graph the function f sxd − e x 1 ln | x 2 4 | for  
0 < x < 5. Do you think the graph is an accurate  
representation of f ?

	 (b)	� How would you get a graph that represents f  better?

	49.	� (a)	� Evaluate the function f sxd − x 2 2 s2xy1000d for 
x − 1, 0.8, 0.6, 0.4, 0.2, 0.1, and 0.05, and guess the 
value of

lim 
x l 0

 Sx 2 2
2x

1000D

;

;

;

;

;

	 (b)	� Evaluate f sxd for x − 0.04, 0.02, 0.01, 0.005, 0.003, 
and 0.001. Guess again.

	50.	� (a)	� Evaluate hsxd − stan x 2 xdyx 3 for x − 1, 0.5, 0.1, 
0.05, 0.01, and 0.005.

	 (b)	 Guess the value of lim 
x l 0

 
tan x 2 x

x 3 .

	 (c)	� Evaluate hsxd for successively smaller values of x 
until you finally reach a value of 0 for hsxd. Are you 
still confident that your guess in part (b) is correct? 
Explain why you eventually obtained 0 values. (In 
Section 4.4 a method for evaluating this limit will be 
explained.)

	 (d)	� Graph the function h in the viewing rectangle f21, 1g 
by f0, 1g. Then zoom in toward the point where the 
graph crosses the y-axis to estimate the limit of hsxd 
as x approaches 0. Continue to zoom in until you 
observe distortions in the graph of h. Compare with 
the results of part (c).

	51.	� �Graph the function f sxd − sins�yxd of Example 4 in 
the viewing rectangle f21, 1g by f21, 1g. Then zoom in 
toward the origin several times. Comment on the behav-
ior of this function.

	52.	� Consider the function f sxd − tan 
1

x
.

	 (a)	� Show that f sxd − 0 for x −
1

�
, 

1

2�
, 

1

3�
, . . .

	 (b)	� Show that f sxd − 1 for x −
4

�
, 

4

5�
, 

4

9�
, . . .

	 (c)	 What can you conclude about lim
x l 01

 tan 
1

x
 ?

	53.	� �Use a graph to estimate the equations of all the vertical 
asymptotes of the curve

y − tans2 sin xd 2� < x < �

	� Then find the exact equations of these asymptotes.

	54.	� �In the theory of relativity, the mass of a particle with 
velocity v is

m −
m0

s1 2 v2yc2 

	� �where m0 is the mass of the particle at rest and c is the 
speed of light. What happens as v l c2?

	55.	� �(a)	� Use numerical and graphical evidence to guess the 
value of the limit

lim
xl1

 
x3 2 1

sx 2 1

	 (b)	� How close to 1 does x have to be to ensure that the 
function in part (a) is within a distance 0.5 of its limit?

;

;

;

;
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In Section 2.2 we used calculators and graphs to guess the values of limits, but we saw 
that such methods don’t always lead to the correct answer. In this section we use the fol-
lowing properties of limits, called the Limit Laws, to calculate limits.

�Limit Laws � Suppose that c is a constant and the limits

lim
x l a

 f sxd        and        lim
x l a

 tsxd

exist. Then

1.	 lim
x l a

 f f sxd 1 tsxdg − lim
x l a

 f sxd 1 lim
x l a

 tsxd

2.	 lim
x l a

 f f sxd 2 tsxdg − lim
x l a

 f sxd 2 lim
x l a

 tsxd

3.	 lim
x l a

 fcf sxdg − c lim
x l a

 f sxd

4.	 lim
x l a

 f f sxd tsxdg − lim
x l a

 f sxd ? lim
x l a

 tsxd

5.	 lim
x l a

 
 f sxd
tsxd

−
lim
x l a 

f sxd

lim
xla

 tsxd
    if lim

x l a

 tsxd ± 0

These five laws can be stated verbally as follows:

	1.	� The limit of a sum is the sum of the limits.

	2.	� The limit of a difference is the difference of the limits.

	3.	�� The limit of a constant times a function is the constant times the limit of the 
function.

	4.	� The limit of a product is the product of the limits.

	5.	�� The limit of a quotient is the quotient of the limits (provided that the limit of 
the denominator is not 0).

It is easy to believe that these properties are true. For instance, if f sxd is close to L 
and tsxd is close to M, it is reasonable to conclude that f sxd 1 tsxd is close to L 1 M. 
This gives us an intuitive basis for believing that Law 1 is true. In Section 2.4 we give a 
precise definition of a limit and use it to prove this law. The proofs of the remaining laws 
are given in Appendix F.

Example �1�  Use the Limit Laws and the graphs of f  and t in Figure 1 to evaluate the 
following limits, if they exist.

(a)  lim
x l 22

 f f sxd 1 5tsxdg            (b)  lim
x l 1

 f f sxdtsxdg            (c)  lim
x l 2

 
 f sxd
tsxd

SOLUTION  
(a)  From the graphs of f  and t we see that

lim
x l 22

 f sxd − 1        and        lim
x l 22

 tsxd − 21

Sum Law

Difference Law

Constant Multiple Law

Product Law

Quotient Law

x

y

0

f

g
1

1

FIGURE 1 �
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Therefore we have

 lim
x l 22

 f f sxd 1 5tsxdg − lim
x l 22

 f sxd 1 lim
x l 22

 f5tsxdg        (by Limit Law 1)

 − lim
x l 22

 f sxd 1 5 lim
x l 22

 tsxd         (by Limit Law 3)

 − 1 1 5s21d − 24

(b)  We see that lim x l 1 f sxd − 2. But lim x l 1 tsxd does not exist because the left and 
right limits are different:

lim
x l 12

tsxd − 22            lim
x l 11

tsxd − 21

So we can’t use Law 4 for the desired limit. But we can use Law 4 for the one-sided 
limits:

 lim
x l 12

 f f sxdtsxdg − lim
x l12

 f sxd ? lim
x l12

 tsxd − 2 ? s22d − 24

 lim
x l 11

 f f sxdtsxdg − lim
x l11

 f sxd ? lim
x l11

 tsxd − 2 ? s21d − 22

The left and right limits aren’t equal, so lim x l 1 f f sxdtsxdg does not exist.

(c)  The graphs show that

lim
x l 2

 f sxd < 1.4        and        lim
x l 2

 tsxd − 0

Because the limit of the denominator is 0, we can’t use Law 5. The given limit does not 
exist because the denominator approaches 0 while the numerator approaches a nonzero 
number.	 ■

If we use the Product Law repeatedly with tsxd − f sxd, we obtain the following law.

6. � lim
x l

 

a
 f f sxdgn − f lim

x l
 

a
 f sxdg n          where n is a positive integer

In applying these six limit laws, we need to use two special limits: 

7.  lim
x l a

 c − c	 8. � lim
x l a

 x − a

These limits are obvious from an intuitive point of view (state them in words or draw 
graphs of y − c and y − x), but proofs based on the precise definition are requested in 
the exercises for Section 2.4.

If we now put f sxd − x in Law 6 and use Law 8, we get another useful special limit.

9. � lim
x l a

 xn − an        where n is a positive integer

A similar limit holds for roots as follows. (For square roots the proof is outlined in 
Exercise 2.4.37.)

10. � �lim
x l a

 sn x − sn a       where n is a positive integer

(If n is even, we assume that a . 0.)

Power Law
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Newton and Limits
Isaac Newton was born on Christmas 
Day in 1642, the year of Galileo’s death. 
When he entered Cambridge University 
in 1661 Newton didn’t know much 
mathematics, but he learned quickly 
by reading Euclid and Descartes and by 
attending the lectures of Isaac Barrow. 
Cambridge was closed because of the 
plague in 1665 and 1666, and Newton 
returned home to reflect on what he 
had learned. Those two years were 
amazingly productive for at that time 
he made four of his major discoveries: 
(1) his representation of functions as 
sums of infinite series, including the 
binomial theorem; (2) his work on differ-
ential and integral calculus; (3) his laws 
of motion and law of universal gravita-
tion; and (4) his prism experiments on 
the nature of light and color. Because of 
a fear of controversy and criticism, he 
was reluctant to publish his discoveries 
and it wasn’t until 1687, at the urging 
of the astronomer Halley, that Newton 
published Principia Mathematica. In 
this work, the greatest scientific treatise 
ever written, Newton set forth his ver-
sion of calculus and used it to investi-
gate mechanics, fluid dynamics, and 
wave motion, and to explain the motion 
of planets and comets.

The beginnings of calculus are 
found in the calculations of areas and 
volumes by ancient Greek scholars such 
as Eudoxus and Archimedes. Although 
aspects of the idea of a limit are implicit 
in their “method of exhaustion,” Eudoxus 
and Archimedes never explicitly formu-
lated the concept of a limit. Likewise, 
mathematicians such as Cavalieri, Fer- 
mat, and Barrow, the immediate precur-
sors of Newton in the development of 
calculus, did not actually use limits. It 
was Isaac Newton who was the first to 
talk explicitly about limits. He explained 
that the main idea behind limits is that 
quantities “approach nearer than by 
any given difference.” Newton stated 
that the limit was the basic concept in 
calculus, but it was left to later mathe
maticians like Cauchy to clarify his ideas 
about limits.

More generally, we have the following law, which is proved in Section 2.5 as a con-
sequence of Law 10.

11. � lim 
x l

 

a
sn f sxd − sn lim

x l
 

a
 f sxd      where n is a positive integer

�fIf n is even, we assume that lim
x l

 

a
 f sxd . 0.g

 

Example �2�  Evaluate the following limits and justify each step.

(a)  lim
x l

 

5
 s2x 2 2 3x 1 4d	 (b)  lim

x l
 

22
 
x 3 1 2x 2 2 1

5 2 3x

SOLUTION�

(a)	  lim
x l

 

5
 s2x 2 2 3x 1 4d − lim

x l
 

5
 s2x 2 d 2 lim

x l
 

5
 s3xd 1 lim

x l
 

5
 4    (by Laws 2 and 1)

	  − 2 lim
x l

 

5
 x 2 2 3 lim

x l
 

5
 x 1 lim

x l
 

5
 4     (by 3)

	  − 2s52 d 2 3s5d 1 4     (by 9, 8, and 7)

	  − 39

(b)  We start by using Law 5, but its use is fully justified only at the final stage when we 
see that the limits of the numerator and denominator exist and the limit of the denomi-
nator is not 0.

	  lim
x l

 

22
 
x 3 1 2x 2 2 1

5 2 3x
−

lim
x l

 

22
 sx 3 1 2x 2 2 1d

lim
x l

 

22
 s5 2 3xd       (by Law 5)

	  
−

lim
x l

 

22 
x 3 1 2 lim

x l
 

22 x
2 2 lim

x l
 

22
 1

lim
x l

 

22
 5 2 3 lim

x l
 

22
 x       (by 1, 2, and 3)

	  −
s22d3 1 2s22d2 2 1

5 2 3s22d
      (by 9, 8, and 7)

	  − 2
1

11
	 ■

NOTE � If we let f sxd − 2x 2 2 3x 1 4, then f s5d − 39. In other words, we would 
have gotten the correct answer in Example 2(a) by substituting 5 for x. Similarly, direct 
substitution provides the correct answer in part (b). The functions in Example 2 are 
a polynomial and a rational function, respectively, and similar use of the Limit Laws 
proves that direct substitution always works for such functions (see Exercises 57 and 58). 
We state this fact as follows.

Direct Substitution Property �� If f  is a polynomial or a rational function and a is 
in the domain of f , then

lim
x l

 

a
 f sxd − f sad

Root Law
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Functions with the Direct Substitution Property are called continuous at a and will be 
studied in Section 2.5. However, not all limits can be evaluated by direct substitution, as 
the following examples show.

Example �3�  Find lim
xl1

 
x 2 2 1

x 2 1
.

SOLUTION � Let f sxd − sx 2 2 1dysx 2 1d. We can’t find the limit by substituting x − 1 
�because f s1d isn’t defined. Nor can we apply the Quotient Law, because the limit of 
the denominator is 0. Instead, we need to do some preliminary algebra. We factor the 
numerator as a difference of squares:

x 2 2 1

x 2 1
−

sx 2 1dsx 1 1d
x 2 1

The numerator and denominator have a common factor of x 2 1. When we take the 
limit as x approaches 1, we have x ± 1 and so x 2 1 ± 0. Therefore we can cancel the 
common factor and then compute the limit by direct substitution as follows:

 lim
x l 1

 
x 2 2 1

x 2 1
− lim

x l 1
 
sx 2 1dsx 1 1d

x 2 1

 − lim
x l 1

 sx 1 1d

 − 1 1 1 − 2

The limit in this example arose in Example 2.1.1 when we were trying to find the  
tangent to the parabola y − x 2 at the point s1, 1d.	 ■

NOTE � In Example 3 we were able to compute the limit by replacing the given func-
tion f sxd − sx 2 2 1dysx 2 1d by a simpler function, tsxd − x 1 1, with the same limit. 
This is valid because f sxd − tsxd except when x − 1, and in computing a limit as x 
approaches 1 we don’t consider what happens when x is actually equal to 1. In general, 
we have the following useful fact.

If f sxd − tsxd when x ± a, then lim
xla

 f sxd − lim
x la

 tsxd, provided the limits exist.

Example �4�  Find lim
x l1

 tsxd where 

tsxd − Hx 1 1

�

if  x ± 1

if  x − 1

SOLUTION � Here t is defined at x − 1 and ts1d − �, but the value of a limit as x 
approaches 1 does not depend on the value of the function at 1. Since tsxd − x 1 1 for 
x ± 1, we have

	 lim
x l 1

 tsxd − lim
x l 1

 sx 1 1d − 2	 ■

Note that the values of the functions in Examples 3 and 4 are identical except when  
x − 1 (see Figure 2) and so they have the same limit as x approaches 1.

Notice that in Example 3 we do not 
have an infinite limit even though the 
denominator approaches 0 as x l 1. 
When both numerator and denominator 
approach 0, the limit may be infinite or 
it may be some finite value.

y=©

1 2 3

1

x

y

0

2

3

y=ƒ

1 2 3

1

x

y

0

2

3

FIGURE 2 �  
The graphs of the functions f  (from 
Example 3) and t (from Example 4)
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Example �5�  Evaluate lim
h l 0

 
s3 1 hd2 2 9

h
.

SOLUTION � If we define 

Fshd −
s3 1 hd2 2 9

h

then, as in Example 3, we can’t compute lim h l 0 Fshd by letting h − 0 since Fs0d is  
undefined. But if we simplify Fshd algebraically, we find that

Fshd −
s9 1 6h 1 h 2 d 2 9

h
−

6h 1 h 2

h
−

hs6 1 hd
h

− 6 1 h

(Recall that we consider only h ± 0 when letting h approach 0.) Thus

	 lim
h l 0

 
s3 1 hd2 2 9

h
− lim

h l 0
 s6 1 hd − 6	 ■

Example �6�  Find lim
t l 0

 
st 2 1 9 2 3

t 2 .

SOLUTION � We can’t apply the Quotient Law immediately, since the limit of the 
denominator is 0. Here the preliminary algebra consists of rationalizing the numerator:

 lim
t l 0

 
st 2 1 9 2 3

t 2 − lim
t l 0

 
st 2 1 9 2 3

t 2 �
st 2 1 9 1 3

st 2 1 9 1 3

 − lim
t l 0

 
st 2 1 9d 2 9

t 2(st 2 1 9 1 3)

 − lim
t l 0

 
t 2

t 2(st 2 1 9 1 3)

 − lim
t l 0

 
1

st 2 1 9 1 3

 −
1

slim
t l0

 st 2 1 9d 1 3

   −
1

3 1 3
−

1

6

This calculation confirms the guess that we made in Example 2.2.2.	 ■

Some limits are best calculated by first finding the left- and right-hand limits. The 
following theorem is a reminder of what we discovered in Section 2.2. It says that a two-
sided limit exists if and only if both of the one-sided limits exist and are equal.

1 �  Theorem�  lim
x l a

 f sxd − L        if and only if        lim
x l

 

a2
 f sxd − L − lim

x l
 

a1
 f sxd

Here we use several properties of 
limits (5, 1, 10, 7, 9).
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When computing one-sided limits, we use the fact that the Limit Laws also hold for 
one-sided limits.

Example �7�  Show that lim
x l 0

 | x | − 0.

SOLUTION � Recall that

| x | − Hx

2x

if  x > 0

if  x , 0

Since | x | − x for x . 0, we have

lim
x l

 

01
 | x | − lim

x l
 

01
 x − 0

For x , 0 we have | x | − 2x and so 

lim
x l

 

02
 | x | − lim

x l
 

02
 s2xd − 0

Therefore, by Theorem 1, 

	 lim
x l 0

 | x | − 0	 ■

Example �8�  Prove that lim
x l 0

 | x |
x

 does not exist.

SOLUTION�  Using the facts that | x | − x when x . 0 and | x | − 2x when  x , 0, we 
have

 lim
x l

 

01
 | x |

x
− lim

x l
 

01
 
x

x
− lim

x l
 

01
 1 − 1

 lim
x l

 

02
 | x |

x
− lim

x l
 

02
 
2x

x
− lim

x l
 

02
 s21d − 21

Since the right- and left-hand limits are different, it follows from Theorem 1 that 
lim x l 0 | x |yx does not exist. The graph of the function f sxd − | x |yx is shown in Fig-
ure 4 and supports the one-sided limits that we found.	 ■

Example �9�  If

f sxd − Hsx 2 4 

8 2 2x

if  x . 4

if  x , 4

determine whether lim x l 4 f sxd exists.

SOLUTION � Since f sxd − sx 2 4  for x . 4, we have

lim
x l

 

41
 f sxd − lim

x l
 

41
 sx 2 4 − s4 2 4 − 0

Since f sxd − 8 2 2x for x , 4, we have

lim
x l

 

42
 f sxd − lim

x l
 

42
 s8 2 2xd − 8 2 2 ? 4 − 0

The right- and left-hand limits are equal. Thus the limit exists and

lim
x l 4

 f sxd − 0

The graph of f  is shown in Figure 5.	 ■

1

_1
x

y

0

y= |x|
x

FIGURE 4 �

It is shown in Example 2.4.3 that 
lim x l 01 sx − 0.

4 x

y

0

FIGURE 5 �

The result of Example 7 looks plausible  
from Figure 3.

y

x0

y=|x|

FIGURE 3 �
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Example �10�  The greatest integer function is defined by v x b − the largest integer 

that is less than or equal to x. (For instance, v4 b − 4, v4.8b − 4, v� b − 3, vs2 b − 1,

v21
2b − 21.) Show that lim x l3 v x b  does not exist.

SOLUTION � The graph of the greatest integer function is shown in Figure 6. Since  
�v x b − 3 for 3 < x , 4, we have

lim
x l

 

31
 v x b − lim

x l
 

31
 3 − 3

Since v x b − 2 for 2 < x , 3, we have

lim
x l

 

32
 v x b − lim

x l
 

32
 2 − 2

Because these one-sided limits are not equal, lim xl3 v x b  does not exist by Theorem 1. ■

The next two theorems give two additional properties of limits. Their proofs can be 
found in Appendix F.

2 �  Theorem�  If f sxd < tsxd when x is near a (except possibly at a) and the limits 
of f  and t both exist as x approaches a, then

lim
x l a

 f sxd < lim
x l a

 tsxd

3 �  The Squeeze Theorem�  If f sxd < tsxd < hsxd when x is near a (except  
possibly at a) and

lim
x l a

 f sxd − lim
x l a

 hsxd − L

then	 lim
x l a

 tsxd − L

The Squeeze Theorem, which is sometimes called the Sandwich Theorem or the 
Pinching Theorem, is illustrated by Figure 7. It says that if tsxd is squeezed between 
f sxd and hsxd near a, and if f  and h have the same limit L at a, then t is forced to have 
the same limit L at a.

Example �11�  Show that lim
x l 0

 x 2 sin 
1

x
− 0.

SOLUTION � First note that we cannot use

	 lim
x l 0

 x 2 sin 
1

x
− lim

x l 0
 x 2 ? lim

x l 0
sin 

1

x

because lim x l 0 sins1yxd does not exist (see Example 2.2.4).
Instead we apply the Squeeze Theorem, and so we need to find a function f  smaller 

than tsxd − x 2 sins1yxd and a function h bigger than t such that both f sxd and hsxd
approach 0. To do this we use our knowledge of the sine function. Because the sine of 

Other notations for v x b  are fxg and :x;. 
The greatest integer function is 
sometimes called the floor function.

y=[ x]

1 2 3

1

2

3

4

4 5 x

y

0

FIGURE 6   
�Greatest integer function

0 x

y

a

L

f

g

h

FIGURE 7 �
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102	 Chapter 2    Limits and Derivatives

	 4.	 lim
xl 21

 sx 4 2 3xdsx 2 1 5x 1 3d

	 5.	 lim
t l 22

 
t 4 2 2

2t 2 2 3t 1 2
	 6.	� lim

ul
 

22
 su 4 1 3u 1 6 

	 7.	 lim
x l 8

 s1 1 s3 x ds2 2 6x 2 1 x 3d	 8.	� lim
t l 2

 S t 2 2 2

t 3 2 3t 1 5D
2

	 9.	� lim
x l 2

 Î 2x 2 1 1

3x 2 2
 

	10.	� (a)	 What is wrong with the following equation?

x 2 1 x 2 6

x 2 2
− x 1 3

	 (b)	 In view of part (a), explain why the equation

lim
x l

 

2
 
x 2 1 x 2 6

x 2 2
− lim

x l
 

2
 sx 1 3d

is correct.

11–32 � Evaluate the limit, if it exists.

	11.	 lim
x l

 

5
 
x 2 2 6x 1 5

x 2 5
	12 .	 lim

x l
 

23
 

x 2 1 3x

x 2 2 x 2 12
  

	13.	 lim
x l

 

5
 
x 2 2 5x 1 6

x 2 5
	1 4.	 lim

x l
 

4
 

x 2 1 3x

x 2 2 x 2 12

	15.	 lim
t l

 

23
 

t 2 2 9

2t 2 1 7t 1 3
	1 6.	 lim

x l
 

21
 
2x 2 1 3x 1 1

x 2 2 2x 2 3

	17.	 lim
h l

 

0
 
s25 1 hd2 2 25

h
	 18.	 lim

h l
 

0
 
s2 1 hd3 2 8

h

	1 .	� �Given that

lim
x l

 

2
 f sxd − 4      lim

x l
 

2
 tsxd − 22      lim

x l
 

2
 hsxd − 0

		��  find the limits that exist. If the limit does not exist, explain why.

	 (a)	 lim
x l

 

2
 f f sxd 1 5tsxdg	 (b)	 lim

x l
 

2
 ftsxdg3

	 (c)	 lim
x l 2

 sf sxd 	 (d)	 lim
x l

 

2
 
3f sxd
tsxd

	 (e)	 lim
x l

 

2
 
tsxd
hsxd

	 (f )	 lim
x l

 

2
 
tsxdhsxd

f sxd

	2 .	� �The graphs of f  and t are given. Use them to evaluate each 
limit, if it exists. If the limit does not exist, explain why.

	 (a)	 lim
x l

 

2
 f f sxd 1 tsxdg	 (b)	 lim

x l
 

0
 f f sxd 2 tsxdg

	 (c)	 lim
x l

 

21
 f f sxdtsxdg	 (d)	 lim

x l
 

3
 

f sxd
tsxd

	 (e)	 lim
x l

 

2
 fx 2 f sxdg	 (f )	 f s21d 1 lim

x l
 

21
 tsxd

y=©

0 1

1

y=ƒ

0 1

1

y y

x x

�3–9 � Evaluate the limit and justify each step by indicating the 
appropriate Limit Law(s).

	3 .	 lim
x l

 

3
 s5x 3 2 3x 2 1 x 2 6d

any number lies between 21 and 1, we can write.

4 �	 21 < sin 
1

x
< 1

Any inequality remains true when multiplied by a positive number. We know that 
x 2 > 0 for all x and so, multiplying each side of the inequalities in (4) by x 2, we get

2x 2 < x 2 sin 
1

x
< x 2

as illustrated by Figure 8. We know that

lim
x l 0

 x 2 − 0        and        lim
x l 0

 s2x 2 d − 0

Taking f sxd − 2x 2, tsxd − x 2 sins1yxd, and hsxd − x 2 in the Squeeze Theorem, we 
obtain

	 lim
x l 0

 x 2 sin 
1

x
− 0	 ■

y=≈

y=_≈

0 x

y

FIGURE 8 �
y − x 2 sins1yxd
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	40.	� Prove that lim
x l

 

01
 sx  esins�yxd − 0.

41–46 � Find the limit, if it exists. If the limit does not exist, 
explain why.

	41.	 lim
x l 3

 s2x 1  | x 2 3 |d	 42.	 lim
x l

 

26
 
2x 1 12

| x 1 6 |

	43.	 lim
x l

 

0.52
 

2x 2 1

| 2x 3 2 x 2 | 	 44.	 lim
x l

 

22
 
2 2 | x |
2 1 x

	45.	 lim
x l

 

02
 S 1

x
2

1

| x | D	 46.	 lim
x l

 

01
 S 1

x
2

1

| x | D
	47.	� The signum (or sign) function, denoted by sgn, is defined by 

sgn x − H21

20

21

if  x , 0

if  x − 0

if  x . 0

	 (a)	� Sketch the graph of this function.
	 (b)	�� Find each of the following limits or explain why it does 

not exist.
	 (i)	 lim

x l
 

01
 sgn x	 (ii)	 lim

x l
 

02
 sgn x

	 (iii)	 lim
x l 0

 sgn x	 (iv)	 lim
x l 0

 | sgn x |
	48.	� Let tsxd − sgnssin xd .
	 (a)	�� Find each of the following limits or explain why it does 

not exist.
	 (i)	 lim

x l
 

01
 tsxd	 (ii)	 lim

x l02
  tsxd	 (iii)	 lim

x l
 

0
 tsxd

	 (iv)	 lim
x l

 

�1
 tsxd	 (v)	 lim

x l�2
  tsxd	 (vi)	 lim

x l
 

� 
 tsxd

	 (b)	�� For which values of a does lim x l a tsxd not exist?
	 (c)	 Sketch a graph of t.

	49.	� Let tsxd −
x 2 1 x 2 6

| x 2 2 | .

	 (a)	� Find
	 (i)	 lim

x l
 

21
 tsxd	 (ii)	 lim

x l
 

22
 tsxd

	 (b)	� Does limx l 2 tsxd exist?
	 (c)	� Sketch the graph of t.

	50.	� Let

f sxd − Hx 2 1 1

sx 2 2d2

if x , 1

if x > 1

	 (a)	� Find lim x l12 f sxd and lim x l11  f sxd.
	 (b)	� Does lim x l1 f sxd exist?
	 (c)	� Sketch the graph of f.

	51.	� Let

Bstd − H4 2 1
2 t

st 1 c 

if t , 2

if t > 2

		�  Find the value of c so that lim
t l 2

  Bstd exists.

	19.	 lim
x l

 

22
 

x 1 2

x 3 1 8
	 20.	 lim

t l 1
 
t 4 2 1

t 3 2 1

	21.	 lim
h l 0

 
s9 1 h 2 3

h
	 22.	 lim

ul 2
 
s4u 1 1 2 3

u 2 2

	23.	 lim
x l

 

3
 

1

x
2

1

3

x 2 3
	 24.	 lim

h l
 

0
 
s3 1 hd21 2 321

h

	25.	 lim
t l 0

 
s1 1 t 2 s1 2 t 

t
	 26.	 lim

t l
 

0
 S 1

t
2

1

t 2 1 tD
	27.	 lim

x l 16
 

4 2 sx 

16x 2 x 2 	 28.	 lim
x l

 

2
 

x 2 2 4x 1 4

x 4 2 3x 2 2 4

	29.	 lim
t l 0

 S 1

ts1 1 t 
2

1

t
D	 30.	 lim

xl24
 
sx 2 1 9 2 5

x 1 4

	31.	 lim
h l 0

 
sx 1 hd3 2 x 3

h
	 32.	 lim

h l 0
 

1

sx 1 hd2 2
1

x 2

h

	33.	� (a)	 Estimate the value of

lim
x l

 

0
 

x

s1 1 3x 2 1

		�  by graphing the function f sxd − xyss1 1 3x 2 1d.
	 (b)	� Make a table of values of f sxd for x close to 0 and guess 

the value of the limit.
	 (c)	� Use the Limit Laws to prove that your guess is correct.

	34.	� �(a)	 Use a graph of

f sxd −
s3 1 x 2 s3 

x

	�� to estimate the value of limx l 0 f sxd to two decimal 
places.

	� (b)	� Use a table of values of f sxd to estimate the limit to 
four decimal places.

	� (c)	� Use the Limit Laws to find the exact value of the limit.

	35.	� �Use the Squeeze Theorem to show that 
limx l 0 sx 2 cos 20�xd − 0. Illustrate by graphing the 
functions f sxd − 2x 2, tsxd − x 2 cos 20�x, and hsxd − x 2 
on the same screen.

	36.	� �Use the Squeeze Theorem to show that

lim
x l

 

0
 sx 3 1 x 2  sin 

�

x
− 0

		��  Illustrate by graphing the functions f, t, and h (in the 
notation of the Squeeze Theorem) on the same screen.

	37.	� �If 4x 2 9 < f sxd < x 2 2 4x 1 7 for x > 0, find lim
x l 4

  f sxd.

	38.	� If 2x < tsxd < x 4 2 x 2 1 2 for all x, evaluate lim
x l 1

 tsxd.

	39.	� Prove that lim
x l

 

0
 x 4 cos 

2

x
− 0.

;

;

;

;
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104	 Chapter 2    Limits and Derivatives

The intuitive definition of a limit given in Section 2.2 is inadequate for some purposes 
because such phrases as “x is close to 2” and “ f sxd gets closer and closer to L” are vague. 
In order to be able to prove conclusively that

lim
x l 0

 Sx 3 1
cos 5x

10,000D − 0.0001        or        lim
x l 0

 
sin x

x
− 1

we must make the definition of a limit precise.

	59.	� �If lim
x l 1

 
f sxd 2 8

x 2 1
− 10, find lim

x l 1
 f sxd.

	60.	� If lim
x l 0

 
f sxd
x 2 − 5, find the following limits.

	 (a)	� lim
x l 0

 f sxd	 (b)	� lim
x l 0

 
f sxd

x

	61.	� If

f sxd − Hx 2

0

if x is rational

if x is irrational

prove that lim x l 0 f sxd − 0.

	62.	� �Show by means of an example that limx l a f f sxd 1 tsxdg may 
exist even though neither lim x l a f sxd nor limx l a tsxd exists.

	63.	� �Show by means of an example that limx l a f f sxd tsxdg may 
exist even though neither limx l a f sxd nor limx l a tsxd exists.

	64.	� Evaluate lim
x l 2

 
s6 2 x 2 2

s3 2 x 2 1
.

	65.	� Is there a number a such that

lim
x l

 

22
 
3x 2 1 ax 1 a 1 3

x 2 1 x 2 2

exists? If so, find the value of a and the value of the limit.

	66.	� �The figure shows a fixed circle C1 with equation 
sx 2 1d2 1 y 2 − 1 and a shrinking circle C2 with radius r 
and center the origin. P is the point s0, rd, Q is the upper 
point of intersection of the two circles, and R is the point of 
intersection of the line PQ and the x-axis. What happens to R 
as C2 shrinks, that is, as r l 01?

x

y

0

P Q
C™

C¡
R

	52.	� Let

tsxd −   

x

3

2 2 x 2 

x 2 3

  if  x , 1

  if  x − 1

  if  1 , x < 2

  if  x . 2

	 (a)	� Evaluate each of the following, if it exists.
	 (i)	� lim

x l
 

12
 tsxd	 (ii)	� lim

x l 1
 tsxd	 (iii)	� ts1d

	 (iv)	� lim
x l

 

22
 tsxd	 (v)	� lim

x l 21

 

tsxd	 (vi)	� lim
x l 2

 tsxd

	 (b)	� Sketch the graph of t.

	53.	� (a)	�� If the symbol v b  denotes the greatest integer function 
defined in Example 10, evaluate

	 (i)	 lim
x l

 

221
 v x b 	 (ii)	 lim

x l
 

22
 v x b 	 (iii)	 lim

x l
 

22.4
 v x b

	 (b)	� If n is an integer, evaluate
	 (i)	 lim

x l
 

n2
 v x b 	 (ii)	 lim

x l n1 
 v x b

	 (c)	� For what values of a does limx l a v x b  exist?

	54.	� �Let f sxd − vcos x b , 2� < x < �.

	 (a)	� Sketch the graph of f.
	 (b)	� Evaluate each limit, if it exists.

	 (i)	� lim
x l 0

 f sxd	 (ii)	� lim
x l

 

s�y2d2
 f sxd

	 (iii)	� lim
x l

 

s�y2d1 
f sxd	 (iv)	� lim

x l
 

�y2
 f sxd

	 (c)	� For what values of a does limx l a f sxd exist?

	55.	� �If f sxd − v x b 1 v2x b , show that limx l 2 f sxd exists but is 
not equal to f s2d.

	56.	� In the theory of relativity, the Lorentz contraction formula

L − L0 s1 2 v 2yc 2 

expresses the length L of an object as a function of its velocity 
v with respect to an observer, where L0 is the length of the 
object at rest and c is the speed of light. Find limv l

 

c2 L and 
interpret the result. Why is a left-hand limit necessary?

	57.	� If p is a polynomial, show that lim xl a psxd − psad.

	58.	� �If r is a rational function, use Exercise 57 to show that 
limx l a rsxd − rsad for every number a in the domain of r.
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To motivate the precise definition of a limit, let’s consider the function

f sxd − H2x 2 1

6

if  x ± 3

if  x − 3

Intuitively, it is clear that when x is close to 3 but x ± 3, then f sxd is close to 5, and so 
lim x l3 f sxd − 5.

To obtain more detailed information about how f sxd varies when x is close to 3, we 
ask the following question:

How close to 3 does x have to be so that f sxd differs from 5 by less than 0.l?

The distance from x to 3 is | x 2 3 | and the distance from f sxd to 5 is | f sxd 2 5 |, so our 
problem is to find a number � such that

| f sxd 2 5 | , 0.1        if        | x 2 3 | , �    but x ± 3

If | x 2 3 | . 0, then x ± 3, so an equivalent formulation of our problem is to find a 
number � such that

| f sxd 2 5 | , 0.1        if        0 , | x 2 3 | , �

Notice that if 0 , | x 2 3 | , s0.1dy2 − 0.05, then

| f sxd 2 5 | − | s2x 2 1d 2 5 | − | 2x 2 6 | − 2| x 2 3 | , 2s0.05d − 0.1

that is,	 | f sxd 2 5 | , 0.1        if        0 , | x 2 3 | , 0.05

Thus an answer to the problem is given by � − 0.05; that is, if x is within a distance of 
0.05 from 3, then f sxd will be within a distance of 0.1 from 5.

If we change the number 0.l in our problem to the smaller number 0.01, then by using 
the same method we find that f sxd will differ from 5 by less than 0.01 provided that x 
differs from 3 by less than (0.01)y2 − 0.005:

| f sxd 2 5 | , 0.01        if        0 , | x 2 3 | , 0.005

Similarly,

| f sxd 2 5 | , 0.001        if        0 , | x 2 3 | , 0.0005

The numbers 0.1, 0.01, and 0.001 that we have considered are error tolerances that we 
might allow. For 5 to be the precise limit of f sxd as x approaches 3, we must not only be 
able to bring the difference between f sxd and 5 below each of these three numbers; we 
must be able to bring it below any positive number. And, by the same reasoning, we can! 
If we write « (the Greek letter epsilon) for an arbitrary positive number, then we find as 
before that

1 �  	 | f sxd 2 5 | , «        if        0 , | x 2 3 | , � −
«

2

This is a precise way of saying that f sxd is close to 5 when x is close to 3 because (1) says 
that we can make the values of f sxd within an arbitrary distance « from 5 by restricting 
the values of x to be within a distance «y2 from 3 (but x ± 3).

It is traditional to use the Greek letter  
� (delta) in this situation.
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106	 Chapter 2    Limits and Derivatives

Note that (1) can be rewritten as follows:

if    3 2 � , x , 3 1 �    sx ± 3d        then        5 2 « , f sxd , 5 1 «

and this is illustrated in Figure 1. By taking the values of x (± 3) to lie in the interval 
s3 2 �, 3 1 �d we can make the values of f sxd lie in the interval s5 2 «, 5 1 «d.

Using (1) as a model, we give a precise definition of a limit.

2 �  Precise Definition of a Limit � Let f  be a function defined on some open 
interval that contains the number a, except possibly at a itself. Then we say that  
the limit of f sxd as x approaches a is L, and we write

lim
x l a

  f sxd − L

if for every number « . 0 there is a number � . 0 such that

if    0 , | x 2 a | , �        then        | f sxd 2 L | , «

Since | x 2 a | is the distance from x to a and | f sxd 2 L | is the distance from f sxd to 
L, and since « can be arbitrarily small, the definition of a limit can be expressed in words 
as follows:

lim x l a f sxd 5 L means that the distance between f sxd and L can be made arbitrarily small 
by requiring that the distance from x to a be sufficiently small (but not 0).

Alternatively,

lim x l a f sxd 5 L means that the values of f sxd can be made as close as we please to L  
by requiring x to be close enough to a (but not equal to a).

We can also reformulate Definition 2 in terms of intervals by observing that the 
inequality | x 2 a | , � is equivalent to 2� , x 2 a , �, which in turn can be writ-
ten as a 2 � , x , a 1 �. Also 0 , | x 2 a | is true if and only if x 2 a ± 0, that is, 
x ± a. Similarly, the inequality | f sxd 2 L | , « is equivalent to the pair of inequalities 
L 2 « , f sxd , L 1 «. Therefore, in terms of intervals, Definition 2 can be stated as 
follows:

lim x l a f sxd 5 L means that for every « . 0 (no matter how small « is) we can find 
� . 0 such that if x lies in the open interval sa 2 �, a 1 �d and x ± a, then f sxd lies in  
the open interval sL 2 «, L 1 «d.

We interpret this statement geometrically by representing a function by an arrow dia-
gram as in Figure 2, where f  maps a subset of R onto another subset of R.

x a f(a) ƒ

f

The definition of limit says that if any small interval sL 2 «, L 1 «d is given around L,  
then we can find an interval sa 2 �, a 1 �d around a such that f  maps all the points in 
sa 2 �, a 1 �d (except possibly a) into the interval sL 2 «, L 1 «d. (See Figure 3.)

0 x

y

5+∑
5

5-∑

3

3+∂3-∂

ƒ
is in
here

when x is in here
(x≠3)

FIGURE 1 �

FIGURE 2 �
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a-∂ a

ƒ

a+∂

x

f

L-∑ L L+∑

Another geometric interpretation of limits can be given in terms of the graph of a 
function. If « . 0 is given, then we draw the horizontal lines y 5 L 1 « and y 5 L 2 « 
and the graph of f. (See Figure 4.) If lim x l a f sxd 5 L, then we can find a number � . 0 
such that if we restrict x to lie in the interval sa 2 �, a 1 �d and take x ± a, then the 
curve y 5 f sxd lies between the lines y 5 L 2 « and y 5 L 1 «. (See Figure 5.) You can 
see that if such a � has been found, then any smaller � will also work.

It is important to realize that the process illustrated in Figures 4 and 5 must work 
for every positive number «, no matter how small it is chosen. Figure 6 shows that if a 
smaller « is chosen, then a smaller � may be required.

0 x

y

a

y=L+∑

y=L-∑

a-∂ a+∂

∑

∑
L

when x is in here
(x≠a)

ƒ
is in
here

0 x

y

a

y=L+∑

y=L-∑

∑

∑
L

y=ƒ

L+∑

L-∑

0 x

y

a

y=L+∑

y=L-∑

a-∂ a+∂

Example �1�  Since f sxd − x 3 2 5x 1 6 is a polynomial, we know from the Direct 
Substitution Property that lim x l1 f sxd − f s1d − 13 2 5s1d 1 6 − 2. Use a graph to 
find a number � such that if x is within � of 1, then y is within 0.2 of 2, that is,

if        | x 2 1 | , �        then        | sx3 2 5x 1 6d 2 2 | , 0.2

In other words, find a number � that corresponds to « 5 0.2 in the definition of a limit 
for the function f sxd 5 x3 2 5x 1 6 with a 5 1 and L 5 2.

SOLUTION � A graph of f  is shown in Figure 7; we are interested in the region near the 
point s1, 2d. Notice that we can rewrite the inequality

 | sx3 2 5x 1 6d 2 2 | , 0.2

as	 20.2 , sx 3 2 5x 1 6d 2 2 , 0.2

or equivalently	 1.8 , x3 2 5x 1 6 , 2.2

So we need to determine the values of x for which the curve y 5 x3 2 5x 1 6 lies 
between the horizontal lines y 5 1.8 and y 5 2.2. Therefore we graph the curves 
y 5 x3 2 5x 1 6, y 5 1.8, and y 5 2.2 near the point s1, 2d in Figure 8. Then we 

FIGURE 4  FIGURE 5 FIGURE 6

15

_5

_3 3

FIGURE 7 �

y=˛-5x+6

y=2.2

y=1.8

(1, 2)

0.8 1.2

2.3

1.7

FIGURE 8 �

FIGURE 3 �
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108	 Chapter 2    Limits and Derivatives

use the cursor to estimate that the x-coordinate of the point of intersection of the line 
y 5 2.2 and the curve y 5 x3 2 5x 1 6 is about 0.911. Similarly, y 5 x3 2 5x 1 6 
intersects the line y 5 1.8 when x < 1.124. So, rounding toward 1 to be safe, we can 
say that

if        0.92 , x , 1.12        then        1.8 , x3 2 5x 1 6 , 2.2

This interval s0.92, 1.12d is not symmetric about x 5 1. The distance from x 5 1 to the 
left endpoint is 1 2 0.92 5 0.08 and the distance to the right endpoint is 0.12. We can 
choose � to be the smaller of these numbers, that is, � 5 0.08. Then we can rewrite our 
inequalities in terms of distances as follows:

if        | x 2 1 | , 0.08        then        | sx3 2 5x 1 6d 2 2 | , 0.2

This just says that by keeping x within 0.08 of 1, we are able to keep f sxd within 0.2  
of 2.

Although we chose � 5 0.08, any smaller positive value of � would also have 
worked.	 ■

The graphical procedure in Example 1 gives an illustration of the definition for 
« 5 0.2, but it does not prove that the limit is equal to 2. A proof has to provide a � for 
every «.

In proving limit statements it may be helpful to think of the definition of limit as a 
challenge. First it challenges you with a number «. Then you must be able to produce a 
suitable �. You have to be able to do this for every « . 0, not just a particular «.

Imagine a contest between two people, A and B, and imagine yourself to be B. Person 
A stipulates that the fixed number L should be approximated by the values of f sxd to within 
a degree of accuracy « (say, 0.01). Person B then responds by finding a number � such 
that if 0 , | x 2 a | , �, then | f sxd 2 L | , «. Then A may become more exacting and 
challenge B with a smaller value of « (say, 0.0001). Again B has to respond by finding a 
corresponding �. Usually the smaller the value of «, the smaller the corresponding value 
of � must be. If B always wins, no matter how small A makes «, then lim x l a f sxd 5 L.

Example �2�  Prove that lim
x l3

s4x 2 5d − 7.

SOLUTION �
1. � Preliminary analysis of the problem (guessing a value for �).  Let « be a given 

positive number. We want to find a number � such that

if        0 , | x 2 3 | , �        then        | s4x 2 5d 2 7 | , «

But | s4x 2 5d 2 7 | 5 | 4x 2 12 | 5 | 4sx 2 3d | 5 4| x 2 3 |. Therefore we want �  
such that

if        0 , | x 2 3 | , �        then        4| x 2 3 | , «

that is,	 if        0 , | x 2 3 | , �        then        | x 2 3 | ,
«

4

This suggests that we should choose � 5 «y4.

2.  Proof (showing that this � works).  Given « . 0, choose � 5 «y4. If 
0 , | x 2 3 | , �, then

| s4x 2 5d 2 7 | − | 4x 2 12 | − 4| x 2 3 | , 4� − 4S «

4D − «

TEC � In Module 2.4/2.6 you can 
explore the precise definition of a limit 
both graphically and numerically.
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Thus
if        0 , | x 2 3 | , �        then        | s4x 2 5d 2 7 | , «

Therefore, by the definition of a limit,

lim
x l3

 s4x 2 5d − 7 

This example is illustrated by Figure 9.

figure 9�

y

0 x

7+∑

7

7-∑

3-∂ 3+∂

3

y=4x-5

	 ■

Note that in the solution of Example 2 there were two stages—guessing and proving.  
We made a preliminary analysis that enabled us to guess a value for �. But then in the 
second stage we had to go back and prove in a careful, logical fashion that we had made 
a correct guess. This procedure is typical of much of mathematics. Sometimes it is neces-
sary to first make an intelligent guess about the answer to a problem and then prove that 
the guess is correct.

The intuitive definitions of one-sided limits that were given in Section 2.2 can be pre
cisely reformulated as follows.

3 �  Definition of Left-Hand Limit �

lim
x l

 

a2
 f sxd − L 

��if for every number « . 0 there is a number � . 0 such that

��if        a 2 � , x , a        then        | f sxd 2 L | , «

4 �  Definition of Right-Hand Limit �

 lim
x la1

 f sxd − L 

��if for every number « . 0 there is a number � . 0 such that

��if        a , x , a 1 �        then        | f sxd 2 L | , «

Notice that Definition 3 is the same as Definition 2 except that x is restricted to lie in 
the left half sa 2 �, ad of the interval sa 2 �, a 1 �d. In Definition 4, x is restricted to lie 
in the right half sa, a 1 �d of the interval sa 2 �, a 1 �d.

Cauchy and Limits
After the invention of calculus in the 
17th century, there followed a period 
of free development of the subject in 
the 18th century. Mathematicians like 
the Bernoulli brothers and Euler were 
eager to exploit the power of calculus 
and boldly explored the consequences 
of this new and wonderful mathemati-
cal theory without worrying too much 
about whether their proofs were com-
pletely correct.
    The 19th century, by contrast, was the 
Age of Rigor in mathematics. There was 
a movement to go back to the founda-
tions of the subject—to provide careful 
definitions and rigorous proofs. At the 
forefront of this movement was the 
French mathematician Augustin-Louis 
Cauchy (1789–1857), who started out as 
a military engineer before becoming a 
mathematics professor in Paris. Cauchy 
took Newton’s idea of a limit, which was 
kept alive in the 18th century by the 
French mathematician Jean d’Alembert, 
and made it more precise. His definition 
of a limit reads as follows: “When the 
successive values attributed to a vari-
able approach indefinitely a fixed value 
so as to end by differing from it by as 
little as one wishes, this last is called the 
limit of all the others.” But when Cauchy 
used this definition in examples and 
proofs, he often employed delta-epsilon 
inequalities similar to the ones in this 
section. A typical Cauchy proof starts 
with: “Designate by � and « two very 
small numbers; . . .” He used « because 
of the correspondence between epsi-
lon and the French word erreur and � 
because delta corresponds to différence. 
Later, the German mathematician Karl 
Weierstrass (1815–1897) stated the 
definition of a limit exactly as in our 
Definition 2.
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Example �3�  Use Definition 4 to prove that lim
x l 01

 sx − 0.

SOLUTION �
1.  Guessing a value for �.  Let « be a given positive number. Here a 5 0 and L 5 0, 

so we want to find a number � such that

	 if        0 , x , �        then         | sx 2 0 | , «

that is,	 if        0 , x , �        then        sx , «

or, squaring both sides of the inequality sx , «, we get

if        0 , x , �        then        x , «2

This suggests that we should choose � 5 «2.

2.  Showing that this � works.  Given « . 0, let � 5 «2. If 0 , x , �, then

sx , s� 5 s« 2 5 «

so	 | sx 2 0 | , «	

According to Definition 4, this shows that limx l 01 sx − 0.	 ■

Example �4�  Prove that lim
x l 3

 x2 5 9.

SOLUTION �
1.  Guessing a value for �.  Let « . 0 be given. We have to find a number � . 0  

such that

if        0 , | x 2 3 | , �        then        | x2 2 9 | , «

To connect | x2 2 9 | with | x 2 3 | we write | x2 2 9 | 5 | sx 1 3dsx 2 3d |. Then  
we want

if        0 , | x 2 3 | , �        then        | x 1 3 | | x 2 3 | , «

Notice that if we can find a positive constant C such that | x 1 3 | , C, then 

| x 1 3 | | x 2 3 | , C| x 2 3 |
and we can make C| x 2 3 | , « by taking | x 2 3 | , «yC, so we could choose 
� − «yC.

We can find such a number C if we restrict x to lie in some interval centered at 3. 
In fact, since we are interested only in values of x that are close to 3, it is reasonable 
to assume that x is within a distance l from 3, that is, | x 2 3 | , 1. Then 2 , x , 4, 
so 5 , x 1 3 , 7. Thus we have | x 1 3 | , 7, and so C 5 7 is a suitable choice for 
the constant.

But now there are two restrictions on | x 2 3 |, namely

| x 2 3 | , 1        and        | x 2 3 | ,
«

C
5

«

7

To make sure that both of these inequalities are satisfied, we take � to be the smaller of 
the two numbers 1 and «y7. The notation for this is � 5 minh1, «y7j.
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2.  Showing that this � works.  Given « . 0, let � 5 minh1, «y7j. If
0 , | x 2 3 | , �, then | x 2 3 | , 1  ?  2 , x , 4  ?  | x 1 3 | , 7 (as in part l).
We also have | x 2 3 | , «y7, so

| x 2 2 9 | − | x 1 3 | | x 2 3 | , 7 ?
«

7
− «

This shows that lim x l3 x2 5 9.	 ■

As Example 4 shows, it is not always easy to prove that limit statements are true  
using the «, � definition. In fact, if we had been given a more complicated function such 
as f sxd 5 s6x2 2 8x 1 9dys2x2 2 1d, a proof would require a great deal of ingenuity. 
Fortunately this is unnecessary because the Limit Laws stated in Section 2.3 can be 
proved using Definition 2, and then the limits of complicated functions can be found 
rigorously from the Limit Laws without resorting to the definition directly.

For instance, we prove the Sum Law: If lim x l a f sxd 5 L and lim x l a tsxd 5 M both 
exist, then

lim
x l a

 f f sxd 1 tsxdg − L 1 M

The remaining laws are proved in the exercises and in Appendix F.

Proof of the Sum Law � Let « . 0 be given. We must find � . 0 such that

if        0 , | x 2 a | , �        then        | f sxd 1 tsxd 2 sL 1 Md | , «

Using the Triangle Inequality we can write

5 �	  | f sxd 1 tsxd 2 sL 1 Md | 5 | s f sxd 2 Ld 1 stsxd 2 Md |
 < | f sxd 2 L | 1 | tsxd 2 M |

We make | f sxd 1 tsxd 2 sL 1 Md | less than « by making each of the terms | f sxd 2 L | 
and | tsxd 2 M | less than «y2.

Since «y2 . 0 and lim x l a f sxd 5 L, there exists a number �1 . 0 such that

if        0 , | x 2 a | , �1        then        | f sxd 2 L | ,
«

2

Similarly, since limx l a tsxd − M, there exists a number � 2 . 0 such that

if        0 , | x 2 a | , � 2        then        | tsxd 2 M | ,
«

2

Let � − minh�1, �2j, the smaller of the numbers �1 and � 2. Notice that

if        0 , | x 2 a | , �    then    0 , | x 2 a | , �1    and    0 , | x 2 a | , � 2

and so	 | f sxd 2 L | ,
«

2
        and        | tsxd 2 M | ,

«

2
Therefore, by (5),

 | f sxd 1 tsxd 2 sL 1 Md | < | f sxd 2 L | 1 | tsxd 2 M |
 ,

«

2
1

«

2
5 «

Triangle Inequality:

| a 1 b | < | a | 1 | b |
(See Appendix A).
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To summarize,

if        0 , | x 2 a | , �        then        | f sxd 1 tsxd 2 sL 1 Md | , «

Thus, by the definition of a limit,

	 lim
x l a

 f f sxd 1 tsxdg − L 1 M 	 ■

Infinite Limits
Infinite limits can also be defined in a precise way. The following is a precise version of 
Definition 2.2.4.

6 �  Precise Definition of an Infinite Limit � Let f  be a function defined on some 
open interval that contains the number a, except possibly at a itself. Then

lim
x l a

 f sxd − `

��means that for every positive number M there is a positive number � such that

if        0 , | x 2 a | , �        then        f sxd . M

This says that the values of f sxd can be made arbitrarily large (larger than any given 
number M) by requiring x to be close enough to a (within a distance �, where � depends 
on M, but with x ± a). A geometric illustration is shown in Figure 10.

Given any horizontal line y 5 M, we can find a number � . 0 such that if we restrict 
x to lie in the interval sa 2 �, a 1 �d but x ± a, then the curve y 5 f sxd lies above the 
line y − M. You can see that if a larger M is chosen, then a smaller � may be required.

Example �5�  Use Definition 6 to prove that lim
x l 0

 
1

x 2 − `.

SOLUTION � Let M be a given positive number. We want to find a number � such that

if        0 , | x | , �        then        1yx2 . M

But	
1

x 2 . M    &?    x 2 ,
1

M
    &?    sx 2 

, Î 1

M
     &?    | x | ,

1

sM  

So if we choose � − 1ysM  and 0 , | x | , � − 1ysM , then 1yx 2 . M. This shows 
that 1yx2 l ` as x l 0.	 n

Similarly, the following is a precise version of Definition 2.2.5. It is illustrated by 
Figure 11.

7 �  Definition � Let f  be a function defined on some open interval that contains 
the number a, except possibly at a itself. Then

lim
x l a

 f sxd − 2`

��means that for every negative number N there is a positive number � such that

if        0 , | x 2 a | , �        then        f sxd , N

figure 10

0 x

y

y=MM

a
a+∂a-∂

y

y=N

0 x

N

a

a+∂a-∂

FIGURE 11 �
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	 1.	�� Use the given graph of f  to find a number � such that

if        | x 2 1 | , �        then        | f sxd 2 1 | , 0.2

x

y

0

1.2
1

0.8

1 1.10.7

	 2.	� �Use the given graph of f  to find a number � such that

if        0 , | x 2 3 | , �        then        | f sxd 2 2 | , 0.5

x

y

0

2.5

2

1.5

3 3.82.6

	 3.	�� Use the given graph of f sxd − sx  to find a number � such 
that

if        | x 2 4 | , �        then        | sx 2 2 | , 0.4

??

y=œ„x

x

y

40

2
2.4

1.6

	 4.	�� Use the given graph of f sxd 5 x 2 to find a number � such that

if        | x 2 1 | , �        then        | x 2 2 1 | , 1
2

x

y

? 1 ?0

1.5

1

0.5

y=≈

	 5.	� �Use a graph to find a number � such that

if        Z x 2
�

4 Z , �        then        | tan x 2 1| , 0.2

	 6.	� �Use a graph to find a number � such that

if        | x 2 1| , �        then        Z 2x

x 2 1 4
2 0.4 Z , 0.1

	 7.	� �For the limit

lim
x l 2

 sx 3 2 3x 1 4d 5 6

�illustrate Definition 2 by finding values of � that corre-
spond to « 5 0.2 and « 5 0.1.

	 8.	� �For the limit

lim
x l 0

 
e 2x 2 1

x
5 2

�illustrate Definition 2 by finding values of � that corre-
spond to « 5 0.5 and « 5 0.1.

	 9.	� �(a)	 Use a graph to find a number � such that

if      2 , x , 2 1 �      then    
1

lnsx 2 1d
. 100

	 (b)	 What limit does part (a) suggest is true?

	10.	� �Given that lim x l �  csc2 x − `, illustrate Definition 6 by  
finding values of � that correspond to (a) M − 500 and  
(b) M − 1000.

	11.	�� A machinist is required to manufacture a circular metal 
disk with area 1000 cm2. 

	 (a)	� What radius produces such a disk?
	 (b)	� If the machinist is allowed an error tolerance of

65 cm2 in the area of the disk, how close to the ideal 
radius in part (a) must the machinist control the radius?

	 (c)	� In terms of the «, � definition of limx l a f sxd 5 L, 
what is x? What is f sxd? What is a? What is L? What 
value of « is given? What is the corresponding value  
of �?

	12.	� �A crystal growth furnace is used in research to determine 
how best to manufacture crystals used in electronic compo-
nents for the space shuttle. For proper growth of the crystal, 
the temperature must be controlled accurately by adjusting 
the input power. Suppose the relationship is given by 

T swd − 0.1w 2 1 2.155w 1 20

where T is the temperature in degrees Celsius and w is the 
power input in watts.

	 (a)	� How much power is needed to maintain the tempera-
ture at 200°C?

;

;

;

;

;

;

;
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	 (b)	� If the temperature is allowed to vary from 200°C by  
up to 61°C, what range of wattage is allowed for the  
input power?

	 (c)	� In terms of the «, � definition of limx l a f sxd 5 L, what  
is x? What is f sxd? What is a? What is L? What value of  
« is given? What is the corresponding value of �?

	13.	� (a)	� Find a number � such that if | x 2 2| , �, then 

| 4x 2 8| , «, where « 5 0.1.
	 (b)	 Repeat part (a) with « 5 0.01.

	14.	�� Given that limx l 2 s5x 2 7d 5 3, illustrate Definition 2 by 
finding values of � that correspond to « 5 0.1, « 5 0.05, and 
« 5 0.01.

15–18 � Prove the statement using the «, � definition of a limit and 
illustrate with a diagram like Figure 9.

	15.	 lim
x l 3

  s1 1 1
3 xd − 2	1 6.	 lim

x l
 

4
 s2x 2 5d 5 3

	17.	 lim
xl23

 s1 2 4xd − 13	1 8.	 lim
xl22

 s3x 1 5d − 21

19–32 � Prove the statement using the «, � definition of a limit.

	19.	 lim
x l

 

1
 
2 1 4x

3
5 2	2 0.	 lim

x l 10
  s3 2 4

5 xd − 25

	21.	 lim
xl4

 
x 2 2 2x 2 8

x 2 4
− 6	22 .	 lim

x l21.5
 
9 2 4x 2

3 1 2x
− 6

	23.	 lim
x l a

 x − a	24 .	 lim
x l a

 c − c

	25.	 lim
x l 0

 x 2 − 0	2 6.	 lim
x l 0

 x 3 − 0

	27.	 lim
x l 0

 | x | − 0	2 8.	 lim
xl

 

261
 s8 6 1 x − 0

	29.	 lim
x l 2

 sx 2 2 4x 1 5d 5 1	3 0.	 lim
x l 2

 sx 2 1 2x 2 7d 5 1

	31.	 lim
x l

 

22
 sx 2 2 1d 5 3	32 .	 lim

x l 2
 x 3 5 8

	33.	�� Verify that another possible choice of � for showing that 
lim x l3 x 2 5 9 in Example 4 is � 5 min h2, «y8j.

	34.	�� Verify, by a geometric argument, that the largest possible choice 
of � for showing that lim x l3 x 2 − 9 is � − s9 1 « 2 3.

	35.	� �(a)	� For the limit limx l 1 sx3 1 x 1 1d 5 3, use a graph to 
find a value of � that corresponds to « 5 0.4.

	 (b)	� By using a computer algebra system to solve the cubic 
equation x3 1 x 1 1 5 3 1 «, find the largest possible 
value of � that works for any given « . 0.

	 (c)	� Put « 5 0.4 in your answer to part (b) and compare 
with your answer to part (a).

	36.	� Prove that lim
x l2

 
1

x
−

1

2
.

	37.	�� Prove that lim
x l a

 sx − sa  if a . 0.

FHint: Use | sx 2 sa | − | x 2 a |
sx  1 sa 

 . F
	38.	�� If H is the Heaviside function defined in Example 2.2.6, 

prove, using Definition 2, that lim t l 0 Hstd does not exist. 
[Hint: Use an indirect proof as follows. Suppose that the 
limit is L. Take « 5 1

2 in the definition of a limit and try to 
arrive at a contradiction.]

	39.	� If the function f  is defined by

f sxd − H0

1

if  x is rational

if  x is irrational

prove that lim x l 0 f sxd does not exist.

	40.	�� By comparing Definitions 2, 3, and 4, prove Theorem 2.3.1.

	41.	� How close to 23 do we have to take x so that

1

sx 1 3d4 . 10,000

	42.	� Prove, using Definition 6, that lim
x l23

 
1

sx 1 3d4 − `.

	43.	� Prove that lim
x l 01

 ln x − 2`.

	44.	�� Suppose that lim x l a f sxd 5 ` and lim x l a tsxd 5 c, where 
c is a real number. Prove each statement.

	 (a)	 lim
x l a

 f f sxd 1 tsxdg − `

	 (b)	 lim
x l a

 f f sxdtsxdg 5 `    if  c . 0

	 (c)	 lim
xl a

 f f sxdtsxdg 5 2`    if  c , 0

CAS

We noticed in Section 2.3 that the limit of a function as x approaches a can often be 
found simply by calculating the value of the function at a. Functions with this property 
are called continuous at a. We will see that the mathematical definition of continuity cor-
responds closely with the meaning of the word continuity in everyday language. (A con-
tinuous process is one that takes place gradually, without interruption or abrupt change.)

1 �  Definition � A function f  is continuous at a number a if

lim
xl a

 f sxd − f sad
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Notice that Definition l implicitly requires three things if f  is continuous at a:

1.	� f sad is defined (that is, a is in the domain of f )

2.	� lim
x l

 

a
 f sxd exists

3.	� lim
x l

 

a
 f sxd 5 f sad

The definition says that f  is continuous at a if f sxd approaches f sad as x approaches 
a. Thus a continuous function f  has the property that a small change in x produces only 
a small change in f sxd. In fact, the change in f sxd can be kept as small as we please by 
keeping the change in x sufficiently small.

If f  is defined near a (in other words, f  is defined on an open interval containing a, 
except perhaps at a), we say that f  is discontinuous at a (or f  has a discontinuity at a)  
if f  is not continuous at a.

Physical phenomena are usually continuous. For instance, the displacement or veloc-
ity of a vehicle varies continuously with time, as does a person’s height. But disconti-
nuities do occur in such situations as electric currents. [See Example 2.2.6, where the 
Heaviside function is discontinuous at 0 because lim t l 0 Hstd does not exist.]

Geometrically, you can think of a function that is continuous at every number in an 
interval as a function whose graph has no break in it: the graph can be drawn without 
removing your pen from the paper.

Example �1�  Figure 2 shows the graph of a function f. At which numbers is f  discon-
tinuous? Why?

SOLUTION � It looks as if there is a discontinuity when a − 1 because the graph has a 
break there. The official reason that f  is discontinuous at 1 is that f s1d is not defined.

The graph also has a break when a 5 3, but the reason for the discontinuity is dif-
ferent. Here, f s3d is defined, but lim x l3 f sxd does not exist (because the left and right 
limits are different). So f  is discontinuous at 3.

What about a 5 5? Here, f s5d is defined and lim x l5 f sxd exists (because the left 
and right limits are the same). But

lim
x l 5

 f sxd ± f s5d

So f  is discontinuous at 5.	 n

Now let’s see how to detect discontinuities when a function is defined by a formula.

Example �2�  Where are each of the following functions discontinuous?

(a)  f sxd 5
x2 2 x 2 2

x 2 2
	 (b)  f sxd − H 1

x 2
if  x ± 0

1 if  x − 0

(c)  f sxd − H x 2 2 x 2 2

x 2 2
if  x ± 2

1 if  x − 2

	 (d)  f sxd − v x b

SOLUTION 
(a)  Notice that f s2d is not defined, so f  is discontinuous at 2. Later we’ll see why f  is 
continuous at all other numbers.

figure 2

y

0 x1 2 3 4 5

As illustrated in Figure 1, if f  is con-
tinuous, then the points sx, f sxdd on  
the graph of f  approach the point 
sa, f sadd on the graph. So there is no 
gap in the curve.

figure 1

f(a)

x0

y

a

y=ƒ

ƒ
approaches

f(a).

As x approaches a,
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(b)  Here f s0d 5 1 is defined but

lim
x l 0

 f sxd − lim
x l 0

 
1

x 2

does not exist. (See Example 2.2.8.) So f  is discontinuous at 0.

(c)  Here f s2d 5 1 is defined and

lim
x l2

 f sxd − lim
x l2

x 2 2 x 2 2

x 2 2
− lim

x l2
 
sx 2 2dsx 1 1d

x 2 2
− lim

x l2
 sx 1 1d − 3

exists. But 

lim
x l2

 f sxd ± f s2d

so f  is not continuous at 2.

(d)  The greatest integer function f sxd − v x b  has discontinuities at all of the inte- 
gers because lim x ln v x b  does not exist if n is an integer. (See Example 2.3.10 and 
Exercise 2.3.53.)	 n

Figure 3 shows the graphs of the functions in Example 2. In each case the graph can’t be 
drawn without lifting the pen from the paper because a hole or break or jump occurs in the 
graph. The kind of discontinuity illustrated in parts (a) and (c) is called removable because  
we could remove the discontinuity by redefining f  at just the single number 2. [The 
function tsxd − x 1 1 is continuous.] The discontinuity in part (b) is called an infinite 
discontinuity. The discontinuities in part (d) are called jump discontinuities because 
the function “jumps” from one value to another.

1 2 3

1

x

y

0

(d) ƒ=[x]

1 2

1

x

y

0

(c) ƒ= if  x≠2

1 if x=2

≈-x-2
x-2(b) ƒ=

if  x≠0

1 if 

1

x=0

1

x

y

01 2 x

y

0

1

(a) ƒ=≈-x-2
x-2 ≈

2 �  Definition � A function f  is continuous from the right at a number a if

lim
x l

 

a1
 f sxd − f sad

and f  is continuous from the left at a if

lim
x l

 

a2
 f sxd − f sad

Example �3�  At each integer n, the function f sxd − v x b  [see Figure 3(d)] is continu-
ous from the right but discontinuous from the left because

lim
x l

 

n1
 f sxd − lim

x l
 

n1
 v xb − n − f snd

FIGURE 3 �  
Graphs of the functions in Example 2
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but	 lim
x l

 

n2
 f sxd − lim

x l
 

n2
v x b − n 2 1 ± f snd	 n

3 �  Definition � ��A function f  is continuous on an interval if it is continuous at 
every number in the interval. (If f  is defined only on one side of an endpoint of the 
interval, we understand continuous at the endpoint to mean continuous from the 
right or continuous from the left.)

Example �4�  Show that the function f sxd − 1 2 s1 2 x 2  is continuous on the  
interval f21, 1g.

SOLUTION � If 21 , a , 1, then using the Limit Laws, we have

	  lim
x l a

 f sxd − lim
x l a

 (1 2 s1 2 x 2 )

	  − 1 2 lim
x l a

 s1 2 x 2 	 (by Laws 2 and 7)

	  − 1 2 s  lim 
x l a

s1 2 x 2 d      (by 11)

	  − 1 2 s1 2 a 2 	 (by 2, 7, and 9)

	  − f sad

Thus, by Definition l, f  is continuous at a if 21 , a , 1. Similar calculations show that

lim
x l

 

211
 f sxd − 1 − f s21d        and        lim

x l
 

12
 f sxd − 1 − f s1d

so f  is continuous from the right at 21 and continuous from the left at 1. Therefore, 
according to Definition 3, f  is continuous on f21, 1g.

The graph of f  is sketched in Figure 4. It is the lower half of the circle

	 x 2 1 sy 2 1d2 − 1	 n

Instead of always using Definitions 1, 2, and 3 to verify the continuity of a function as 
we did in Example 4, it is often convenient to use the next theorem, which shows how to 
build up complicated continuous functions from simple ones.

4 �  Theorem � If f  and t are continuous at a and c is a constant, then the following 
functions are also continuous at a:

1.  f 1 t	 2.  f 2 t	 3.  cf

4.  ft		  5. �
f

t     if tsad ± 0

Proof � Each of the five parts of this theorem follows from the corresponding Limit 
Law in Section 2.3. For instance, we give the proof of part 1. Since f  and t are continu-
ous at a, we have

lim
x l a

 f sxd − f sad        and        lim
x l a

 tsxd − tsad

1-1

1

x

y

0

ƒ=1-œ„„„„„1-≈

FIGURE 4 �
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Therefore

	  lim
x l a

 s f 1 tdsxd − lim
x l a

 f f sxd 1 tsxdg

	  − lim
x l a

 f sxd 1 lim
x l a

 tsxd        (by Law 1)

	  − f sad 1 tsad

	  − s f 1 tdsad

This shows that f 1 t is continuous at a.	 n

It follows from Theorem 4 and Definition 3 that if f  and t are continuous on an inter-
val, then so are the functions f 1 t, f 2 t, cf, ft, and (if t is never 0) fyt. The following 
theorem was stated in Section 2.3 as the Direct Substitution Property.

5 �  Theorem �  
(a)	� Any polynomial is continuous everywhere; that is, it is continuous on 

R − s2`, `d.
��(b)	� Any rational function is continuous wherever it is defined; that is, it is contin-

uous on its domain.

Proof
(a)  A polynomial is a function of the form

Psxd − cn xn 1 cn21xn21 1 ∙ ∙ ∙ 1 c1x 1 c0 

where c0, c1, . . . , cn are constants. We know that

lim
x l a

 c0 − c0        (by Law 7)

and	 lim
x l a

 xm − am        m − 1, 2, . . . , n        (by 9)

This equation is precisely the statement that the function f sxd − xm is a continuous 
function. Thus, by part 3 of Theorem 4, the function tsxd − cxm is continuous. Since P 
is a sum of functions of this form and a constant function, it follows from part 1 of  
Theorem 4 that P is continuous.

(b)  A rational function is a function of the form

f sxd −
Psxd
Qsxd

where P and Q are polynomials. The domain of f  is D − hx [ R | Qsxd ± 0j. We 
know from part (a) that P and Q are continuous everywhere. Thus, by part 5 of Theo-
rem 4, f  is continuous at every number in D.	 n

As an illustration of Theorem 5, observe that the volume of a sphere varies con-
tinuously with its radius because the formula Vsrd − 4

3�r 3 shows that V  is a polyno-
mial function of r. Likewise, if a ball is thrown vertically into the air with a velocity 
of 50 ftys, then the height of the ball in feet t seconds later is given by the formula  
h − 50t 2 16t 2. Again this is a polynomial function, so the height is a continuous func-
tion of the elapsed time, as we might expect.

41550_ch02_ptg1_hr_106-123.indd   118 10/15/14   10:08 AM



	 Section  2.5    Continuity	 119

Knowledge of which functions are continuous enables us to evaluate some limits very 
quickly, as the following example shows. Compare it with Example 2.3.2(b).

Example �5�  Find lim
x l

 

22
 
x 3 1 2x 2 2 1

5 2 3x
.

SOLUTION � The function

f sxd −
x 3 1 2x 2 2 1

5 2 3x

is rational, so by Theorem 5 it is continuous on its domain, which is h x | x ± 5
3 j.  

Therefore

 lim
x l22

 
x 3 1 2x 2 2 1

5 2 3x
− lim

x l22
 f sxd − f s22d

	  −
s22d3 1 2s22d2 2 1

5 2 3s22d
− 2

1

11
	

n

It turns out that most of the familiar functions are continuous at every number in their 
domains. For instance, Limit Law 10 (page 96) is exactly the statement that root func-
tions are continuous.

From the appearance of the graphs of the sine and cosine functions (Figure 1.2.18), 
we would certainly guess that they are continuous. We know from the definitions of sin � 
and cos � that the coordinates of the point P in Figure 5 are scos �, sin �d. As � l 0, we 
see that P approaches the point s1, 0d and so cos � l 1 and sin � l 0. Thus

6 �  	 lim 
� l 0

 cos � − 1 lim 
� l 0

 sin � − 0

Since cos 0 − 1 and sin 0 − 0, the equations in (6) assert that the cosine and sine func- 
tions are continuous at 0. The addition formulas for cosine and sine can then be used to  
deduce that these functions are continuous everywhere (see Exercises 64 and 65).

It follows from part 5 of Theorem 4 that

tan x −
sin x

cos x

is continuous except where cos x − 0. This happens when x is an odd integer multiple 
of �y2, so y − tan x has infinite discontinuities when x − 6�y2, 63�y2, 65�y2, and 
so on (see Figure 6).

__
x

y

π0_π

1

π
2

3π
 2

π
2

3π
 2

¨

1

x0

y

(1, 0)

P(cos ¨, sin ¨)

FIGURE 5 �

Another way to establish the limits in 
(6) is to use the Squeeze Theorem with 
the inequality sin � , � (for � . 0), 
which is proved in Section 3.3.

FIGURE 6 �  
y − tan x
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The inverse function of any continuous one-to-one function is also continuous. (This 
fact is proved in Appendix F, but our geometric intuition makes it seem plausible: The 
graph of f 21 is obtained by reflecting the graph of f  about the line y − x. So if the graph 
of f  has no break in it, neither does the graph of f 21.) Thus the inverse trigonometric 
functions are continuous.

In Section 1.4 we defined the exponential function y − bx so as to fill in the holes 
in the graph of y − bx where x is rational. In other words, the very definition of y − bx 
makes it a continuous function on R. Therefore its inverse function y − logb x is con-
tinuous on s0, `d.

7 �  Theorem � The following types of functions are continuous at every number in 
their domains:

•	 polynomials            •  rational functions            •  root functions

•	 trigonometric functions            •  inverse trigonometric functions

•	 exponential functions	 •  logarithmic functions

The inverse trigonometric functions are 
reviewed in Section 1.5.

Example �6�  Where is the function f sxd −
ln x 1 tan21x

x 2 2 1
 continuous?

SOLUTION � We know from Theorem 7 that the function y − ln x is continuous for x . 0 
and y − tan21x is continuous on R. Thus, by part 1 of Theorem 4, y − ln x 1 tan21x is 
continuous on s0, `d. The denominator, y − x 2 2 1, is a polynomial, so it is continuous 
everywhere. Therefore, by part 5 of Theorem 4, f  is continuous at all positive numbers 
x except where x 2 2 1 − 0 &?  x − 61. So f  is continuous on the intervals s0, 1d 
and s1, `d.	 n

Example �7�  Evaluate lim
x l

 

�
 

sin x

2 1 cos x
.

SOLUTION � Theorem 7 tells us that y − sin x is continuous. The function in the 
denominator, y − 2 1 cos x, is the sum of two continuous functions and is therefore 
continuous. Notice that this function is never 0 because cos x > 21 for all x and so 
2 1 cos x . 0 everywhere. Thus the ratio

f sxd −
sin x

2 1 cos x

is continuous everywhere. Hence, by the definition of a continuous function,

	 lim 
x l

 

� 

sin x

2 1 cos x
− lim

x l
 

� 
f sxd − f s�d −

sin �

2 1 cos �
−

0

2 2 1
− 0	 n

Another way of combining continuous functions f  and t to get a new continuous 
function is to form the composite function f 8 t. This fact is a consequence of the fol-
lowing theorem.

8 �  Theorem � If f  is continuous at b and lim
x l

 

a
 tsxd − b,  then lim

x l
 

a
 f stsxdd − f sbd.  

In other words,

lim
x l a

 f stsxdd − f  S  lim
xl a

 tsxd D
This theorem says that a limit symbol 
can be moved through a function sym-
bol if the function is continuous and the 
limit exists. In other words, the order of 
these two symbols can be reversed.
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Intuitively, Theorem 8 is reasonable because if x is close to a, then tsxd is close to b, 
and since f  is continuous at b, if tsxd is close to b, then fstsxdd is close to f sbd. A proof 
of Theorem 8 is given in Appendix F.

Example �8�  Evaluate lim
x l

 

1
 arcsinS 1 2 sx 

1 2 x D.

SOLUTION � Because arcsin is a continuous function, we can apply Theorem 8:

 lim
x l

 

1
 arcsinS 1 2 sx 

1 2 x D − arcsinSlim
x l1

 
1 2 sx 

1 2 x D
 − arcsinSlim

x l
 

1
 

1 2 sx 

(1 2 sx ) (1 1 sx )D
 − arcsinSlim

x l
 

1
 

1

1 1 sx D
	  − arcsin 

1

2
−

�

6
	 n

Let’s now apply Theorem 8 in the special case where f sxd − sn x , with n being a posi-
tive integer. Then

 f stsxdd − sn tsxd

and	 f Slim
xla

 tsxdD − sn lim 
x l a

tsxd

If we put these expressions into Theorem 8, we get

 lim 
x l a

 sn tsxd − sn lim 
x l a

 tsxd

and so Limit Law 11 has now been proved. (We assume that the roots exist.)

9 �  Theorem � If t is continuous at a and f  is continuous at tsad, then the com-
posite function f 8 t given by s f 8 tdsxd − f stsxdd is continuous at a.

This theorem is often expressed informally by saying “a continuous function of a 
continuous function is a continuous function.”

Proof � Since t is continuous at a, we have

lim
x l a

 tsxd − tsad

Since f  is continuous at b − tsad, we can apply Theorem 8 to obtain

lim
x l a

 f stsxdd − f stsadd
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which is precisely the statement that the function hsxd − f stsxdd is continuous at a;  
that is, f 8 t is continuous at a.	 n

Example �9�  Where are the following functions continuous?
(a)  hsxd − sinsx 2 d	 (b)  Fsxd − lns1 1 cos xd

SOLUTION �
(a)  We have hsxd − f stsxdd, where

tsxd − x 2        and        f sxd − sin x

Now t is continuous on R since it is a polynomial, and f  is also continuous everywhere. 
Thus h − f 8 t is continuous on R by Theorem 9.

(b)  We know from Theorem 7 that f sxd − ln x is continuous and tsxd − 1 1 cos x is 
continuous (because both y − 1 and y − cos x are continuous). Therefore, by Theo-
rem 9, Fsxd − f stsxdd is continuous wherever it is defined. Now ln s1 1 cos xd is 
defined when 1 1 cos x . 0. So it is undefined when cos x − 21, and this happens 
when x − 6�, 63�, . . . . Thus F has discontinuities when x is an odd multiple of � 
and is continuous on the intervals between these values (see Figure 7).	 n

An important property of continuous functions is expressed by the following theorem, 
whose proof is found in more advanced books on calculus.

10 �  The Intermediate Value Theorem � Suppose that f  is continuous on the 
closed interval fa, bg and let N be any number between f sad and f sbd, where 
f sad ± f sbd. Then there exists a number c in sa, bd such that f scd − N.

The Intermediate Value Theorem states that a continuous function takes on every 
intermediate value between the function values f sad and f sbd. It is illustrated by Figure 
8. Note that the value N can be taken on once [as in part (a)] or more than once [as in 
part (b)].

(b)

0 x

y

f(b)

N

f(a)

a c£ b

y=ƒ

c™c¡

(a)

0 x

y

f(b)

N

f(a)

b

y=ƒ

a c

FIGURE 8 �

If we think of a continuous function as a function whose graph has no hole or break, 
then it is easy to believe that the Intermediate Value Theorem is true. In geometric terms  
it says that if any horizontal line y − N is given between y − f sad and y − f sbd as in Fig-
ure 9, then the graph of f  can’t jump over the line. It must intersect y − N somewhere.

It is important that the function f  in Theorem 10 be continuous. The Intermediate 
Value Theorem is not true in general for discontinuous functions (see Exercise 50).

2

_6

_10 10 

FIGURE 7 �  
y − lns1 1 cos xd

b0 x

y

f(a)

N

f(b)

a

y=N
y=ƒ

FIGURE 9 �
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One use of the Intermediate Value Theorem is in locating roots of equations as in the 
following example.

Example �10�  Show that there is a root of the equation

4x 3 2 6x 2 1 3x 2 2 − 0

between 1 and 2.

SOLUTION � Let f sxd − 4x 3 2 6x 2 1 3x 2 2. We are looking for a solution of the given 
equation, that is, a number c between 1 and 2 such that f scd − 0. Therefore we take 
a − 1, b − 2, and N − 0 in Theorem 10. We have

 f s1d − 4 2 6 1 3 2 2 − 21 , 0

and	  f s2d − 32 2 24 1 6 2 2 − 12 . 0

Thus f s1d , 0 , f s2d; that is, N − 0 is a number between f s1d and f s2d. Now f  is 
continuous since it is a polynomial, so the Intermediate Value Theorem says there 
is a number c between 1 and 2 such that f scd − 0. In other words, the equation 
4x 3 2 6x 2 1 3x 2 2 − 0 has at least one root c in the interval s1, 2d.

In fact, we can locate a root more precisely by using the Intermediate Value Theorem 
again. Since

f s1.2d − 20.128 , 0        and        f s1.3d − 0.548 . 0

a root must lie between 1.2 and 1.3. A calculator gives, by trial and error,

f s1.22d − 20.007008 , 0        and        f s1.23d − 0.056068 . 0

so a root lies in the interval s1.22, 1.23d.	 n

We can use a graphing calculator or computer to illustrate the use of the Intermediate 
Value Theorem in Example 10. Figure 10 shows the graph of f  in the viewing rectangle 
f21, 3g by f23, 3g and you can see that the graph crosses the x-axis between 1 and 2. Fig
ure 11 shows the result of zooming in to the viewing rectangle f1.2, 1.3g by f20.2, 0.2g.

0.2

_0.2

1.2 1.3

3

_3

_1 3

	 FIGURE 10�	 FIGURE 11

In fact, the Intermediate Value Theorem plays a role in the very way these graphing 
devices work. A computer calculates a finite number of points on the graph and turns on 
the pixels that contain these calculated points. It assumes that the function is continuous 
and takes on all the intermediate values between two consecutive points. The computer 
therefore “connects the dots” by turning on the intermediate pixels.
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	 1.	� �Write an equation that expresses the fact that a function f  is 
continuous at the number 4.

	 2.	� �If f  is continuous on s2`, `d, what can you say about its 
graph?

	 3.	� �(a)	� From the graph of f , state the numbers at which f  is 
discontinuous and explain why.

	�� (b)	� For each of the numbers stated in part (a), determine 
whether f  is continuous from the right, or from the left,  
or neither.

y

x_4 2 4 6_2 0

	 4.	� �From the graph of t, state the intervals on which t is  
continuous.

10_3 _2 2 3

y

x

 5 – 8 � Sketch the graph of a function f  that is continuous except for 
the stated discontinuity.

	 5.	� Discontinuous, but continuous from the right, at 2

	 6. �	� Discontinuities at 21 and 4, but continuous from the left at 
21 and from the right at 4

	 7.	� Removable discontinuity at 3, jump discontinuity at 5

	 8.	� �Neither left nor right continuous at 22, continuous only from 
the left at 2

	 9.	� �The toll T charged for driving on a certain stretch of a toll road 
is $5 except during rush hours (between 7 am and 10 am and 
between 4 pm and 7 pm) when the toll is $7.

	�� (a)	� Sketch a graph of T as a function of the time t, measured 
in hours past midnight.

	�� (b)	� Discuss the discontinuities of this function and their sig­
nificance to someone who uses the road.

	10.	� Explain why each function is continuous or discontinuous.
	�� (a)	 The temperature at a specific location as a function of time
	�� (b)	� The temperature at a specific time as a function of the 

distance due west from New York City
	�� (c)	� The altitude above sea level as a function of the distance 

due west from New York City
	�� (d)	� The cost of a taxi ride as a function of the distance traveled
	�� (e)	� The current in the circuit for the lights in a room as a 

function of time

11–14 � Use the definition of continuity and the properties of limits 
to show that the function is continuous at the given number a.

	11.	� f sxd − sx 1 2x 3 d4,    a − 21

	12.	� �tstd −
t 2 1 5t

2t 1 1
 ,    a − 2

	13.	� �psvd − 2s3v2 1 1 ,    a − 1

	14.	� f sxd − 3x4 2 5x 1 s3 x 2 1 4 ,    a − 2

 15 –16 � Use the definition of continuity and the properties of limits 
to show that the function is continuous on the given interval.

	15.	� f sxd − x 1 sx 2 4  ,    f4, `d

	16.	� tsxd −
x 2 1

3x 1 6
,    s2`, 22d

 17– 22 � Explain why the function is discontinuous at the given 
number a. Sketch the graph of the function.

	17.	� f sxd −
1

x 1 2
	 a − 22

	18.	� f sxd − H 1

x 1 2

1

    if  x ± 22

    if  x − 22

	 a − 22

	19.	� f sxd − Hx 1 3

2x

if x < 21

if x . 21
	 a − 21

	20.	� f sxd − H x 2 2 x

x 2 2 1

1

    if  x ± 1

    if  x − 1

	 a − 1

	21.	� f sxd − Hcos x

0

1 2 x 2

if x , 0

if  x − 0

if x . 0

 	  a − 0

	22.	� f sxd − H 2x 2 2 5x 2 3

x 2 3

6

    if  x ± 3

    if  x − 3

	 a − 3
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 23 –24 � How would you “remove the discontinuity” of f ?  
In other words, how would you define f s2d in order to make  
f  continuous at 2?

	23.	 f sxd −
x 2 2 x 2 2

x 2 2
	 24.	� f sxd −

x 3 2 8

x 2 2 4

 25 – 32 � Explain, using Theorems 4, 5, 7, and 9, why the function 
is continuous at every number in its domain. State the domain.

	25.	� Fsxd −
2x 2 2 x 2 1

x 2 1 1
	 26.	 Gsxd −

x 2 1 1

2x 2 2 x 2 1

	27.	 Qsxd −
s3 x 2 2  

x 3 2 2
	 28.	 Rstd −

e sin t

2 1 cos �t

	29.	 Astd − arcsins1 1 2td	 30.	 Bsxd −
tan x

s4 2 x 2 

	31.	 Msxd − Î1 1
1

x
 	 32.	 Nsrd − tan21s1 1 e2r 2d

33 –34 � Locate the discontinuities of the function and illustrate 
by graphing.

	33.	 y −
1

1 1 e 1yx 	 34.	� y − lnstan2xd

 35 – 38 � Use continuity to evaluate the limit.

	35.	 lim
x l

 

2
 x s20 2 x 2 

	 36.	� lim
x l

 

�
 sinsx 1 sin xd

	37.	 lim
x l

 

1
 lnS 5 2 x 2

1 1 x D	 38.	 lim
xl4

 3sx 222x24 

 39 – 40 � Show that f  is continuous on s2`, `d.

	39. 	 f sxd − H1 2 x 2     if  x < 1

lnx          if  x . 1

	40.	  f sxd − Hsin x    if  x , �y4

cos x    if  x > �y4

 41– 43 � Find the numbers at which f  is discontinuous. At which  
of these numbers is f  continuous from the right, from the left,  
or neither? Sketch the graph of f .

	41. 	 f sxd − Hx 2

x

1yx

if  x , 21

if  21 < x , 1

if  x > 1

	42.	� f sxd − H2 x

3 2 x

sx   

  if  x < 1

  if  1 , x < 4

  if  x . 4

;

	43.	� f sxd − Hx 1 2

ex

2 2 x

if x , 0

if  0 < x < 1

if x . 1

	44.	� �The gravitational force exerted by the planet Earth on a unit 
mass at a distance r from the center of the planet is

Fsrd −

GMr

R 3 if  r , R

GM

r 2     if  r > R

�where M is the mass of Earth, R is its radius, and G is the 
gravitational constant. Is F a continuous function of r?

	45.	� �For what value of the constant c is the function f  continuous 
on s2`, `d?

f sxd − Hcx 2 1 2x

x 3 2 cx

if  x , 2

if  x > 2

	46.	� Find the values of a and b that make f  continuous everywhere.

f sxd −

x 2 2 4

x 2 2

ax 2 2 bx 1 3

2x 2 a 1 b

if x , 2

if  2 < x , 3

if x > 3

	47.	� �Suppose f  and t are continuous functions such that ts2d − 6 
and lim x l2  f3 f sxd 1 f sxdtsxdg − 36. Find f s2d.

	48.	� �Let f sxd − 1yx and tsxd − 1yx 2.

	 (a)	 Find s f + tdsxd.
	�� (b)	 Is f + t continuous everywhere? Explain.

	49.	� �Which of the following functions f  has a removable discon­
tinuity at a? If the discontinuity is removable, find a function 
t that agrees with f  for x ± a and is continuous at a.

	�� (a)	 f sxd −
x 4 2 1

x 2 1
,    a − 1

	�� (b)	 f sxd −
x 3 2 x 2 2 2x

x 2 2
,    a − 2

	�� (c)	 f sxd − v sin x b ,    a − �

	50.	� �Suppose that a function f  is continuous on [0, 1] except at 
0.25 and that f s0d − 1 and f s1d − 3. Let N − 2. Sketch two 
possible graphs of f , one showing that f  might not satisfy the 
conclusion of the Intermediate Value Theorem and one show­
ing that f  might still satisfy the conclusion of the Intermediate 
Value Theorem (even though it doesn’t satisfy the hypothesis).

	51.	� �If f sxd − x 2 1 10 sin x, show that there is a number c such 
that f scd − 1000.

	52.	� �Suppose f  is continuous on f1, 5g and the only solutions of 
the equation f sxd − 6 are x − 1 and x − 4. If f s2d − 8, 
explain why f s3d . 6.
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 53– 56 � Use the Intermediate Value Theorem to show that 
there is a root of the given equation in the specified interval.

	53.	� x 4 1 x 2 3 − 0,    s1, 2d

	54.	� ln x − x 2 sx ,    s2, 3d

	55.	� e x − 3 2 2x,    s0, 1d	

	56.	� sin x − x 2 2 x,    s1, 2d

57 – 58 � (a) Prove that the equation has at least one real root.  
(b) Use your calculator to find an interval of length 0.01 that  
contains a root.

	57.	 cos x − x 3	 58.	 ln x − 3 2 2x

59– 60 � (a) Prove that the equation has at least one real root.  
(b) Use your graphing device to find the root correct to three  
decimal places.

	59.	 100e2xy100 − 0.01x 2

	60.	 arctan x − 1 2 x

61– 62 �  Prove, without graphing, that the graph of the func­
tion has at least two x-intercepts in the specified interval.

	61.	� �y −  sin x 3,    s1, 2d	

	62.	� �y − x 2 2 3 1 1yx,    s0, 2d

	63.	� Prove that f  is continuous at a if and only if

lim
h l 0

 f sa 1 hd − f sad

	64.	� �To prove that sine is continuous, we need to show  
that lim x l a sin x − sin a for every real number a.  
By Exercise 63 an equivalent statement is that

lim
h l 0

 sinsa 1 hd − sin a

Use (6) to show that this is true.

;

	65.	� Prove that cosine is a continuous function.

	66.	� (a)	 Prove Theorem 4, part 3.
	� (b)	 Prove Theorem 4, part 5.

	67.	� For what values of x is f  continuous?

f sxd − H0

1

if  x is rational

if  x is irrational

	68.	� For what values of x is t continuous?

tsxd − H0

x

if  x is rational

if  x is irrational

	69.	� Is there a number t�hat is exactly 1 more than its cube?

	70.	� �If a and b are positive numbers, prove that the equation

a

x 3 1 2x 2 2 1
1

b

x 3 1 x 2 2
− 0

has at least one solution in the interval s21, 1d.

	71.	� Show that the function

f sxd − Hx 4 sins1yxd
0

if x ± 0

if x − 0

is continuous on s2`, `d.

	72.	� (a)	� Show that the absolute value function Fsxd − | x | is 
continuous everywhere.

	 (b)	� Prove that if f  is a continuous function on an interval, 
then so is | f |.

	 (c)	� Is the converse of the statement in part (b) also true? In 
other words, if | f | is continuous, does it follow that f  is 
continuous? If so, prove it. If not, find a counterexample.

	73.	�� A Tibetan monk leaves the monastery at 7:00 am and 
takes his usual path to the top of the mountain, arriving at 
7:00 pm. The following morning, he starts at 7:00 am at the 
top and takes the same path back, arriving at the monastery 
at 7:00 pm. Use the Intermediate Value Theorem to show 
that there is a point on the path that the monk will cross at 
exactly the same time of day on both days.

In Sections 2.2 and 2.4 we investigated infinite limits and vertical asymptotes. There we 
let x approach a number and the result was that the values of y became arbitrarily large 
(positive or negative). In this section we let x become arbitrarily large (positive or nega­
tive) and see what happens to y.

Let’s begin by investigating the behavior of the function f  defined by

f sxd −
x 2 2 1

x 2 1 1
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as x becomes large. The table at the left gives values of this function correct to six 
decimal places, and the graph of f  has been drawn by a computer in Figure 1.

x10

y
y=1

y=≈-1
≈+1

FIGURE 1 

As x grows larger and larger you can see that the values of f sxd get closer and closer  
to 1. (The graph of f  approaches the horizontal line y − 1 as we look to the right.) In 
fact, it seems that we can make the values of f sxd as close as we like to 1 by taking x 
sufficiently large. This situation is expressed symbolically by writing

lim
x l `

 
x 2 2 1

x 2 1 1
− 1

In general, we use the notation

lim
x l `

 f sxd − L

to indicate that the values of f sxd approach L as x becomes larger and larger.

1 �  Intuitive Definition of a Limit at Infinity � Let f  be a function defined on 
some interval sa, `d. Then

lim
x l `

 f sxd − L

��means that the values of f sxd can be made arbitrarily close to L by requiring x to 
be sufficiently large.

Another notation for lim x l ` f sxd − L is

f sxd l L    as    x l `

The symbol ` does not represent a number. Nonetheless, the expression lim
x l

 

`
 f sxd − L 

is often read as

“the limit of f sxd, as x approaches infinity, is L”

or	 “the limit of f sxd, as x becomes infinite, is L”

or	 “the limit of f sxd, as x increases without bound, is L”

The meaning of such phrases is given by Definition 1. A more precise definition, similar 
to the «, � definition of Section 2.4, is given at the end of this section.

Geometric illustrations of Definition 1 are shown in Figure 2. Notice that there are 
many ways for the graph of f  to approach the line y − L (which is called a horizontal 
asymptote) as we look to the far right of each graph.

Referring back to Figure 1, we see that for numerically large negative values of x, 
the values of f sxd are close to 1. By letting x decrease through negative values without 
bound, we can make f sxd as close to 1 as we like. This is expressed by writing

lim
x l2`

 
x 2 2 1

x 2 1 1
− 1 

x

y

0

y=ƒ

y=L

0 x

y

y=ƒ

y=L

x

y

0

y=ƒ

y=L

FIGURE 2 �  
Examples illustrating lim

x l `
 f sxd − L 

x f sxd

0 21
61 0
62 0.600000
63 0.800000
64 0.882353
65 0.923077

610 0.980198
650 0.999200

6100 0.999800
61000 0.999998
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128	 Chapter 2    Limits and Derivatives

The general definition is as follows.

2 �  Definition � Let f  be a function defined on some interval s2`, ad. Then

lim
x l 2`

 f sxd − L

��means that the values of f sxd can be made arbitrarily close to L by requiring x to 
be sufficiently large negative.

Again, the symbol 2` does not represent a number, but the expression lim
x l 2`

 f sxd − L 
is often read as

“the limit of f sxd, as x approaches negative infinity, is L”

Definition 2 is illustrated in Figure 3. Notice that the graph approaches the line y − L as 
we look to the far left of each graph.

3 �  Definition � The line y − L is called a horizontal asymptote of the curve 
y − f sxd if either 

lim
x l

 

`
 f sxd − L        or        lim

x l
 

2`
 f sxd − L

For instance, the curve illustrated in Figure 1 has the line y − 1 as a horizontal asymp­
tote because 

lim
x l `

 
x 2 2 1

x 2 1 1
− 1

An example of a curve with two horizontal asymptotes is y − tan21x. (See Figure 4.)  
In fact,

lim
x l2`

 tan21x − 2
�

2
            lim

x l `
 tan21x −

�

2

so both of the lines y − 2�y2 and y − �y2 are horizontal asymptotes. (This follows 
from the fact that the lines x − 6�y2 are vertical asymptotes of the graph of the tangent 
function.)

Example �1�  Find the infinite limits, limits at infinity, and asymptotes for the function 
f  whose graph is shown in Figure 5.

SOLUTION � We see that the values of f sxd become large as x l 21 from both sides, so

lim
x l21

 f sxd − `

Notice that f sxd becomes large negative as x approaches 2 from the left, but large posi­
tive as x approaches 2 from the right. So

lim
x l

 

22
 f sxd − 2`        and        lim

x l
 

21
 f sxd − `

Thus both of the lines x − 21 and x − 2 are vertical asymptotes.

FIGURE 3 �  
Examples illustrating lim

x l 2`
 f sxd − L 

0

y

x

y=ƒ

y=L

x0

y

y=ƒ
y=L

y

0
x

π
2

_ π
2

FIGURE 4 �  
y − tan21x

4

0 x

y

2

2

FIGURE 5
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As x becomes large, it appears that f sxd approaches 4. But as x decreases through 
negative values, f sxd approaches 2. So

lim
x l `

 f sxd − 4        and        lim
x l2`

 f sxd − 2

This means that both y − 4 and y − 2 are horizontal asymptotes.	 n

Example �2�  Find lim
x l `

 
1

x
 and lim

x l2`
 
1

x
.

SOLUTION � Observe that when x is large, 1yx is small. For instance, 

 
1

100
− 0.01          

1

10,000
− 0.0001          

1

1,000,000
− 0.000001

In fact, by taking x large enough, we can make 1yx as close to 0 as we please. There­
fore, according to Definition 1, we have 

lim
x l `

 
1

x
− 0

Similar reasoning shows that when x is large negative, 1yx is small negative, so we also 
have

lim
x l2`

 
1

x
− 0

It follows that the line y − 0 (the x-axis) is a horizontal asymptote of the curve 
y − 1yx. (This is an equilateral hyperbola; see Figure 6.)	 n

Most of the Limit Laws that were given in Section 2.3 also hold for limits at infinity. It 
can be proved that the Limit Laws listed in Section 2.3 (with the exception of Laws 9 and 
10) are also valid if “x l a” is replaced by “x l `” or “x l 2`.” In particular, if we 
combine Laws 6 and 11 with the results of Example 2, we obtain the following important 
rule for calculating limits.

5 �  Theorem � If r . 0 is a rational number, then

lim
x l `

 
1

xr − 0

If r . 0 is a rational number such that xr is defined for all x, then

lim 
x l2`

 
1

xr − 0

Example �3�  Evaluate

lim
x l

 

`
 

3x 2 2 x 2 2

5x 2 1 4x 1 1

and indicate which properties of limits are used at each stage.

SOLUTION � As x becomes large, both numerator and denominator become large, so it 
isn’t obvious what happens to their ratio. We need to do some preliminary algebra. 

0

y

x

y=∆

FIGURE 6 �  

lim
x l `

 
1

x
− 0,  lim

x l2`
 
1

x
− 0
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130	 Chapter 2    Limits and Derivatives

To evaluate the limit at infinity of any rational function, we first divide both the 
numerator and denominator by the highest power of x that occurs in the denominator. 
(We may assume that x ± 0, since we are interested only in large values of x.) In this 
case the highest power of x in the denominator is x 2, so we have

 lim
x l

 

`
 

3x 2 2 x 2 2

5x 2 1 4x 1 1
−  lim

x l
 

`
 

3x2 2 x 2 2

x 2

5x2 1 4x 1 1

x 2

− lim
x l

 

`
  

3 2
1

x
2

2

x 2

5 1
4

x
1

1

x 2

−

lim
xl`
S3 2

1

x
2

2

x 2D
lim
xl`S5 1

4

x
1

1

x 2D 	 (by Limit Law 5)

 −

lim
x l

 

`
 3 2 lim

x l
 

`
 
1

x
2 2 lim

x l
 

`
 

1

x 2

lim
x l

 

`
 5 1 4 lim

x l
 

`
 
1

x
1 lim

x l
 

`
 

1

x 2

	 (by 1, 2, and 3)

 −
3 2 0 2 0

5 1 0 1 0
	 (by 7 and Theorem 5)

 −
3

5

A similar calculation shows that the limit as x l 2` is also 35. Figure 7 illustrates the 
results of these calculations by showing how the graph of the given rational function 
approaches the horizontal asymptote y − 3

5 − 0.6.	 n

Example �4�  Find the horizontal and vertical asymptotes of the graph of the function

f sxd −
s2x 2 1 1

3x 2 5

SOLUTION � Dividing both numerator and denominator by x and using the properties of 
limits, we have 

lim
x l `

s2x 2 1 1

3x 2 5
− lim

x l `
 

s2x2 1 1

x

3x 2 5

x

− lim
x l `

 
Î2x 2 1 1 

x 2

3x 2 5

x

        (since sx 2 − x for x . 0)

−

lim
x l `

 Î2 1
1

x 2

lim
x l `

 S3 2
5

xD
−
Î lim

x l `
 2 1 lim

x l `
 

1

x 2

lim
x l `

 3 2 5 lim
x l `

 
1

x

−
s2 1 0 

3 2 5 ? 0
−

s2 

3

Therefore the line y − s2 y3 is a horizontal asymptote of the graph of f.

1

y=0.6

x

y

0

FIGURE 7 �  

y −  
3x 2 2 x 2 2

5x 2 1 4x 1 1
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In computing the limit as x l 2`, we must remember that for x , 0, we have
sx 2 − | x | − 2x. So when we divide the numerator by x, for x , 0 we get

s2x 2 1 1 

x
−

s2x 2 1 1 

2sx 2 
− 2Î2x 2 1 1

x 2
 − 2Î2 1

1

x 2
 

Therefore

lim
x l2`

 
s2x 2 1 1

3x 2 5
− lim

x l2`
 

2Î2 1
1

x 2
 

3 2
5
x

 −
2Î2 1 lim 

x l2`
 

1

x 2
 

3 2 5 lim 
x l2`

 
1
x

− 2
s2 

3

Thus the line y − 2s2 y3 is also a horizontal asymptote.
A vertical asymptote is likely to occur when the denominator, 3x 2 5, is 0, that is, 

when x − 5
3. If x is close to 53 and x . 5

3, then the denominator is close to 0 and 3x 2 5 

is positive. The numerator s2x 2 1 1 is always positive, so f sxd is positive. Therefore

lim
x l s5y3d1

 
s2x 2 1 1

3x 2 5
− `

(Notice that the numerator does not approach 0 as x l 5y3). 
If x is close to 53 but x , 5

3, then 3x 2 5 , 0 and so f sxd is large negative. Thus

lim
x l

 

s5y3d2
 
s2x 2 1 1

3x 2 5
− 2`

The vertical asymptote is x − 5
3. All three asymptotes are shown in Figure 8.	 n

Example �5�  Compute lim
x l

 

`
 (sx 2 1 1 2 x).

SOLUTION�  Because both sx 2 1 1 and x are large when x is large, it’s difficult to see 
what happens to their difference, so we use algebra to rewrite the function. We first 
multiply numerator and denominator by the conjugate radical:

 lim
x l

 

`
 (sx 2 1 1 2 x) − lim

x l
 

`
 (sx 2 1 1 2 x) ?  

sx 2 1 1 1 x

sx 2 1 1 1 x

 − lim
x l

 

`
 
sx 2 1 1d 2 x 2

sx 2 1 1 1 x
− lim

x l
 

`
 

1

sx 2 1 1 1 x

Notice that the denominator of this last expression (sx 2 1 1 1 x) becomes large as 
x l ` (it’s bigger than x). So

 lim
x l

 

`
 (sx 2 1 1 2 x) − lim

x l
 

`
 

1

sx 2 1 1 1 x
− 0

Figure 9 illustrates this result.	 n

x

y

y= œ„2
3

y=_ œ„2
3

x=5
3

FIGURE 8 �  

y −  
s2x 2 1 1 

3x 2 5
 

We can think of the given function as 
having a denominator of 1.

FIGURE 9

y=   ≈+1œ„„„„„-x

x

y

0 1

1
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Example �6�  Evaluate lim
x l

 

21
 arctanS 1

x 2 2D.

SOLUTION � If we let t − 1ysx 2 2d, we know that t l ` as x l 21. Therefore, by the  
second equation in (4), we have

	 lim
x l

 

21
 arctanS 1

x 2 2D − lim
t l `

 arctan t −
�

2
	 n

The graph of the natural exponential function y − ex has the line y − 0 (the x-axis) as 
a horizontal asymptote. (The same is true of any exponential function with base b . 1.)
In fact, from the graph in Figure 10 and the corresponding table of values, we see that

lim
x l

 

2`
 ex − 0

Notice that the values of ex approach 0 very rapidly.

y=´

x0

1

y

1

      

x ex

0 1.00000
21 0.36788
22 0.13534
23 0.04979
25 0.00674
28 0.00034

210 0.00005

Example �7�  Evaluate lim
x l

 

02
 e 1yx.

SOLUTION � If we let t − 1yx, we know that t l 2` as x l 02. Therefore, by (6),

lim
x l

 

02
 e 1yx − lim

t l 2`
 e t − 0

(See Exercise 81.)	 n

Example �8�  Evaluate lim
x l `

 sin x.

SOLUTION � As x increases, the values of sin x oscillate between 1 and 21 infinitely often 
and so they don’t approach any definite number. Thus lim x l` sin x does not exist.	 n

Infinite Limits at Infinity
The notation

lim
x l

 

`
 f sxd − `

is used to indicate that the values of f sxd become large as x becomes large. Similar mean­

6

FIGURE 10 � 

PS   The problem-solving strategy 
for Examples 6 and 7 is introducing 
something extra (see page 71). Here, 
the something extra, the auxiliary aid, 
is the new variable t.
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ings are attached to the following symbols:

lim
x l

 

2`
 f sxd − `            lim

x l
 

`
 f sxd − 2`            lim

x l
 

2`
 f sxd − 2`

Example �9�  Find lim
x l `

 x 3 and lim
x l2`

 x 3.

SOLUTION � When x becomes large, x 3 also becomes large. For instance,

103 − 1000            1003 − 1,000,000            10003 − 1,000,000,000

In fact, we can make x 3 as big as we like by requiring x to be large enough. Therefore 
we can write

lim
x l `

 x 3 − `

Similarly, when x is large negative, so is x 3. Thus

lim
x l2`

 x 3 − 2`

These limit statements can also be seen from the graph of y − x 3 in Figure 11.	 n

Looking at Figure 10 we see that

lim 
x l`

 ex − `

but, as Figure 12 demonstrates, y − ex becomes large as x l ` at a much faster rate 
than y − x 3.

Example �10�  Find lim
x l

 

`
 sx 2 2 xd.

SOLUTION � It would be wrong to write

 lim
x l

 

`
 sx 2 2 xd − lim

x l
 

`
 x 2 2 lim

x l
 

`
 x − ` 2 `

The Limit Laws can’t be applied to infinite limits because ` is not a number  
(` 2 ` can’t be defined). However, we can write

lim
x l

 

`
 sx 2 2 xd − lim

x l
 

`
 xsx 2 1d − `

because both x and x 2 1 become arbitrarily large and so their product does too.	 n

Example �11�  Find lim
x l `

 
x 2 1 x

3 2 x
.

SOLUTION � As in Example 3, we divide the numerator and denominator by the highest 
power of x in the denominator, which is just x:

 lim 
x l`

 
x 2 1 x

3 2 x
−  lim 

x l`
 
x 1 1

3

x
2 1

− 2`

because x 1 1 l ` and 3yx 2 1 l 0 2 1 − 21 as x l `.	 n

FIGURE 11 �  
lim
x l `

 x 3 − `, lim
x l2`

 x 3 − 2`

x

y

0

y=˛

x0

100

y

1

y=˛

y=´

FIGURE 12�   
ex �is much larger than x 3  
when x is large.
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The next example shows that by using infinite limits at infinity, together with inter-
cepts, we can get a rough idea of the graph of a polynomial without having to plot a large 
number of points.

Example �12�  Sketch the graph of y − sx 2 2d4sx 1 1d3sx 2 1d by finding its inter-
cepts and its limits as x l ` and as x l 2`.

SOLUTION � The y-intercept is f s0d − s22d4s1d3s21d − 216 and the x-intercepts are 
found by setting y − 0: x − 2, 21, 1. Notice that since sx 2 2d4 is never negative, 
the func�tion doesn’t change sign at 2; thus the graph doesn’t cross the x-axis at 2. The 
graph crosses the axis at 21 and 1.

When x is large positive, all three factors are large, so

lim
x l `

 sx 2 2d4sx 1 1d3sx 2 1d − `

When x is large negative, the first factor is large positive and the second and third fac-
tors are both large negative, so 

lim
x l2`

 sx 2 2d4sx 1 1d3sx 2 1d − `

Combining this information, we give a rough sketch of the graph in Figure 13.	 n

Precise Definitions
Definition 1 can be stated precisely as follows.

7 �  Precise Definition of a Limit at Infinity � Let f  be a function defined on some 
interval sa, `d. Then

lim
x l `

 f sxd − L

��means that for every « . 0 there is a corresponding number N such that

if        x . N        then        | f sxd 2 L | , «

In words, this says that the values of f sxd can be made arbitrarily close to L (within a  
distance «, where « is any positive number) by requiring x to be sufficiently large (larger 
than N, where N depends on «). Graphically it says that by keeping x large enough 
(larger than some number N) we can make the graph of f  lie between the given hori-
zontal lines y − L 2 « and y − L 1 « as in Figure 14. This must be true no matter how 
small we choose «. 

0

y

xN

L

when x is in here

ƒ is
in here

 is

y=L-∑

y=L+∑
∑
∑

y=ƒ

y

0 x_1 21

_16

FIGURE 13�   
y − sx 2 2d4sx 1 1d3sx 2 1d

FIGURE 14�  
lim
x l `

 f sxd − L
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Figure 15 shows that if a smaller value of « is chosen, then a larger value of N may  
be required.

0 xN

L

y=ƒ

y=L-∑

y=L+∑

Similarly, a precise version of Definition 2 is given by Definition 8, which is illus­
trated in Figure 16.

8 �  Definition � Let f  be a function defined on some interval s2`, ad. Then

lim
x l 2`

 f sxd − L

��means that for every « . 0 there is a corresponding number N such that

if        x , N        then        | f sxd 2 L | , «

xN

y

L
y=L-∑

y=L+∑
y=ƒ

0

In Example 3 we calculated that 

lim
x l `

 
3x 2 2 x 2 2

5x 2 1 4x 1 1
−

3

5

In the next example we use a graphing device to relate this statement to Definition 7 with 
L − 3

5 − 0.6 and « − 0.1.

Example �13�  Use a graph to find a number N such that 

if    x . N        then        Z 3x 2 2 x 2 2

5x 2 1 4x 1 1
2 0.6 Z , 0.1

FIGURE 15�  
lim
x l `

 f sxd − L

FIGURE 16�  
lim

x l2`
 f sxd − L

TEC � In Module 2.4y2.6 you can 
explore the precise definition of a limit 
both graphically and numerically.
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SOLUTION � We rewrite the given inequality as

0.5 ,
3x 2 2 x 2 2

5x 2 1 4x 1 1
, 0.7

We need to determine the values of x for which the given curve lies between the hori­
zontal lines y − 0.5 and y − 0.7. So we graph the curve and these lines in Figure 17.  
Then we use the cursor to estimate that the curve crosses the line y − 0.5 when 
x < 6.7. To the right of this number it seems that the curve stays between the lines 
y − 0.5 and y − 0.7. Rounding up to be safe, we can say that

if    x . 7        then        Z 3x 2 2 x 2 2

5x 2 1 4x 1 1
2 0.6 Z , 0.1

In other words, for « − 0.1 we can choose N − 7 (or any larger number) in Defini- 
tion 7.	 n

Example �14�  Use Definition 7 to prove that lim
x l `

 
1

x
− 0.

SOLUTION � Given « . 0, we want to find N such that

if        x . N        then        Z 1

x
2 0 Z , «

In computing the limit we may assume that x . 0. Then 1yx , «  &?  x . 1y«. Let’s 
choose N − 1y«. So

if        x . N −
1

«
        then        Z 1

x
2 0 Z −

1

x
, «

Therefore, by Definition 7,

lim
x l `

 
1

x
− 0

Figure 18 illustrates the proof by showing some values of « and the corresponding 
values of N.

x

y

0 N=5
∑=0.2

x

y

0 N=1

∑=1

x

y

0 N=10
∑=0.1

n

1

0 15

y=0.7

y=0.5

y= 3≈-x-2
5≈+4x+1

FIGURE 17�   

FIGURE 18 �
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Finally we note that an infinite limit at infinity can be defined as follows. The geomet­
ric illustration is given in Figure 19.

9 �  Definition of an Infinite Limit at Infinity � Let f  be a function defined on 
some interval sa, `d. Then

lim
x l `

 f sxd − `

means that for every positive number M there is a corresponding positive number  
N such that

if    x . N        then        f sxd . M

Similar definitions apply when the symbol ` is replaced by 2`. (See Exercise 80.)

0 x

y

N

M
y=M

FIGURE 19�   
lim
x l `

 f sxd − `

	 1.	� �Explain in your own words the meaning of each of the  
following.

	 (a)	 lim
x l `

 f sxd − 5	 (b)	 lim
x l 2`

 f sxd − 3

	 2.	� (a)	� Can the graph of y − f sxd intersect a vertical asymptote? 
Can it intersect a horizontal asymptote? Illustrate by 
sketching graphs.

	 (b)	� How many horizontal asymptotes can the graph of 
y − f sxd have? Sketch graphs to illustrate the possibilities.

	 3.	� For the function f  whose graph is given, state the following.

	 (a)	 lim
x l

 

`
 f sxd	 (b)	 lim

x l
 

2`
 f sxd

	 (c)	 lim
x l

 

1
 f sxd	 (d)	 lim

x l
 

3
 f sxd

	 (e)	 The equations of the asymptotes

1 x

y

1

	 4.	� For the function t whose graph is given, state the following.

	 (a)	 lim
x l

 

`
 tsxd	 (b)	 lim

x l
 

2`
 tsxd

	 (c)	 lim
x l

 

0
 tsxd	 (d)	 lim

x l
 

22
 tsxd

	 (e)	 lim
x l

 

21
 tsxd	 (f )	 The equations of the asymptotes

1 x

y

1

5–10 � Sketch the graph of an example of a function f  that satis­
fies all of the given conditions.

	 5.	� lim
x l 0

 f sxd − 2`,    lim
x l

 

2`
 f sxd − 5,    lim

x l
 

`
 f sxd − 25

	 6.	� �lim
x l

 

2
 f sxd − `,    lim

x l
 

221
 f sxd − `,    lim

x l
 

222
 f sxd − 2`,  

		�  lim
x l

 

2`
 f sxd − 0,    lim

x l
 

`
 f sxd − 0,    f s0d − 0

	 7.	� lim
x l

 

2
 f sxd − 2`,     lim

x l
 

`
 f sxd − `,     lim

x l
 

2`
 f sxd − 0,

		  lim
x l

 

01
 f sxd − `,    lim

x l
 

02
 f sxd − 2`

	 8.	� �lim
x l `

 f sxd − 3,  lim
x l

 

22
 f sxd − `,  lim

x l
 

21
 f sxd − 2`,  f  is odd

	 9.	� f s0d − 3,    lim
x l

 

02
 f sxd − 4,    lim

x l
 

01
 f sxd − 2,

		  lim
x l

 

2`
 f sxd − 2`,    lim

x l
 

42
 f sxd − 2`,    lim

x l
 

41
 f sxd − `,

		  lim
x l

 

`
 f sxd − 3

	10.	� lim
x l 3

 f sxd − 2`,    lim
x l

 

`
 f sxd − 2,     f s0d − 0,    f  is even
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	11.	� Guess the value of the limit

lim
x l

 

`
 
x 2

2x

		��  by evaluating the function f sxd − x 2y2x for x − 0, 1, 2, 3,  
4, 5, 6, 7, 8, 9, 10, 20, 50, and 100. Then use a graph of f  
to support your guess.

	12.	� �(a)	 Use a graph of

f sxd − S1 2
2

xDx

to estimate the value of lim x l ` f sxd correct to two 
decimal places.

	 (b)	� Use a table of values of f sxd to estimate the limit to 
four decimal places.

13–14 � Evaluate the limit and justify each step by indicating the 
appropriate properties of limits.

	13.	 lim
x l `

 
2x2 2 7

5x2 1 x 2 3
	 14.	� lim

x l `
Î 9x 3 1 8x 2 4

3 2 5x 1 x 3

15–42 � Find the limit or show that it does not exist.

	15.	 lim
x l `

 
3x 2 2

2x 1 1
	 16.	� lim

x l `
 

1 2 x 2

x 3 2 x 1 1

	17.	 lim
x l 2`

 
x 2 2

x 2 1 1
	 18.	� lim

x l 2`
 
4x 3 1 6x 2 2 2

2x 3 2 4x 1 5

	19.	 lim
t l `

 
st  1 t 2

2t 2 t 2 	 20.	� lim
tl `

 
t 2 tst  

2t 3y2 1 3t 2 5

	21.	 lim
x l `

 
s2x 2 1 1d2

sx 2 1d2sx 2 1 xd
	 22.	� lim

x l `
 

x 2

sx 4 1 1 

	23.	 lim
x l `

 
s1 1 4x 6 

2 2 x 3
	 24.	 lim

x l 2`
 
s1 1 4x 6 

2 2 x 3

	25.	 lim
x l `

 
sx 1 3x 2 

4x 2 1
	 26.	 lim

x l `
 

x 1 3x 2

4x 2 1

	27.	 lim
x l

 

`
 (s9x 2 1 x 2 3x)

	28.	� lim
x l2`

 (s4x 2 1 3x  1 2x)

	29.	 lim
x l

 

`
 (sx 2 1 ax 2 sx2 1 bx )

	30.	� lim
x l

 

`
 sx 2 1 1

	31.	 lim
x l `

 
x 4 2 3x 2 1 x

x 3 2 x 1 2
	 32.	� lim

x l ` 
se2x 1 2 cos 3xd

	33.	 lim
x l 2`

sx 2 1 2x7 d	 34.	� lim
x l 2`

 
1 1 x 6

x 4 1 1

;

;

	35.	  lim 
x l `

 arctanse x d	 36.	� lim
x l `

 
e 3x 2 e23x

e 3x 1 e23x

	37.	 lim
x l `

 
1 2 e x

1 1 2e x 	 38.	� lim
x l `

 
sin2x

x 2 1 1

	39.	 lim
x l `

 se22x cos xd	 40.	� lim
x l 01

 tan21sln xd

	41.	 lim
x l `

 flns1 1 x 2d 2 lns1 1 xdg

	42.	 lim
x l `

 flns2 1 xd 2 lns1 1 xdg

	43.	� (a)	 For f sxd −
x

ln x
 find each of the following limits.

	 (i)	 lim
x l 01

 f sxd	 (ii)	 lim
x l 12

 f sxd	 (iii)	 lim
x l11

 f sxd

	 (b)	 Use a table of values to estimate lim 
x l

 

`
 f sxd.

	� (c)	� Use the information from parts (a) and (b) to make a 
rough sketch of the graph of f.

	44.	� For f sxd −
2

x
2

1

ln x
 find each of the following limits.

	 (a)	 lim
xl`

 f sxd	 (b)	 lim
x l 01

 f sxd

	 (c)	 lim
x l 12

 f sxd	 (d)	 lim
x l11

 f sxd

	� (e)	� Use the information from parts (a)–(d) to make a rough 
sketch of the graph of f.

	45.	� (a)	 Estimate the value of

lim
x l

 

2`
 (sx 2 1 x 1 1 1 x)

		�  	 by graphing the function f sxd − sx 2 1 x 1 1 1 x.

	 (b)	� Use a table of values of f sxd to guess the value of the 
limit.

	 (c)	� Prove that your guess is correct.

	46.	� (a)	 Use a graph of

f sxd − s3x 2 1 8x 1 6 2 s3x 2 1 3x 1 1

	� to estimate the value of lim x l ` f sxd to one decimal 
place.

	 (b)	� Use a table of values of f sxd to estimate the limit to 
four decimal places.

	 (c)	� Find the exact value of the limit.

47–52 � Find the horizontal and vertical asymptotes of each 
curve. If you have a graphing device, check your work by graph-
ing the curve and estimating the asymptotes.

	47.	 y −
5 1 4x

x 1 3
	 48.	� y −

2x 2 1 1

3x 2 1 2x 2 1

	49.	 y −
2x 2 1 x 2 1

x 2 1 x 2 2
	 50.	� y −

1 1 x 4

x 2 2 x 4

;

;
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	51.	 y −
x 3 2 x

x 2 2 6x 1 5
	 52.	� y −

2e x

e x 2 5

	53.	� Estimate the horizontal asymptote of the function

f sxd −
3x 3 1 500x 2

x 3 1 500x 2 1 100x 1 2000

�by graphing f  for 210 < x < 10. Then calculate the equa-
tion of the asymptote by evaluating the limit. How do you 
explain the discrepancy?

	54.	� (a)	 Graph the function

f sxd −
s2x 2 1 1

3x 2 5

	� How many horizontal and vertical asymptotes do you 
observe? Use the graph to estimate the values of the 
limits

	 lim
x l

 

`
 
s2x 2 1 1

3x 2 5
        and        lim

x l
 

2`
 
s2x 2 1 1

3x 2 5

	 (b)	� By calculating values of f sxd, give numerical estimates 
of the limits in part (a).

	 (c)	� Calculate the exact values of the limits in part (a). Did 
you get the same value or different values for these two 
limits? [In view of your answer to part (a), you might 
have to check your calculation for the second limit.]

	55.	� Let P and Q be polynomials. Find

lim
x l `

 
Psxd
Qsxd

�if the degree of P is (a) less than the degree of Q and  
(b) greater than the degree of Q.

	56.	� �Make a rough sketch of the curve y − x n (n an integer)  
for the following five cases:

	 (i)	 n − 0	 (ii)	 n . 0, n odd
	 (iii)	 n . 0, n even	 (iv)	 n , 0, n odd
	 (v)	 n , 0, n even

Then use these sketches to find the following limits.
	 (a)	 lim

x l
 

01
 x n	 (b)	 lim

x l
 

02
 x n

	 (c)	 lim
x l

 

`
 x n	 (d)	 lim

x l
 

2`
 x n

	57.	� �Find a formula for a function f  that satisfies the following 
conditions:

lim
x l

 

6`
 f sxd − 0,    lim

x l
 

0
 f sxd − 2`,    f s2d − 0,

lim
x l

 

32
 f sxd − `,    lim

x l
 

31
 f sxd − 2`

	58.	� �Find a formula for a function that has vertical asymptotes 
x − 1 and x − 3 and horizontal asymptote y − 1.

	59.	� �A function f  is a ratio of quadratic functions and has a 
vertical asymptote x − 4 and just one x-intercept, x − 1.  

;

;

It is known that f  has a removable discontinuity at 
x − 21 and lim x l21 f sxd − 2. Evaluate

	 (a)	� f s0d	 (b)	 lim
x l `

 f sxd

60–64 � Find the limits as x l ` and as x l 2`. Use this 
information, together with intercepts, to give a rough sketch of 
the graph as in Example 12.

	60.	 y − 2x 3 2 x 4	 61.	� y − x 4 2 x6

	62.	� y − x 3sx 1 2d2sx 2 1d

	63.	� y − s3 2 xds1 1 xd2s1 2 xd4  

	64.	� y − x 2sx 2 2 1d2sx 1 2d

65.		� (a)	� Use the Squeeze Theorem to evaluate lim
x l `

 
sin x

x
.

	� 	 (b)	� Graph f sxd − ssin xdyx. How many times does the 
graph cross the asymptote?

	66.	� �By the end behavior of a function we mean the behavior 
of its values as x l ` and as x l 2`.

	 (a)	� Describe and compare the end behavior of the func-
tions

Psxd − 3x 5 2 5x 3 1 2x            Qsxd − 3x 5

	� by graphing both functions in the viewing rect-
angles f22, 2g by f22, 2g and f210, 10g by 
f210,000, 10,000g.

	 (b)	� Two functions are said to have the same end behavior 
if their ratio approaches 1 as x l `. Show that  P and 
Q have the same end behavior.

	67.	� Find limx l ` f sxd if, for all x . 1,

10e x 2 21

2e x , f sxd ,
5sx

sx 2 1

	68.	� (a)	� A tank contains 5000 L of pure water. Brine that con-
tains 30 g of salt per liter of water is pumped into the 
tank at a rate of 25 Lymin. Show that the concentra-
tion of salt after t minutes (in grams per liter) is

Cstd −
30t

200 1 t

	 (b)	 What happens to the concentration as t l `?

	69.	� �In Chapter 9 we will be able to show, under certain 
assumptions, that the velocity vstd of a falling raindrop at 
time t is

vstd − v*s1 2 e 2t tyv*d

where t is the acceleration due to gravity and v* is the  
terminal velocity of the raindrop.

	 (a)	 Find lim t l ` vstd.
	 (b)	� Graph vstd if v* − 1 mys and t − 9.8 mys2. How long 

does it take for the velocity of the raindrop to reach 
99% of its terminal velocity?

;

;

;
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The problem of finding the tangent line to a curve and the problem of finding the velocity 
of an object both involve finding the same type of limit, as we saw in Section 2.1. This 
special type of limit is called a derivative and we will see that it can be interpreted as a 
rate of change in any of the natural or social sciences or engineering.

Tangents
If a curve C has equation y − f sxd and we want to find the tangent line to C at the point 
Psa, f sadd, then we consider a nearby point Qsx, f sxdd, where x ± a, and compute the 
slope of the secant line PQ:

mPQ −
 f sxd 2 f sad

x 2 a

Then we let Q approach P along the curve C by letting x approach a. If mPQ approaches 

	70.	� �(a)	� By graphing y − e 2xy10 and y − 0.1 on a common 
screen, discover how large you need to make x so that 
e 2xy10 , 0.1.

	 (b)	� Can you solve part (a) without using a graphing  
device?

	71.	� �Use a graph to find a number N such that

if      x . N      then      Z 3x 2 1 1

2x 2 1 x 1 1
2 1.5 Z , 0.05

	72.	� �For the limit 

lim
xl`

 
1 2 3x

sx 2 1 1
  − 23

illustrate Definition 7 by finding values of N that correspond 
to « − 0.1 and « − 0.05.

	73.	� �For the limit 

lim
x l2`

 
1 2 3x

sx 2 1 1
  − 3

illustrate Definition 8 by finding values of N that correspond 
to « − 0.1 and « − 0.05.

	74.	� �For the limit 

lim
x l `

 sx ln x − `

illustrate Definition 9 by finding a value of N that corre-
sponds to M − 100.

	75.	� �(a)	� How large do we have to take x so that 
1yx 2 , 0.0001?

	 (b)	 Taking r − 2 in Theorem 5, we have the statement

lim
x l `

 
1

x 2 − 0

	 Prove this directly using Definition 7.

;

;

;

;

;

	76.	� (a)	� How large do we have to take x so that 
1ysx , 0.0001?

	 (b)	 Taking r − 1
2 in Theorem 5, we have the statement

lim
x l `

 
1

sx 
− 0

	 Prove this directly using Definition 7.

	77.	� Use Definition 8 to prove that lim
x l2`

 
1

x
− 0.

	78.	� Prove, using Definition 9, that lim
x l `

 x 3 − `.

	79.	� �Use Definition 9 to prove that lim 
x l `

 e x − `.

	80.	� Formulate a precise definition of 

lim 
x l2`

 f sxd − 2`

		�  Then use your definition to prove that

lim 
x l2`

 s1 1 x 3 d − 2`

	81.	� (a)	 Prove that

 lim
xl`

 f sxd − lim
t l

 

01 f s1ytd

	 and	  lim
xl2`

 f sxd − lim
t l

 

02 f s1ytd

		  if these limits exist.
	 (b)	 Use part (a) and Exercise 65 to find

lim 
x l 01

 x sin 
1

x
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a number m, then we define the tangent t to be the line through P with slope m. (This 
amounts to saying that the tangent line is the limiting position of the secant line PQ as Q 
approaches P. See Figure 1.)

1 �  Definition � The tangent line to the curve y − f sxd at the point Psa, f sadd is 
the line through P with slope

m − lim
x l a

 
 f sxd 2 f sad

x 2 a

provided that this limit exists.

In our first example we confirm the guess we made in Example 2.1.1.

Example �1�  Find an equation of the tangent line to the parabola y − x 2 at the  
point Ps1, 1d.

SOLUTION � Here we have a − 1 and f sxd − x 2, so the slope is

 m − lim
x l1

 
 f sxd 2 f s1d

x 2 1
− lim

x l1
 
x 2 2 1

x 2 1

 − lim
x l1

 
sx 2 1dsx 1 1d

x 2 1

 − lim
x l1

 sx 1 1d − 1 1 1 − 2

Using the point-slope form of the equation of a line, we find that an equation of the 
tangent line at s1, 1d is

	 y 2 1 − 2sx 2 1d        or        y − 2x 2 1	 n

We sometimes refer to the slope of the tangent line to a curve at a point as the slope 
of the curve at the point. The idea is that if we zoom in far enough toward the point, the 
curve looks almost like a straight line. Figure 2 illustrates this procedure for the curve 
y − x 2 in Example 1. The more we zoom in, the more the parabola looks like a line. In 
other words, the curve becomes almost indistinguishable from its tangent line.

(1, 1)

2

0 2

(1, 1)

1.5

0.5 1.5

(1, 1)

1.1

0.9 1.1

0 x

y

P

t

Q
Q

Q

0 x

y

a x

P{a, f(a)}
ƒ-f(a)

x-a

Q{x, ƒ}

FIGURE 1� 

Point-slope form for a line through the 
point sx1, y1d with slope m:

y 2 y1 − msx 2 x1d

TEC � Visual 2.7 shows an animation 
of Figure 2.

FIGURE 2 � Zooming in toward the point (1, 1) on the parabola y − x 2
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There is another expression for the slope of a tangent line that is sometimes easier to 
use. If h − x 2 a, then x − a 1 h and so the slope of the secant line PQ is

mPQ −
 f sa 1 hd 2 f sad

h

(See Figure 3 where the case h . 0 is illustrated and Q is to the right of P. If it happened 
that h , 0, however, Q would be to the left of P.)

Notice that as x approaches a, h approaches 0 (because h − x 2 a) and so the expres-
sion for the slope of the tangent line in Definition 1 becomes

m − lim
h l 0

 
 f sa 1 hd 2 f sad

h

Example �2�  Find an equation of the tangent line to the hyperbola y − 3yx at the  
point s3, 1d.

SOLUTION � Let f sxd − 3yx. Then, by Equation 2, the slope of the tangent at s3, 1d is

m − lim
h l 0

 
 f s3 1 hd 2 f s3d

h

− lim
h l 0

 

3

3 1 h
2 1

h
− lim

h l 0
 

3 2 s3 1 hd
3 1 h

h

 − lim
h l 0

 
2h

hs3 1 hd
− lim

h l 0
2

1

3 1 h
− 2

1

3

Therefore an equation of the tangent at the point s3, 1d is 

y 2 1 − 21
3 sx 2 3d

which simplifies to	 x 1 3y 2 6 − 0

The hyperbola and its tangent are shown in Figure 4.	 n

Velocities
In Section 2.1 we investigated the motion of a ball dropped from the CN Tower and 
defined its velocity to be the limiting value of average velocities over shorter and shorter 
time periods.

In general, suppose an object moves along a straight line according to an equation of 
motion s − f std, where s is the displacement (directed distance) of the object from the 
origin at time t. The function f  that describes the motion is called the position func-
tion of the object. In the time interval from t − a to t − a 1 h the change in position is 
f sa 1 hd 2 f sad. (See Figure 5.) 

0 x

y

a a+h

P{a, f(a)}

h

Q{a+h, f(a+h)}
t

f(a+h)-f(a)

FIGURE 3 �

2

y=

(3, 1)

x+3y-6=0

x

y

0

3
x

FIGURE 4 �

0 s
f(a+h)-f(a)

position at
time t=a

position at
time t=a+h

f(a)

f(a+h)

FIGURE 5 �
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The average velocity over this time interval is

average velocity −
displacement

time
−

 f sa 1 hd 2 f sad
h

which is the same as the slope of the secant line PQ in Figure 6.
Now suppose we compute the average velocities over shorter and shorter time inter-

vals fa, a 1 hg. In other words, we let h approach 0. As in the example of the falling ball, 
we define the velocity (or instantaneous velocity) vsad at time t − a to be the limit of 
these average velocities:

vsad − lim
h l 0

 
 f sa 1 hd 2 f sad

h

This means that the velocity at time t − a is equal to the slope of the tangent line at P 
(compare Equations 2 and 3).

Now that we know how to compute limits, let’s reconsider the problem of the fall-
ing ball.

Example �3�  Suppose that a ball is dropped from the upper observation deck of the 
CN Tower, 450 m above the ground.
(a)  What is the velocity of the ball after 5 seconds?
(b)  How fast is the ball traveling when it hits the ground?

SOLUTION � We will need to find the velocity both when t − 5 and when the ball hits 
the ground, so it’s efficient to start by finding the velocity at a general time t. Using the 
equation of motion s − f std − 4.9t 2, we have

 vstd − lim
h l 0

 
 f st 1 hd 2 f std

h
− lim

h l 0
 
4.9st 1 hd2 2 4.9t 2

h

 − lim
h l 0

 
4.9st 2 1 2th 1 h 2 2 t 2 d

h
− lim

h l 0
 
4.9s2th 1 h 2 d

h

− lim
hl0

 
4.9hs2t 1 hd

h
− lim

h l 0
 4.9s2t 1 hd − 9.8t

(a)  The velocity after 5 seconds is vs5d − s9.8ds5d − 49 mys.

(b)  Since the observation deck is 450 m above the ground, the ball will hit the ground 
at the time t when sstd − 450, that is,

4.9t 2 − 450

This gives

t 2 −
450

4.9
        and        t − Î450

4.9
< 9.6 s

0

P{a, f(a)}

Q{a+h, f(a+h)}

h

a+ha

s

t

mPQ=

� average velocity

f(a+h)-f(a)
h 

FIGURE 6� 

3

Recall from Section 2.1: The distance 
(in meters) fallen after t seconds is 
4.9t 2.
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The velocity of the ball as it hits the ground is therefore

	 vSÎ450

4.9
D − 9.8Î450

4.9
< 94 mys	 n

Derivatives
We have seen that the same type of limit arises in finding the slope of a tangent line 
(Equation 2) or the velocity of an object (Equation 3). In fact, limits of the form

lim
h l

 

0
 
 f sa 1 hd 2 f sad

h

arise whenever we calculate a rate of change in any of the sciences or engineering, such  
as a rate of reaction in chemistry or a marginal cost in economics. Since this type of limit 
occurs so widely, it is given a special name and notation.

4 �  Definition  �The derivative of a function f  at a number a, denoted by  
f 9sad, is

f 9sad − lim
h l

 

0
 
 f sa 1 hd 2 f sad

h
��if this limit exists.

If we write x − a 1 h, then we have h − x 2 a and h approaches 0 if and only if x 
approaches a. Therefore an equivalent way of stating the definition of the derivative, as 
we saw in finding tangent lines, is

f 9sad − lim
x l a

 
 f sxd 2 f sad

x 2 a

Example �4�   
Find the derivative of the function f sxd − x 2 2 8x 1 9 at the number a.

SOLUTION � From Definition 4 we have

  f 9sad − lim
h l

 

0
 
 f sa 1 hd 2 f sad

h

 − lim
h l

 

0
 
fsa 1 hd2 2 8sa 1 hd 1 9g 2 fa 2 2 8a 1 9g

h

 − lim
h l

 

0
 
a 2 1 2ah 1 h 2 2 8a 2 8h 1 9 2 a 2 1 8a 2 9

h

 − lim
h l

 

0
 
2ah 1 h 2 2 8h

h
− lim

h l
 

0
 s2a 1 h 2 8d

	  − 2a 2 8	 n

f 9sad is read “ f  prime of a.”

5

Definitions 4 and 5 are equivalent, so 
we can use either one to compute the
derivative. In practice, Definition 4 
often leads to simpler computations.
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We defined the tangent line to the curve y − f sxd at the point Psa, f sadd to be the line 
that passes through P and has slope m given by Equation 1 or 2. Since, by Definition 4, 
this is the same as the derivative f 9sad, we can now say the following.

The tangent line to y − f sxd at sa, f sadd is the line through sa, f sadd whose slope is 
equal to f 9sad, the derivative of f  at a.

If we use the point-slope form of the equation of a line, we can write an equation of 
the tangent line to the curve y − f sxd at the point sa, f sadd:

y 2 f sad − f 9sadsx 2 ad

Example �5�  Find an equation of the tangent line to the parabola y − x 2 2 8x 1 9 at 
the point s3, 26d.

SOLUTION � From Example 4 we know that the derivative of f sxd − x 2 2 8x 1 9 at 
the number a is f 9sad − 2a 2 8. Therefore the slope of the tangent line at s3, 26d is 
f 9s3d − 2s3d 2 8 − 22. Thus an equation of the tangent line, shown in Figure 7, is

	 y 2 s26d − s22dsx 2 3d        or        y − 22x	 n

Rates of Change
Suppose y is a quantity that depends on another quantity x. Thus y is a function of x and 
we write y − f sxd. If x changes from x1 to x2, then the change in x (also called the incre-
ment of x) is

Dx − x2 2 x1

and the corresponding change in y is

Dy − f sx2d 2 f sx1d

The difference quotient

Dy

Dx
−

 f sx2d 2 f sx1d
x2 2 x1

is called the average rate of change of y with respect to x over the interval fx1, x2g and 
can be interpreted as the slope of the secant line PQ in Figure 8.

By analogy with velocity, we consider the average rate of change over smaller and 
smaller intervals by letting x2 approach x1 and therefore letting Dx approach 0. The limit 
of these average rates of change is called the (instantaneous) rate of change of y with 
respect to x at x − x1, which (as in the case of velocity) is interpreted as the slope of the 
tangent to the curve y − f sxd at Psx1, f sx1dd:

6 � � 	  instantaneous rate of change − lim      
Dx l 0

 
Dy

Dx
− lim 

x2 l x1

  f sx2d 2 f sx1d
x2 2 x1

We recognize this limit as being the derivative f 9sx1d.

y=≈-8x+9

(3, _6)

y=_2x

0 x

y

FIGURE 7 �

��average rate of change − mPQ 

instantaneous rate of change −
slope of tangent at P  

FIGURE 8 �

average rate of change � mPQ 

instantaneous rate of change �
slope of tangent at P  

0 x

y

⁄ ¤

Q{¤, ‡}

Îx

ÎyP{⁄, fl}
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We know that one interpretation of the derivative f 9sad is as the slope of the tangent 
line to the curve y − f sxd when x − a.  We now have a second interpretation:

��The derivative f 9sad is the instantaneous rate of change of y − f sxd with respect 
to x when x − a.

The connection with the first interpretation is that if we sketch the curve y − f sxd, 
then the instantaneous rate of change is the slope of the tangent to this curve at the point 
where x − a. This means that when the derivative is large (and therefore the curve is 
steep, as at the point P in Figure 9), the y-values change rapidly. When the derivative is 
small, the curve is relatively flat (as at point Q) and the y-values change slowly.

In particular, if s − f std is the position function of a particle that moves along a 
straight line, then f 9sad is the rate of change of the displacement s with respect to the 
time t. In other words, f 9sad is the velocity of the particle at time t − a. The speed of the 
particle is the absolute value of the velocity, that is, | f 9sad |.

In the next example we discuss the meaning of the derivative of a function that is 
defined verbally.

Example �6�  A manufacturer produces bolts of a fabric with a fixed width. The cost of 
producing x yards of this fabric is C − f sxd dollars.
(a)  What is the meaning of the derivative f 9sxd? What are its units?
(b)  In practical terms, what does it mean to say that f 9s1000d − 9?
(c)  Which do you think is greater, f 9s50d or f 9s500d? What about f 9s5000d?

SOLUTION �
(a)  The derivative f 9sxd is the instantaneous rate of change of C with respect to x; that 
is, f 9sxd means the rate of change of the production cost with respect to the number of 
yards produced. (Economists call this rate of change the marginal cost. This idea is 
discussed in more detail in Sections 3.7 and 4.7.)

Because

f 9sxd − lim
Dx l 0

 
DC

Dx

the units for f 9sxd are the same as the units for the difference quotient DCyDx. Since 
DC is measured in dollars and Dx in yards, it follows that the units for f 9sxd are dollars 
per yard.

(b)  The statement that f 9s1000d − 9 means that, after 1000 yards of fabric have been 
manufactured, the rate at which the production cost is increasing is $9yyard. (When 
x − 1000, C is increasing 9 times as fast as x.)

Since Dx − 1 is small compared with x − 1000, we could use the approximation

f 9s1000d <
DC

Dx
−

DC

1
− DC

and say that the cost of manufacturing the 1000th yard (or the 1001st) is about $9.

(c)  The rate at which the production cost is increasing (per yard) is probably lower 
when x − 500 than when x − 50 (the cost of making the 500th yard is less than the 
cost of the 50th yard) because of economies of scale. (The manufacturer makes more 

FIGURE 9 �   
The y-values are changing rapidly
at P and slowly at Q.

P

Q

x

y

Here we are assuming that the cost 
function is well behaved; in other 
words, Csxd doesn’t oscillate rapidly 
near x − 1000.
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efficient use of the fixed costs of production.) So

f 9s50d . f 9s500d

But, as production expands, the resulting large-scale operation might become ineffi-
cient and there might be overtime costs. Thus it is possible that the rate of increase of 
costs will eventually start to rise. So it may happen that

	 f 9s5000d . f 9s500d	 n

In the following example we estimate the rate of change of the national debt with 
respect to time. Here the function is defined not by a formula but by a table of values.

Example �7�  Let Dstd be the US national debt at time t. The table in the margin gives 
approximate values of this function by providing end of year estimates, in billions of 
dollars, from 1985 to 2010. Interpret and estimate the value of D9s2000d.

SOLUTION � The derivative D9s2000d means the rate of change of D with respect to t 
when t − 2000, that is, the rate of increase of the national debt in 2000.

According to Equation 5,

D9s2000d − lim
t l 2000

 
Dstd 2 Ds2000d

t 2 2000

So we compute and tabulate values of the difference quotient (the average rates of 
change) as follows.

t Time interval Average rate of change −  
Dstd 2 Ds2000d

t 2 2000

1985 [1985, 2000] 247.75 

1990 [1990, 2000] 229.74

1995 [1995, 2000] 134.70 

2005 [2000, 2005] 501.64
2010 [2000, 2010] 836.30 

From this table we see that D9s2000d lies somewhere between 134.70 and 501.64 billion 
dollars per year. [Here we are making the reasonable assumption that the debt didn’t 
fluctuate wildly between 1995 and 2005.] We estimate that the rate of increase of the  
national debt of the United States in 2000 was the average of these two numbers, namely

D9s2000d < 318 billion dollars per year

Another method would be to plot the debt function and estimate the slope of the 
tangent line when t − 2000.	 n

In Examples 3, 6, and 7 we saw three specific examples of rates of change: the veloc-
ity of an object is the rate of change of displacement with respect to time; marginal cost 
is the rate of change of production cost with respect to the number of items produced; the 
rate of change of the debt with respect to time is of interest in economics. Here is a small 
sample of other rates of change: In physics, the rate of change of work with respect to 
time is called power. Chemists who study a chemical reaction are interested in the rate of 
change in the concentration of a reactant with respect to time (called the rate of reaction). 

t Dstd

1985 1945.9
1990 3364.8
1995 4988.7
2000 5662.2
2005 8170.4
2010 14,025.2

Source: US Dept. of the Treasury

A Note On Units
The units for the average rate of change 
DDyDt are the units for DD divided by 
the units for Dt, namely billions of dol-
lars per year. The instantaneous rate of 
change is the limit of the average rates 
of change, so it is measured in the same 
units: billions of dollars per year.
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	 (b)	� Find equations of the tangent lines at the points s1, 1d 
and (4, 12 ).

	 (c)	� Graph the curve and both tangents on a common 
screen.

	11.	� (a)	� A particle starts by moving to the right along a hori-
zontal line; the graph of its position function is shown 
in the figure. When is the particle moving to the right? 
Moving to the left? Standing still?

	 (b)	� Draw a graph of the velocity function.

s (meters)

0 2 4 6

4

2

t (seconds)

	12.	�� Shown are graphs of the position functions of two runners, 
A and B, who run a 100-meter race and finish in a tie.

s (meters)

0 4 8 12

80

40

t (seconds)

A

B

	 (a)	� Describe and compare how the runners run the race.
	 (b)	� At what time is the distance between the runners the 

greatest?
	 (c)	� At what time do they have the same velocity?

	13.	�� �If a ball is thrown into the air with a velocity of 40 ftys, its 
height (in feet) after t seconds is given by y − 40t 2 16t 2. 
Find the velocity when t − 2.

;

	 1.	� A curve has equation y − f sxd.
	 (a)	� Write an expression for the slope of the secant line 

through the points Ps3, f s3dd and Qsx, f sxdd.
	 (b)	� Write an expression for the slope of the tangent line at P.

	 2.	� �Graph the curve y − e x in the viewing rectangles f21, 1g 
by f0, 2g, f20.5, 0.5g by f0.5, 1.5g, and f20.1, 0.1g by 
f0.9, 1.1g. What do you notice about the curve as you  
zoom in toward the point s0, 1d?

	 3.	� (a)	� Find the slope of the tangent line to the parabola 
y − 4x 2 x 2 at the point s1, 3d

	 (i)	 using Definition 1	 (ii)	 using Equation 2

	 (b)	 Find an equation of the tangent line in part (a).
	 (c)	� Graph the parabola and the tangent line. As a check on 

your work, zoom in toward the point s1, 3d until the 
parabola and the tangent line are indistinguishable.

	 4.	� �(a)	� Find the slope of the tangent line to the curve 
y − x 2 x 3 at the point s1, 0d

	 (i)	 using Definition 1	 (ii)	 using Equation 2
	 (b)	 Find an equation of the tangent line in part (a).
	 (c)	� Graph the curve and the tangent line in successively 

smaller viewing rectangles centered at s1, 0d until the 
curve and the line appear to coincide.

5–8 � Find an equation of the tangent line to the curve at the  
given point.

	 5.	� �y − 4x 2 3x 2,    s2, 24d	 6.	 y − x 3 2 3x 1 1,    s2, 3d

	 7.	� y − sx ,    s1, 1d	 8.	 y −
2x 1 1

x 1 2
,    s1, 1d

	 9.	� (a)	� Find the slope of the tangent to the curve 
y − 3 1 4x 2 2 2x 3 at the point where x − a.

	 (b)	� Find equations of the tangent lines at the points s1, 5d  
and s2, 3d.

	 (c)	� Graph the curve and both tangents on a common 
screen.

	10.	� (a)	� Find the slope of the tangent to the curve y − 1ysx  at 
the point where x − a.

;

;

;

;

A biologist is interested in the rate of change of the population of a colony of bacteria 
with respect to time. In fact, the computation of rates of change is important in all of the 
natural sciences, in engineering, and even in the social sciences. Further examples will 
be given in Section 3.7.

All these rates of change are derivatives and can therefore be interpreted as slopes of 
tangents. This gives added significance to the solution of the tangent problem. Whenever 
we solve a problem involving tangent lines, we are not just solving a problem in geom-
etry. We are also implicitly solving a great variety of problems involving rates of change 
in science and engineering.
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	19.	�� For the function f  graphed in Exercise 18:
	 (a)	 Estimate the value of f 9s50d.
	 (b)	 Is f 9s10d . f 9s30d?

	 (c)	 Is f 9s60d .
f s80d 2 f s40d

80 2 40
? Explain.

	20.	�� �Find an equation of the tangent line to the graph of y − tsxd 
at x − 5 if ts5d − 23 and t9s5d − 4.

	21.	�� �If an equation of the tangent line to the curve y − f sxd at the 
point where a − 2 is y − 4x 2 5, find f s2d and f 9s2d.

	22.	�� If the tangent line to y − f sxd at (4, 3) passes through the 
point (0, 2), find f s4d and f 9s4d.

	23.	�� Sketch the graph of a function f  for which f s0d − 0, 
f 9s0d − 3, f 9s1d − 0, and f 9s2d − 21.

	24.	�� Sketch the graph of a function t for which 
ts0d − ts2d − ts4d − 0, t9s1d − t9s3d − 0,

	� t9s0d − t9s4d − 1, t9s2d − 21, limx l ` tsxd − `, and
	 limx l 2` tsxd − 2`.

	25.	�� �Sketch the graph of a function t that is continuous on its 
domain s25, 5d and where ts0d − 1, t9s0d − 1, t9s22d − 0, 
limx l 251 tsxd − `, and limx l52 tsxd − 3.

	26.	�� Sketch the graph of a function f  where the domain is s22, 2d, 
f 9s0d − 22, lim x l22 f sxd − `, f  is continuous at all 
numbers in its domain except 61, and f  is odd.�

	27.	�� �If f sxd − 3x 2 2 x 3, find f 9s1d and use it to find an equation of 
the tangent line to the curve y − 3x 2 2 x 3 at the point s1, 2d.

	28.	�� �If tsxd − x 4 2 2, find t9s1d and use it to find an equation of 
the tangent line to the curve y − x 4 2 2 at the point s1, 21d.

	29.	� (a)	� If Fsxd − 5xys1 1 x 2d, find F9s2d and use it to find an 
equation of the tangent line to the curve y − 5xys1 1 x 2d 
at the point s2, 2d.

		�  �(b)	� Illustrate part (a) by graphing the curve and the tangent 
line on the same screen.

	30.	� (a)	� If Gsxd − 4x 2 2 x 3, find G9sad and use it to find equa-
tions of the tangent lines to the curve y − 4x 2 2 x 3 at  
the points s2, 8d and s3, 9d.

		�  �(b)	� Illustrate part (a) by graphing the curve and the tangent 
lines on the same screen.

31–36 � Find f 9sad.

	31.	 f sxd − 3x 2 2 4x 1 1	 32.	 f std − 2t 3 1 t

	33.	 f std −
2t 1 1

t 1 3
	 34.	 f sxd − x 22

	35.	 f sxd − s1 2 2x 	 36.	 f sxd −
4

s1 2 x 

37–42 � Each limit represents the derivative of some function f  at 
some number a. State such an f  and a in each case.

	37.	 lim
h l

 

0
 
s9 1 h 2 3

h
	 38.	 lim

h l
 

0
 
e221h 2 e22

h

;

;

	14.	�� �If a rock is thrown upward on the planet Mars with a 
velocity of 10 mys, its height (in meters) after t seconds is 
given by H − 10t 2 1.86t 2.

	 (a)	 Find the velocity of the rock after one second.
	 (b)	 Find the velocity of the rock when t − a.
	 (c)	 When will the rock hit the surface?
	 (d)	 With what velocity will the rock hit the surface?

	15.	�� �The displacement (in meters) of a particle moving in a 
straight line is given by the equation of motion s − 1yt 2,  
where t is measured in seconds. Find the velocity of the  
particle at times t − a, t − 1, t − 2, and t − 3.

	16.	�� �The displacement (in feet) of a particle moving in a straight 
line is given by s − 1

2 t 2 2 6t 1 23, where t is measured in 
seconds.

	 (a)	� Find the average velocity over each time interval:
	 (i)	 f4, 8g	 (ii)	 f6, 8g
	 (iii)	 f8, 10g	 (iv)	 f8, 12g
	 (b)	 Find the instantaneous velocity when t − 8.
	 (c)	� Draw the graph of s as a function of t and draw the 

secant lines whose slopes are the average velocities in 
part (a). Then draw the tangent line whose slope is the 
instantaneous velocity in part (b).

	17.	�� For the function t whose graph is given, arrange the 
following numbers in increasing order and explain your 
reasoning:

0 t9s22d t9s0d t9s2d t9s4d

y=©

1 3 4_1 0 x2

y

	18.	�� �The graph of a function f  is shown.
	 (a)	� Find the average rate of change of f  on the interval  

f20, 60g.
	 (b)	� Identify an interval on which the average rate of change 

of f  is 0.
	 (c)	� Which interval gives a larger average rate of change, 

f40, 60g or f40, 70g?

	 (d)	� Compute 
f s40d 2 f s10d

40 2 10
; what does this value repre-

		  sent geometrically?

x

y

20 40 60

400

800

0
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	48.	�� The number N of locations of a popular coffeehouse chain 
is given in the table. (The numbers of locations as of 
October 1 are given.)

Year 2004 2006 2008 2010 2012

N 8569 12,440 16,680 16,858 18,066

	 (a)	� Find the average rate of growth
	 (i)	 from 2006 to 2008	
	 (ii)	 from 2008 to 2010

	 In each case, include the units. What can you conclude?
	 (b)	� Estimate the instantaneous rate of growth in 2010 by  

taking the average of two average rates of change.  
What are its units?

	 (c)	� Estimate the instantaneous rate of growth in 2010 by 
measuring the slope of a tangent.

	49.	�� The table shows world average daily oil consumption from 
1985 to 2010 measured in thousands of barrels per day.

	 (a)	� Compute and interpret the average rate of change from 
1990 to 2005. What are the units?

	 (b)	� Estimate the instantaneous rate of change in 2000 by 
taking the average of two average rates of change.  
What are its units?

Years  
since 1985

Thousands of barrels  
of oil per day

0 60,083
5 66,533

10 70,099
15 76,784
20 84,077
25 87,302

Source: �US Energy Information Administration

	50.	� �The table shows values of the viral load Vstd in HIV patient 
303, measured in RNA copiesymL, t days after ABT-538 
treatment was begun.

t 4 8 11 15 22

Vstd 53 18 9.4 5.2 3.6

	 (a)	� Find the average rate of change of V with respect to t 
over each time interval:

	 (i)	 f4, 11g	 (ii)	 f8, 11g
	 (iii)	 f11, 15g	 (iv)	 f11, 22g
		  What are the units?
	 (b)	 Estimate and interpret the value of the derivative V9s11d.

�Source: Adapted from D. Ho et al., “Rapid Turnover of Plasma Virions and 
CD4 Lymphocytes in Hiv-1 Infection,” Nature 373 (1995): 123–26.

	39.	 lim
x l

 

2
 
x6 2 64

x 2 2
	 40.	 lim

x l
 

1y4
 

1

x
2 4

x 2 1
4

	41.	 lim
h l

 

0
 
coss� 1 hd 1 1

h
	 42.	 lim

� l �y6
 
sin � 2

1
2

� 2 �y6

43–44 � A particle moves along a straight line with equation of 
motion s − f std, where s is measured in meters and t in seconds. 
Find the velocity and the speed when t − 4.

	43.	 f std − 80t 2 6t 2	 44.	 f std − 10 1
45

t 1 1

	45.	�� A warm can of soda is placed in a cold refrigerator. Sketch 
the graph of the temperature of the soda as a function of time. 
Is the initial rate of change of temperature greater or less than 
the rate of change after an hour?

	46.	�� A roast turkey is taken from an oven when its temperature 
has reached 185°F and is placed on a table in a room where 
the temperature is 75°F. The graph shows how the tempera-
ture of the turkey decreases and eventually approaches room 
temperature. By measuring the slope of the tangent, estimate 
the rate of change of the temperature after an hour.

P

T (°F)

0 30 60 90 120 150

100

200

t  (min)

	47.	�� Researchers measured the average blood alcohol concen- 
tration Cstd of eight men starting one hour after consumption 
of 30 mL of ethanol (corresponding to two alcoholic drinks).

t (hours) 1.0 1.5 2.0 2.5 3.0

Cstd smgymLd 0.33 0.24 0.18 0.12 0.07

	 (a)	� Find the average rate of change of C with respect to t 
over each time interval:

	 (i)	 f1.0, 2.0g	 (ii)	 f1.5, 2.0g 
	 (iii)	 f2.0, 2.5g	 (iv)	 f2.0, 3.0g
		  In each case, include the units.
	 (b)	� Estimate the instantaneous rate of change at  t − 2 and 

interpret your result. What are the units?

	� Source: Adapted from P. Wilkinson et al., “Pharmacokinetics of Ethanol after 
Oral Administration in the Fasting State,” Journal of Pharmacokinetics and 
Biopharmaceutics 5 (1977): 207–24.
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	51.	�� The cost (in dollars) of producing x units of a certain com-
modity is Csxd − 5000 1 10x 1 0.05x 2.

	 (a)	� Find the average rate of change of C with respect to x 
when the production level is changed

	 (i)	 from x − 100 to x − 105
	 (ii)	 from x − 100 to x − 101
	 (b)	� Find the instantaneous rate of change of C with respect 

to x when x − 100. (This is called the marginal cost. Its 
significance will be explained in Section 3.7.)

	52.	�� If a cylindrical tank holds 100,000 gallons of water, which 
can be drained from the bottom of the tank in an hour, then 
Torricelli’s Law gives the volume V of water remaining in the 
tank after t minutes as

Vstd − 100,000(1 2 1
60 t)2        0 < t < 60

�Find the rate at which the water is flowing out of the tank 
(the instantaneous rate of change of V with respect to t) as 
a function of t. What are its units? For times t −  0, 10, 20, 
30, 40, 50, and 60 min, find the flow rate and the amount of 
water remaining in the tank. Summarize your findings in a 
sentence or two. At what time is the flow rate the greatest? 
The least?

	53.	�� The cost of producing x ounces of gold from a new gold mine 
is C − f sxd dollars.

	 (a)	� What is the meaning of the derivative f 9sxd? What are its 
units?

	 (b)	 What does the statement f 9s800d − 17 mean?
	 (c)	� Do you think the values of f 9sxd will increase or decrease 

in the short term? What about the long term? Explain.

	54.	�� The number of bacteria after t hours in a controlled laboratory 
experiment is n − f std.

	 (a)	� What is the meaning of the derivative f 9s5d? What are its 
units?

	 (b)	� Suppose there is an unlimited amount of space and 
nutrients for the bacteria. Which do you think is larger, 
f 9s5d or f 9s10d? If the supply of nutrients is limited, 
would that affect your conclusion? Explain.

	55.	�� Let H std be the daily cost (in dollars) to heat an office build-
ing when the outside temperature is t degrees Fahrenheit.

	 (a)	 What is the meaning of H9s58d? What are its units?
	 (b)	� Would you expect H9s58d to be positive or negative? 

Explain.

	56.	�� The quantity (in pounds) of a gourmet ground coffee that is 
sold by a coffee company at a price of p dollars per pound  
is Q − f s pd.

	 (a)	� What is the meaning of the derivative f 9s8d? What are its 
units?

	 (b)	 Is f 9s8d positive or negative? Explain.

	57.	�� The quantity of oxygen that can dissolve in water depends on 
the temperature of the water. (So thermal pollution influences 

the oxygen content of water.) The graph shows how oxygen 
solubility S varies as a function of the water temperature T.

	 (a)	� What is the meaning of the derivative S9sT d? What are 
its units?

	 (b)	� Estimate the value of S9s16d and interpret it.

(mg/L)

4

8

12

16

S

0 T (°C)8 16 24 32 40

Source: C. Kupchella et al., Environmental Science: Living �Within the 
System of Nature, 2d ed. (Boston: Allyn and Bacon, 1989). 

	58.	�� The graph shows the influence of the temperature T on the 
maximum sustainable swimming speed S of Coho salmon.

	 (a)	� What is the meaning of the derivative S9sT d? What are 
its units?

	 (b)	� Estimate the values of S9s15d and S9s25d and interpret 
them.

200 10

S (cm/s)

20

T (°C)

59–60 � Determine whether f 9s0d exists.

	59.	 f sxd − Hx sin 
1

x
    if  x ± 0

0 if  x − 0

	60.	 f sxd − Hx 2 sin 
1

x
    if  x ± 0

0 if  x − 0

	61.	� �(a)	� Graph the function f sxd − sin x 2 1
1000 sins1000xd in the 

viewing rectangle  f22�, 2�g by f24, 4g. What slope 
does the graph appear to have at the origin?

	 (b)	� Zoom in to the viewing window f20.4, 0.4g by 
f20.25, 0.25g and estimate the value of f 9s0d. Does this 
agree with your answer from part (a)?

	 (c)	� Now zoom in to the viewing window f20.008, 0.008g 
by f20.005, 0.005g. Do you wish to revise your estimate 
for f 9s0d?

;
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152	 Chapter 2    Limits and Derivatives

writing Project	 early methods for finding tangents

The first person to formulate explicitly the ideas of limits and derivatives was Sir Isaac 
Newton in the 1660s. But Newton acknowledged that “If I have seen further than other men, 
it is because I have stood on the shoulders of giants.” Two of those giants were Pierre Fermat 
(1601–1665) and Newton’s mentor at Cambridge, Isaac Barrow (1630–1677). Newton was 
familiar with the methods that these men used to find tangent lines, and their methods played a 
role in Newton’s eventual formulation of calculus.

The following references contain explanations of these methods. Read one or more of the 
references and write a report comparing the methods of either Fermat or Barrow to modern 
methods. In particular, use the method of Section 2.7 to find an equation of the tangent line to 
the curve y − x 3 1 2x at the point (1, 3) and show how either Fermat or Barrow would have 
solved the same problem. Although you used derivatives and they did not, point out similari-
ties between the methods.

1.	� Carl Boyer and Uta Merzbach, A History of Mathematics (New York: Wiley, 1989),  
pp. 389, 432.

2.	� C. H. Edwards, The Historical Development of the Calculus (New York: Springer-Verlag, 
1979), pp. 124, 132.

3.	� Howard Eves, An Introduction to the History of Mathematics, 6th ed. (New York: Saunders, 
1990), pp. 391, 395.

4.	� Morris Kline, Mathematical Thought from Ancient to Modern Times (New York: Oxford 
University Press, 1972), pp. 344, 346.

In the preceding section we considered the derivative of a function f  at a fixed number a:

f 9sad − lim
h l 0

 
 f sa 1 hd 2 f sad

h

Here we change our point of view and let the number a vary. If we replace a in Equa-
tion 1 by a variable x, we obtain

f 9sxd − lim
h l 0

 
f sx 1 hd 2 f sxd

h

Given any number x for which this limit exists, we assign to x the number f 9sxd. So we 
can regard f 9 as a new function, called the derivative of f  and defined by Equation 2. 
We know that the value of f 9 at x, f 9sxd, can be interpreted geometrically as the slope of 
the tangent line to the graph of f  at the point sx, f sxdd.

1

2
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The function f 9 is called the derivative of f  because it has been “derived” from f  by 
the limiting operation in Equation 2. The domain of f 9 is the set hx | f 9sxd existsj and 
may be smaller than the domain of f.

Example �1�  The graph of a function f  is given in Figure 1. Use it to sketch the graph 
of the derivative f 9.

SOLUTION � We can estimate the value of the derivative at any value of x by drawing the 
tangent at the point sx, f sxdd and estimating its slope. For instance, for x − 5 we draw  
the tangent at P in Figure 2(a) and estimate its slope to be about 32, so f 9s5d < 1.5. This 
allows us to plot the point P9s5, 1.5d on the graph of f 9 directly beneath P. (The slope 
of the graph of f  becomes the y-value on the graph of f 9.) Repeating this procedure at 
several points, we get the graph shown in Figure 2(b). Notice that the tangents at A, B,  
and C are horizontal, so the derivative is 0 there and the graph of f 9 crosses the x-axis 
(where y − 0) at the points A9, B9, and C9, directly beneath A, B, and C. Between A and 
B the tangents have positive slope, so f 9sxd is positive there. (The graph is above the  
x-axis.) But between B and C the tangents have negative slope, so f 9sxd is negative 
there.

m=0

m=0

Pª (5, 1.5)

y

B

A mÅ

C

P

(a)

x

1

10

y=ƒ

y

Aª Bª Cª

(b)

x

1

10 5

y=fª(x)

3
2

m=0

5

	 n

x

y

10

1

y=ƒ

FIGURE 1 �

TEC � Visual 2.8 shows an animation 
of Figure 2 for several functions.

FIGURE 2
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154	 Chapter 2    Limits and Derivatives

Example �2� 
(a)  If f sxd − x 3 2 x, find a formula for f 9sxd.
(b)  Illustrate this formula by comparing the graphs of f  and f 9.

SOLUTION�
(a)  When using Equation 2 to compute a derivative, we must remember that the variable 
is h and that x is temporarily regarded as a constant during the calculation of the limit.

	   f 9sxd − lim
h l 0

  
 f sx 1 hd 2 f sxd

h
− lim

h l 0
 
 fsx 1 hd3 2 sx 1 hdg 2 fx 3 2 xg

h

	  − lim
h l 0

 
x 3 1 3x 2h 1 3xh 2 1 h 3 2 x 2 h 2 x 3 1 x

h

	  − lim
h l 0

 
3x 2h 1 3xh 2 1 h 3 2 h

h

	 − lim
h l 0

 s3x 2 1 3xh 1 h 2 2 1d − 3x 2 2 1

(b)  We use a graphing device to graph f  and f 9 in Figure 3. Notice that f 9sxd − 0 
when f  has horizontal tangents and f 9sxd is positive when the tangents have positive 
slope. So these graphs serve as a check on our work in part (a).	 n

Example �3�  If f sxd − sx , find the derivative of f. State the domain of f 9.

SOLUTION �

f 9sxd − lim
h l

 

0
 
 f sx 1 hd 2 f sxd

h

− lim
h l

 

0
 
sx 1 h 2 sx 

h

− lim
h l

 

0
 Ssx 1 h 2 sx 

h
?

sx 1 h 1 sx 

sx 1 h 1 sx D    (Rationalize the numerator.)

− lim
h l

 

0
 

sx 1 hd 2 x

h(sx 1 h 1 sx )
− lim

h l
 

0
 

h

h(sx 1 h 1 sx )

− lim
h l

 

0
 

1

sx 1 h 1 sx 
−

1

sx 1 sx 
−

1

2sx 

We see that f 9sxd exists if x . 0, so the domain of f 9 is s0, `d. This is slightly smaller 
than the domain of f , which is f0, `d.	 n

Let’s check to see that the result of Example 3 is reasonable by looking at the graphs 
of f  and f 9 in Figure 4. When x is close to 0, sx  is also close to 0, so f 9sxd − 1y(2sx ) 
is very large and this corresponds to the steep tangent lines near s0, 0d in Figure 4(a) and 
the large values of f 9sxd just to the right of 0 in Figure 4(b). When x is large, f 9sxd is very 
small and this corresponds to the flatter tangent lines at the far right of the graph of f  and 
the horizontal asymptote of the graph of f 9.

FIGURE 3 �

2

_2

_2 2

2

_2

_2 2

f

f ª

FIGURE 4

(a) ƒ=œ„x

1

2œ„x
(b) f ª (x)=

x

1

y

10

x

1

y

10
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Example �4�  Find f 9 if f sxd −
1 2 x

2 1 x
.

SOLUTION�

 f 9sxd − lim
h l 0

 
 f sx 1 hd 2 f sxd

h

 −  lim 
h l 0

  

1 2 sx 1 hd
2 1 sx 1 hd

2
1 2 x

2 1 x

h

 −  lim 
h l 0

 
s1 2 x 2 hds2 1 xd 2 s1 2 xds2 1 x 1 hd

hs2 1 x 1 hds2 1 xd

 −   lim 
h l 0

 
s2 2 x 2 2h 2 x 2 2 xhd 2 s2 2 x 1 h 2 x 2 2 xhd

hs2 1 x 1 hds2 1 xd

 −  lim 
h l 0

 
23h

hs2 1 x 1 hds2 1 xd
 −  lim 

h l 0
 

23

s2 1 x 1 hds2 1 xd
− 2

3

s2 1 xd2
	 n

Other Notations
If we use the traditional notation y − f sxd to indicate that the independent variable is x 
and the dependent variable is y, then some common alternative notations for the deriva-
tive are as follows:

f 9sxd − y9 −
dy

dx
−

df

dx
−

d

dx
 f sxd − Df sxd − Dx f sxd

The symbols D and dydx are called differentiation operators because they indicate the 
operation of differentiation, which is the process of calculating a derivative.

The symbol dyydx, which was introduced by Leibniz, should not be regarded as a 
ratio (for the time being); it is simply a synonym for f 9sxd. Nonetheless, it is a very useful 
and suggestive notation, especially when used in conjunction with increment notation. 
Referring to Equation 2.7.6, we can rewrite the definition of derivative in Leibniz nota-
tion in the form

dy

dx
− lim

Dx l 0
 
Dy

Dx

If we want to indicate the value of a derivative dyydx in Leibniz notation at a specific 
number a, we use the notation

dy

dx Z
x−a

        or      
dy

dxGx−a

which is a synonym for f 9sad. The vertical bar means “evaluate at.”

3 �  Definition  �A function f  is differentiable at a if f 9sad exists. It is differen-
tiable on an open interval sa, bd [or sa, `d or s2`, ad or s2`, `d] if it is differen-
tiable at every number in the interval.

a

b
2

c

d

e
−

ad 2 bc

bd
?

1

e

Leibniz
Gottfried Wilhelm Leibniz was born in 
Leipzig in 1646 and studied law, theol-
ogy, philosophy, and mathematics at 
the university there, graduating with 
a bachelor’s degree at age 17. After 
earning his doctorate in law at age 20, 
Leibniz entered the diplomatic service 
and spent most of his life traveling to 
the capitals of Europe on political mis-
sions. In particular, he worked to avert a 
French military threat against Germany 
and attempted to reconcile the Catholic 
and Protestant churches.

His serious study of mathematics did 
not begin until 1672 while he was on 
a diplomatic mission in Paris. There he 
built a calculating machine and met 
scientists, like Huygens, who directed his 
attention to the latest developments in 
mathematics and science. Leibniz sought 
to develop a symbolic logic and system 
of notation that would simplify logical 
reasoning. In particular, the version 
of calculus that he published in 1684 
established the notation and the rules for 
finding derivatives that we use today.

Unfortunately, a dreadful priority 
dispute arose in the 1690s between the 
followers of Newton and those of Leibniz 
as to who had invented calculus first. 
Leibniz was even accused of plagiarism 
by members of the Royal Society in  
England. The truth is that each man 
invented calculus independently. Newton 
arrived at his version of calculus first but, 
because of his fear of controversy, did not 
publish it immediately. So Leibniz’s 1684 
account of calculus was the first to be 
published.
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156	 Chapter 2    Limits and Derivatives

Example �5�  Where is the function f sxd − | x | differentiable?

SOLUTION � If x . 0, then | x | − x and we can choose h small enough that x 1 h . 0 
and hence | x 1 h | − x 1 h. Therefore, for x . 0, we have

  f 9sxd − lim
h l 0

 | x 1 h | 2 | x |
h

− lim
h l 0

 
sx 1 hd 2 x

h

 − lim
h l 0

 
h

h
− lim

h l 0
 1 − 1

and so f  is differentiable for any x . 0.
Similarly, for x , 0 we have | x | − 2x and h can be chosen small enough that

x 1 h , 0 and so | x 1 h | − 2sx 1 hd. Therefore, for x , 0,

  f 9sxd − lim
h l 0

 | x 1 h | 2 | x |
h

− lim
h l 0

 
2sx 1 hd 2 s2xd

h

 −  lim
h l 0

 
2h

h
− lim

h l 0
 s21d − 21

and so f  is differentiable for any x , 0.
For x − 0 we have to investigate

  f 9s0d − lim
h l 0

 
 f s0 1 hd 2 f s0d

h

 − lim
h l 0

 | 0 1 h | 2 | 0 |
h

− lim
hl0

 | h |
h

    (if it exists)

Let’s compute the left and right limits separately:

lim
h l

 

01
 | h |

h
− lim

h l
 

01
 
h

h
− lim

h l
 

01
 1 − 1

and	 lim
h l

 

02
 | h |

h
− lim

h l
 

02
 
2h

h
− lim

h l
 

02
 s21d − 21

Since these limits are different, f 9s0d does not exist. Thus f  is differentiable at all x 
except 0.

A formula for f 9 is given by

f 9sxd − H1

21

if  x . 0

if  x , 0

and its graph is shown in Figure 5(b). The fact that f 9s0d does not exist is reflected 
geometrically in the fact that the curve y − | x | does not have a tangent line at s0, 0d. 
[See Figure 5(a).]	 n

Both continuity and differentiability are desirable properties for a function to have. 
The following theorem shows how these properties are related.

4 �  Theorem � If f  is differentiable at a, then f  is continuous at a.

FIGURE 5 �

x

1

y

_1
0

x

y

0

(a) y=ƒ=| x |

(b) y=fª(x) 
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Proof  To prove that f  is continuous at a, we have to show that lim x l a f sxd − f sad. 
We do this by showing that the difference f sxd 2 f sad approaches 0.

The given information is that f  is differentiable at a, that is,

f 9sad − lim
x l a

 
f sxd 2 f sad

x 2 a

exists (see Equation 2.7.5). To connect the given and the unknown, we divide and  
multiply f sxd 2 f sad by x 2 a (which we can do when x ± a):

f sxd 2 f sad −
 f sxd 2 f sad

x 2 a
 sx 2 ad

Thus, using the Product Law and (2.7.5), we can write

 lim
x l a

 f f sxd 2 f sadg − lim
x l a

 
 f sxd 2 f sad

x 2 a
 sx 2 ad

 − lim
x l a

 
 f sxd 2 f sad

x 2 a
? lim

x l a
 sx 2 ad

 − f 9sad ? 0 − 0

To use what we have just proved, we start with f sxd and add and subtract f sad:

 lim
x l a

 f sxd − lim
x l a

 f f sad 1 s f sxd 2 f saddg

 − lim
x l a

 f sad 1 lim
x l a

 f f sxd 2 f sadg

 − f sad 1 0 − f sad

Therefore f  is continuous at a.	 n

NOTE � The converse of Theorem 4 is false; that is, there are functions that are con-
tinuous but not differentiable. For instance, the function f sxd − | x | is continuous at 0 
because

lim
x l 0

 f sxd − lim
x l 0

 | x | − 0 − f s0d

(See Example 2.3.7.) But in Example 5 we showed that f  is not differentiable at 0.

How Can a Function Fail To Be Differentiable?
We saw that the function y − | x | in Example 5 is not differentiable at 0 and Figure 5(a) 
shows that its graph changes direction abruptly when x − 0. In general, if the graph of a 
function f  has a “corner” or “kink” in it, then the graph of f  has no tangent at this point  
and f  is not differentiable there. [In trying to compute f 9sad, we find that the left and 
right limits are different.]

Theorem 4 gives another way for a function not to have a derivative. It says that if f  is 
not continuous at a, then f  is not differentiable at a. So at any discontinuity (for instance, 
a jump discontinuity) f  fails to be differentiable.

PS   An important aspect of problem 
solving is trying to find a connection 
between the given and the unknown. 
See Step 2 (Think of a Plan) in Principles 
of Problem Solving on page 71.
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158	 Chapter 2    Limits and Derivatives

A third possibility is that the curve has a vertical tangent line when x − a; that is, f  
is continuous at a and

lim
x l a | f 9sxd | − `

This means that the tangent lines become steeper and steeper as x l a. Figure 6 shows 
one way that this can happen; Figure 7(c) shows another. Figure 7 illustrates the three 
possibilities that we have discussed.

(a) A corner (c) A vertical tangent(b) A discontinuity

x

y

a0 x

y

a0x

y

a0

A graphing calculator or computer provides another way of looking at differen- 
tiability. If f  is differentiable at a, then when we zoom in toward the point sa, f sadd the graph 
straightens out and appears more and more like a line. (See Figure 8. We saw a specific  
example of this in Figure 2.7.2.) But no matter how much we zoom in toward a point like 
the ones in Figures 6 and 7(a), we can’t eliminate the sharp point or corner (see Figure 9). 

x

y

a0x

y

a0

  FIGURE 8 � 	 FIGURE 9 
  f  is differentiable at a.	 f  is not differentiable at a.

Higher Derivatives
If f  is a differentiable function, then its derivative f 9 is also a function, so f 9 may have 
a derivative of its own, denoted by s f 9d9 − f 0. This new function f 0 is called the second  
derivative of f  because it is the derivative of the derivative of f. Using Leibniz notation, 
we write the second derivative of y − f sxd as

  
d

dx
     S dy

dxD    −    
d 2y

dx 2

derivative 
of

�rst
derivative

second 
derivative

FIGURE 6� 

vertical tangent
line

x

y

a0

FIGURE 7 � 
Three ways for f  not to be 

differentiable at a
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Example �6�  If f sxd − x 3 2 x, find and interpret f 0sxd.

SOLUTION � In Example 2 we found that the first derivative is f 9sxd − 3x 2 2 1. So the 
second derivative is

  f 99sxd − s f 9d9sxd − lim
h l

 

0
 
 f 9sx 1 hd 2 f 9sxd

h

 − lim
h l

 

0
 
 f3sx 1 hd2 2 1g 2 f3x 2 2 1g

h

 − lim
h l

 

0
 
 3x 2 1 6xh 1 3h2 2 1 2 3x 2 1 1

h

 − lim
h l

 

0
 s6x 1 3hd − 6x

The graphs of f , f 9, and f 0 are shown in Figure 10.
We can interpret f 0sxd as the slope of the curve y − f 9sxd at the point sx, f 9sxdd. In 

other words, it is the rate of change of the slope of the original curve y − f sxd.
Notice from Figure 10 that f 0sxd is negative when y − f 9sxd has negative slope  

and positive when y − f 9sxd has positive slope. So the graphs serve as a check on our  
calculations.	 n

In general, we can interpret a second derivative as a rate of change of a rate of change. 
The most familiar example of this is acceleration, which we define as follows.

If s − sstd is the position function of an object that moves in a straight line, we know 
that its first derivative represents the velocity vstd of the object as a function of time:

vstd − s9std −
ds

dt

The instantaneous rate of change of velocity with respect to time is called the accelera-
tion astd of the object. Thus the acceleration function is the derivative of the velocity 
function and is therefore the second derivative of the position function:

astd − v9std − s0std

or, in Leibniz notation,

a −
dv

dt
−

d 2s

dt 2

Acceleration is the change in velocity you feel when speeding up or slowing down in 
a car.

The third derivative f - is the derivative of the second derivative: f -− s f 0 d9. So 
f -sxd can be interpreted as the slope of the curve y − f 0sxd or as the rate of change of 
f 0sxd. If y − f sxd, then alternative notations for the third derivative are

y- − f -sxd −
d

dx
 S d 2 y

dx 2D −
d 3y

dx 3

f · fª f

1.5

_2

2

_1.5

FIGURE 10 �

TEC � In Module 2.8 you can see how 
changing the coefficients of a polyno-
mial f  affects the appearance of the 
graphs of f , f 9, and f 99.
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	 2.	� (a)	 f 9s0d	 (b)	 f 9s1d	 (c)	 f 9s2d	 (d)	 f 9s3d
�(e)	 f 9s4d	 (f )	 f 9s5d	 (g)	 f 9s6d	 (h)	 f 9s7d 

y

0 x

1

1

1–2 � Use the given graph to estimate the value of each derivative. 
Then sketch the graph of f 9.

	 1.	� (a)	 f 9s23d	 (b)	 f 9s22d	 (c)	 f 9s21d	 (d)	 f 9s0d
	 (e)	 f 9s1d	 (f )	 f 9s2d	 (g)	 f 9s3d 

y

x

1

1

We can also interpret the third derivative physically in the case where the function 
is the position function s − sstd of an object that moves along a straight line. Because 
s-− ss0 d9 − a9, the third derivative of the position function is the derivative of the accel-
eration function and is called the jerk:

j −
da

dt
−

d 3s

dt 3

Thus the jerk j is the rate of change of acceleration. It is aptly named because a large jerk 
means a sudden change in acceleration, which causes an abrupt movement in a vehicle.

The differentiation process can be continued. The fourth derivative f + is usually 
denoted by f s4d. In general, the nth derivative of f  is denoted by f snd and is obtained from 
f  by differentiating n times. If y − f sxd, we write

y snd − f sndsxd −
dn y

dxn

Example �7�  If f sxd − x3 2 x, find f -sxd and f s4dsxd.

SOLUTION � In Example 6 we found that f 0sxd − 6x. The graph of the second derivative 
has equation y − 6x and so it is a straight line with slope 6. Since the derivative f -sxd 
is the slope of f 0sxd, we have

f -sxd − 6

for all values of x. So f - is a constant function and its graph is a horizontal line. There-
fore, for all values of x,

	 f s4dsxd − 0	 n

We have seen that one application of second and third derivatives occurs in analyzing 
the motion of objects using acceleration and jerk. We will investigate another applica-
tion of second derivatives in Section 4.3, where we show how knowledge of f 0 gives us 
information about the shape of the graph of f. In Chapter 11 we will see how second and 
higher derivatives enable us to represent functions as sums of infinite series.
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	 8.	

0 x

y
    9. 

0 x

y

	10.	

x

y

0

    11. 

0 x

y

	12.	� �Shown is the graph of the population function Pstd for yeast 
cells in a laboratory culture. Use the method of Example 1 to 
graph the derivative P9std. What does the graph of P9 tell us 
about the yeast population?

(yeast cells)

t (hours)

P

0 5 10 15

500

	13.	�� A rechargeable battery is plugged into a charger. The graph 
shows Cstd, the percentage of full capacity that the battery 
reaches as a function of time t elapsed (in hours).

	 (a)	� What is the meaning of the derivative C9std?
	 (b)	� Sketch the graph of C9std. What does the graph tell you?

t (hours)20 4 6 8 10 12

20

40

60

80

100

Percentage
of full charge

C

	 3.	�� Match the graph of each function in (a)–(d) with the graph of 
its derivative in I–IV. Give reasons for your choices.

y

0

y

0

y

0

y

0

xx

x x

(b)(a)

(c) (d)

III

III IV

y

0

y

0

y

0

x

x

y

0

x

x

4–11 � Trace or copy the graph of the given function f. (Assume 
that the axes have equal scales.) Then use the method of Example 1 
to sketch the graph of f 9 below it.

	 4.	

0 x

y     5. 

x

y

0

	 6.	

0 x

y     7. 

x

y

0
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	 (b)	� Use symmetry to deduce the values of f 9(21
2 ), f 9s21d, 

f 9s22d, and f 9s23d.
	 (c)	 Use the values from parts (a) and (b) to graph f 9.
	 (d)	 Guess a formula for f 9sxd.
	 (e)	� Use the definition of derivative to prove that your guess 

in part (d) is correct.

21–31 � Find the derivative of the function using the definition of 
derivative. State the domain of the function and the domain of its 
derivative.

	21.	 f sxd − 3x 2 8	 22.	 f sxd − mx 1 b

	23.	 f std − 2.5t 2 1 6t	 24.	 f sxd − 4 1 8x 2 5x 2

	25.	 f sxd − x 2 2 2x 3	 26.	 tstd −
1

st 

	27.	 tsxd − s9 2 x 	 28.	 f sxd −
x 2 2 1

2x 2 3

	29.	 Gstd −
1 2 2t

3 1 t
	 30.	 f sxd − x 3y2

	31.	 f sxd − x 4

	32.	� (a)	� Sketch the graph of f sxd − s6 2 x  by starting with 
the graph of y − sx  and using the transformations of 
Section 1.3.

	 (b)	 Use the graph from part (a) to sketch the graph of f 9.
	 (c)	� Use the definition of a derivative to find f 9sxd. What are 

the domains of f  and f 9?
	 (d)	� Use a graphing device to graph f 9 and compare with 

your sketch in part (b).

	33.	� (a)	 If f sxd − x 4 1 2x, find f 9sxd.
	 (b)	� Check to see that your answer to part (a) is reasonable 

by comparing the graphs of f  and f 9.

	34.	� (a)	 If f sxd − x 1 1yx,  find f 9sxd.
	 (b)	� Check to see that your answer to part (a) is reasonable 

by comparing the graphs of f  and f 9.

	35.	� �The unemployment rate Ustd varies with time. The table 
gives the percentage of unemployed in the US labor force 
from 2003 to 2012.

	 (a)	 What is the meaning of U9std? What are its units?
	 (b)	 Construct a table of estimated values for U9std.

t Ustd t Ustd

2003 6.0 2008 5.8
2004 5.5 2009 9.3
2005 5.1 2010 9.6
2006 4.6 2011 8.9
2007 4.6 2012 8.1

Source: US Bureau of Labor Statistics

;

;

;

	14.	� �The graph (from the US Department of Energy) shows 
how driving speed affects gas mileage. Fuel economy F is 
measured in miles per gallon and speed v is measured in 
miles per hour.

	 (a)	� What is the meaning of the derivative F9svd?
	 (b)	� Sketch the graph of F9svd.
	 (c)	� At what speed should you drive if you want to save 

on gas?

√ (mi/h)0

10

30

20

70604020 503010

F    (mi/gal)

	15.	�� The graph shows how the average age of first marriage 
of Japanese men varied in the last half of the 20th  
century. Sketch the graph of the derivative function  
M9std. During which years was the derivative negative?

1990 2000

25

M

1960 1970 1980

27

t

16–18 � Make a careful sketch of the graph of f  and below 
it sketch the graph of f 9 in the same manner as in Exercises 
4–11. Can you guess a formula for f 9sxd from its graph?

	16.	 f sxd − sin x	 17.	 f sxd − e x	 18.	 f sxd − ln x

	19.	� �Let f sxd − x 2.
	 (a)	� Estimate the values of f 9s0d, f 9( 1

2), f 9s1d, and f 9s2d 
by using a graphing device to zoom in on the graph 
of f.

	 (b)	� Use symmetry to deduce the values of f 9(21
2 ), 

f 9s21d, and f 9s22d.
	 (c)	� Use the results from parts (a) and (b) to guess a 

formula for f 9sxd.
	 (d)	� Use the definition of derivative to prove that your 

guess in part (c) is correct.

	20.	� �Let f sxd − x 3.
	 (a)	� Estimate the values of f 9s0d, f 9( 1

2), f 9s1d, f 9s2d, and 
f 9s3d by using a graphing device to zoom in on the 
graph of f.

;

;
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	40.	� �Suppose N is the number of people in the United States who 
travel by car to another state for a vacation this year when 
the average price of gasoline is p dollars per gallon. Do you 
expect dNydp to be positive or negative? Explain.

41–44 � The graph of f  is given. State, with reasons, the numbers 
at which f  is not differentiable.

	41.	

_2 2 x

y

0

  42.

2 4 x

y

_2

	43.	

2 4 6 x

y

0

  44.

_2 2 4 x

y

0

	45.	� �Graph the function f sxd − x 1 s| x | . Zoom in repeatedly, 
first toward the point (21, 0) and then toward the origin. 
What is different about the behavior of f  in the vicinity of 
these two points? What do you conclude about the differen-
tiability of f ?

	46.	� �Zoom in toward the points (1, 0), (0, 1), and (21, 0) on 
the graph of the function tsxd − sx 2 2 1d2y3. What do you 
notice? Account for what you see in terms of the differentia-
bility of t.

47–48 � The graphs of a function f  and its derivative f 9 are 
shown. Which is bigger, f 9s21d or f 99s1d?

	47.	

1
x

y

0

	48.	

1 x

y

;

;

	36.	� �The table gives the number Nstd, measured in thousands, of 
minimally invasive cosmetic surgery procedures performed 
in the United States for various years t.

t Nstd  (thousands)

2000 5,500
2002 4,897
2004 7,470
2006 9,138
2008 10,897
2010 11,561 
2012 13,035

Source: American Society of Plastic Surgeons

	 (a)	 What is the meaning of N9std? What are its units?
	 (b)	 Construct a table of estimated values for N9std.
	 (c)	 Graph N and N9.
	 (d)	� How would it be possible to get more accurate values 

for N9std?

	37.	� �The table gives the height as time passes of a typical pine 
tree grown for lumber at a managed site.

Tree age (years) 14 21 28 35 42 49

Height (feet) 41 54 64 72 78 83

Source: Arkansas Forestry Commission

If Hstd is the height of the tree after t years, construct a table 
of estimated values for H9 and sketch its graph.

	38.	� �Water temperature affects the growth rate of brook trout. 
The table shows the amount of weight gained by brook trout 
after 24 days in various water temperatures.

Temperature (°C) 15.5 17.7 20.0 22.4 24.4

Weight gained (g) 37.2 31.0 19.8 9.7 29.8

If Wsxd is the weight gain at temperature x, construct a table 
of estimated values for W9 and sketch its graph. What are 
the units for W9sxd?

Source: Adapted from J. Chadwick Jr., “Temperature Effects on Growth 
and Stress Physiology of Brook Trout: Implications for Climate Change 
Impacts on an Iconic Cold-Water Fish.” Masters Theses. Paper 897. 2012. 
scholarworks.umass.edu/theses/897.

	39.	� �Let P represent the percentage of a city’s electrical power 
that is produced by solar panels t years after January 1, 2000.

	 (a)	 What does dPydt represent in this context?
	 (b)	 Interpret the statement 

dP

dt Z
t −2

− 3.5
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53–54 � Use the definition of a derivative to find f 9sxd and f 0sxd. 
Then graph f , f 9, and f 0 on a common screen and check to see if 
your answers are reasonable.

	53.	 f sxd − 3x 2 1 2x 1 1	5 4.	 f sxd − x 3 2 3x

	55.	� �If f sxd − 2x 2 2 x3, find f 9sxd, f 0sxd, f -sxd, and f s4dsxd. 
Graph f , f 9, f 0, and f -on a common screen. Are the  
graphs consistent with the geometric interpretations of these 
derivatives?

	56.	� (a)	� The graph of a position function of a car is shown, where 
s is measured in feet and t in seconds. Use it to graph 
the velocity and acceleration of the car. What is the 
acceleration at t − 10 seconds?

100 t

s

100

20

	 (b)	� Use the acceleration curve from part (a) to estimate the 
jerk at t − 10 seconds. What are the units for jerk?

	57.	� Let f sxd − s3 x .
	 (a)	 If a ± 0, use Equation 2.7.5 to find f 9sad.
	 (b)	 Show that f 9s0d does not exist.
	 (c)	� Show that y − s3 x   has a vertical tangent line at s0, 0d. 

(Recall the shape of the graph of f . See Figure 1.2.13.)

	58.	� (a)	 If tsxd − x 2y3, show that t9s0d does not exist.
	 (b)	 If a ± 0, find t9sad.
	 (c)	 Show that y − x 2y3 has a vertical tangent line at s0, 0d.
	 (d)	 Illustrate part (c) by graphing y − x 2y3.

	59.	�� �Show that the function f sxd − | x 2 6 | is not differentiable  
at 6. Find a formula for f 9 and sketch its graph.

	60.	�� Where is the greatest integer function f sxd − v x b  not 
differentiable? Find a formula for f 9 and sketch its graph.

	61.	� (a)	 Sketch the graph of the function f sxd − x | x |.
	 (b)	 For what values of x is f  differentiable?
	 (c)	 Find a formula for f 9.

	62.	� (a)	 Sketch the graph of the function tsxd − x 1 | x |.
	 (b)	 For what values of x is t differentiable?
	 (c)	 Find a formula for t9.

	63.	�� Recall that a function f  is called even if f s2xd − f sxd  
for all x in its domain and odd if f s2xd − 2f sxd for all  
such x. Prove each of the following.

	 (a)	 The derivative of an even function is an odd function.
	 (b)	 The derivative of an odd function is an even function.

;

;

;

	49.	�� The figure shows the graphs of f , f 9, and f 0. Identify each 
curve, and explain your choices.

x

y a

b

c

	50.	�� The figure shows graphs of f,  f 9, f 0, and f -. Identify each 
curve, and explain your choices.

x

y a b c d

	51.	� �The figure shows the graphs of three functions. One is the 
position function of a car, one is the velocity of the car, and 
one is its acceleration. Identify each curve, and explain your 
choices.

t

y
a

b c

0

	52.	�� The figure shows the graphs of four functions. One is the 
position function of a car, one is the velocity of the car, one 
is its acceleration, and one is its jerk. Identify each curve, 
and explain your choices.

8et0208x52
08/29/13

0 t

y

a
b c

d
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	 1.	�� �Explain what each of the following means and illustrate with 
a sketch.

	 (a)	 lim
x l

 

a
 f sxd − L	 (b)	 lim

x l
 

a1
 f sxd − L	 (c)	 lim

x l
 

a2
 f sxd − L

	 (d)	 lim
x l

 

a
 f sxd − `	 (e)	lim

xl`
 f sxd − L

	 2.	�� Describe several ways in which a limit can fail to exist. Illus-
trate with sketches.

	 3.	� State the following Limit Laws.
	 (a)	 Sum Law
	 (b)	 Difference Law
	 (c)	 Constant Multiple Law
	 (d)	 Product Law
	 (e)	 Quotient Law
	 (f)	 Power Law
	 (g)	 Root Law

	 4.	� What does the Squeeze Theorem say?

	5 .	� (a)	� What does it mean to say that the line x − a is a vertical 
asymptote of the curve y − f sxd? Draw curves to illus-
trate the various possibilities.

	 (b)	� What does it mean to say that the line y − L is a hori-
zontal asymptote of the curve y − f sxd? Draw curves to 
illustrate the various possibilities.

	6 .	�� Which of the following curves have vertical asymptotes? 
Which have horizontal asymptotes?

	 (a)	 y − x 4	 (b)	 y − sin x	 (c)	 y − tan x 

	 (d)	 y − tan21x	 (e)	 y − e x	 (f )	 y − ln x

	 (g)	 y − 1yx	 (h)	 y − sx 

	7 .	� (a)	 What does it mean for f  to be continuous at a?
	 (b)	� What does it mean for f  to be continuous on the 

interval s2`, `d? What can you say about the graph 
of such a function?

	 8.	� (a)	� Give examples of functions that are continuous on 
f21, 1g.

	 (b)	� Give an example of a function that is not continuous 
on f0, 1g.

	 9.	� What does the Intermediate Value Theorem say?

	10.	�� Write an expression for the slope of the tangent line to 
the curve y − f sxd at the point sa, f sadd.

	11.	�� Suppose an object moves along a straight line with posi-
tion f std at time t. Write an expression for the instanta-
neous velocity of the object at time t − a. How can you 
interpret this velocity in terms of the graph of f ?

	12.	�� If y − f sxd and x changes from x1 to x2, write expres-
sions for the following.

	 (a)	� The average rate of change of y with respect to x 
over the interval fx1, x2 g.

	 (b)	� The instantaneous rate of change of y with respect to 
x at x − x1.

	13.	�� Define the derivative f 9sad. Discuss two ways of inter-
preting this number.

	14.	�� Define the second derivative of f. If f std is the position 
function of a particle, how can you interpret the second 
derivative?

2	 Review

CONCEPT CHECK	 Answers to the Concept Check can be found on the back endpapers.

	65.	�� Nick starts jogging and runs faster and faster for 3 mintues, 
then he walks for 5 minutes. He stops at an intersection for 2 
minutes, runs fairly quickly for 5 minutes, then walks for 4 
minutes. 

	 (a)	� Sketch a possible graph of the distance s Nick has cov-
ered after t minutes.

	 (b)	 Sketch a graph of dsydt.

	66.	�� When you turn on a hot-water faucet, the temperature T of 
the water depends on how long the water has been running.

	 (a)	� Sketch a possible graph of T as a function of the time t 
that has elapsed since the faucet was turned on.

	 (b)	� Describe how the rate of change of T with respect to t 
varies as t increases.

	 (c)	 Sketch a graph of the derivative of T.

	67.	�� Let � be the tangent line to the parabola y − x 2 at the point 
s1, 1d. The angle of inclination of � is the angle � that � 
makes with the positive direction of the x-axis. Calculate � 
correct to the nearest degree.

	64.	�� The left-hand and right-hand derivatives of f  at a are 
defined by

f 92sad − lim
h l

 

02
 
 f sa 1 hd 2 f sad

h

and	 f 91sad − lim
h l

 

01
 
 f sa 1 hd 2 f sad

h

if these limits exist. Then f 9sad exists if and only if these 
one-sided derivatives exist and are equal.

	 (a)	� Find f 92s4d and f 91s4d for the function

f sxd −   

0

5 2 x

if  x < 0

if  0 , x , 4

1

5 2 x
if  x > 4

	 (b)	 Sketch the graph of f.
	 (c)	 Where is f  discontinuous?
	 (d)	 Where is f  not differentiable?
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166	 Chapter 2    Limits and Derivatives

Determine whether the statement is true or false. If it is true, 
explain why. If it is false, explain why or give an example that 
disproves the statement.

	 1.	  lim
x l

 

4
 S 2x

x 2 4
2

8

x 2 4D − lim
x l

 

4
 

2x

x 2 4
2 lim

x l
 

4
 

8

x 2 4

	 2.	 lim
x l

 

1
 
x 2 1 6x 2 7

x 2 1 5x 2 6
−

lim
x l

 

1 sx 2 1 6x 2 7d

lim
x l

 

1
 sx 2 1 5x 2 6d

	 3.	 lim
x l 1

 
x 2 3

x 2 1 2x 2 4
−

lim
x l 1 sx 2 3d

lim
x l 1

 sx 2 1 2x 2 4d

	 4.	  
x 2 2 9

x 2 3
− x 1 3

	5 .	 lim
x l 3

 
x 2 2 9

x 2 3
− lim

x l 3
 sx 1 3d

	6 .	�� If limx l 5 f sxd − 2 and  limx l 5 tsxd − 0, then 
limx l 5 f f sxdytsxdg does not exist.

	7 .	�� If lim x l5 f sxd − 0 and  limx l 5 tsxd − 0, then 
limx l 5 f f sxdytsxdg does not exist.

	 8.	�� If neither limx l a f sxd nor limx l a tsxd exists, then 
limx l a f f sxd 1 tsxdg does not exist.

	 9.	�� If limx l a f sxd exists but limx l a tsxd does not exist, then 
limx l a f f sxd 1 tsxdg does not exist.

	10.	� If limx l 6 f f sxd tsxdg exists, then the limit must be f s6d ts6d.

	11.	� If p is a polynomial, then limx l b psxd − psbd.

	12.	�� If limx l 0 f sxd − ` and limx l 0 tsxd − `, then 
limx l 0 f f sxd 2 tsxdg − 0.

	13.	�� A function can have two different horizontal asymptotes.

	14.	�� If f  has domain f0, `d and has no horizontal asymptote, then 
limx l ` f sxd − ` or limx l ` f sxd − 2`.

	15.	�� If the line x − 1 is a vertical asymptote of y − f sxd, then f  is 
not defined at 1.

	16.	�� If f s1d . 0 and f s3d , 0, then there exists a number c 
between 1 and 3 such that f scd − 0.

	17.	�� If f  is continuous at 5 and f s5d − 2 and f s4d − 3, then 
limx l 2 f s4x 2 2 11d − 2.

	18.	�� If f  is continuous on f21, 1g and f s21d − 4 and f s1d − 3, 
then there exists a number r such that | r | , 1 and f srd − �.

	19.	�� Let f  be a function such that lim x l 0 f sxd − 6. Then there 
exists a positive number � such that if 0 , | x | , �, then 

| f sxd 2 6 | , 1.

	20.	�� If f sxd . 1 for all x and lim x l 0 f sxd exists, then 
lim x l 0 f sxd . 1.

	21.	� If f  is continuous at a, then f  is differentiable at a.

	22.	� If f 9srd exists, then limx l r f sxd − f srd.

	23.	��
d 2y

dx 2 − S dy

dxD2

	24.	�� The equation x 10 2 10x 2 1 5 − 0 has a root in the  
interval s0, 2d.

	25.	�� �If f  is continuous at a, so is | f |.
	26.	� If | f | is continuous at a, so is f .

TRUE-FALSE QUIZ

EXERCISES

	 (iv)	 lim
x l

 

4
 f sxd	 (v)	   lim

x l
 

0
 f sxd	 (vi)	 lim

x l
 

22
 f sxd

	 (vii)	 lim
x l

 

`
 f sxd	 (viii)	 lim

x l 2`
 f sxd

	 (b)	 State the equations of the horizontal asymptotes.
	 (c)	 State the equations of the vertical asymptotes.
	 (d)	 At what numbers is f  discontinuous? Explain.

	 2.	� �Sketch the graph of a function f  that satisfies all of the 
following conditions:

	 lim
x l

 

2`
 f sxd − 22,    lim

x l `
 f sxd − 0,    lim

x l
 

23
 f sxd − `,

	 lim
x l

 

32
 f sxd − 2`,    lim

x l
 

31
 f sxd − 2,

	 f  is continuous from the right at 3

	 1.	� The graph of f  is given.

0 x

y

1

1

	 (a)	 Find each limit, or explain why it does not exist.

	 (i)	 lim
x l

 

21
 f sxd	 (ii)	 lim 

x l
 

231
 f sxd	 (iii)	 lim

x l
 

23
 f sxd

	15.	� (a)	� What does it mean for f  to be differentiable at a?
	 (b)	� What is the relation between the differentiability and  

continuity of a function?
	 (c)	� Sketch the graph of a function that is continuous but not 

differentiable at a − 2.

	16.	�� Describe several ways in which a function can fail to be  
differentiable. Illustrate with sketches.
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3–20 � Find the limit.

	 3.	 lim
x l

 

1
 e x3 2x	 4.	� lim

x l
 

3
 

x 2 2 9

x 2 1 2x 2 3

	 5.	 lim
x l

 

23
 

x 2 2 9

x 2 1 2x 2 3
	 6.	� lim

x l
 

11
 

x 2 2 9

x 2 1 2x 2 3

	 7.	 lim
h l

 

0
 
sh 2 1d3 1 1

h
	 8.	� lim

t l
 

2
 
t 2 2 4

t 3 2 8

	 9.	 lim
r l

 

9
 

sr  

sr 2 9d4 	 10.	� lim
v l 41

 
4 2 v

| 4 2 v |
	11.	 lim

u l 1
 

u 4 2 1

u3 1 5u 2 2 6u
	 12.	� lim

x l 3
 
sx 1 6 2 x

x 3 2 3x 2

	13.	 lim
x l `

 
sx 2 2 9 

2x 2 6
	 14.	� lim

x l 2`
 
sx 2 2 9 

2x 2 6

	15.	 lim
x l�2 lnssin xd	 16.	� lim

x l 2`
 
1 2 2x 2 2 x 4

5 1 x 2 3x 4

	17.	 lim
x l `

 (sx 2 1 4x 1 1 2 x)	 18.	� lim
xl`

 e x2x2

	19.	 lim
x l

 

01 tan21s1yxd	 20.	 lim
x l 1

 S 1

x 2 1
1

1

x 2 2 3x 1 2D
21–22 � Use graphs to discover the asymptotes of the curve. Then 
prove what you have discovered.

	21.	 y −
cos2x

x 2 	 22.	� y − sx 2 1 x 1 1 2 sx 2 2 x 

	23.	� If 2x 2 1 < f sxd < x 2 for 0 , x , 3, find limx l1 f sxd.

	24.	� Prove that limx l 0 x 2 coss1yx 2 d − 0.

25–28 � Prove the statement using the precise definition of a limit.

	25.	 lim
x l 2

 s14 2 5xd − 4	 26.	� lim
x l 0

 s3 x − 0

	27.	 lim
x l 2

 sx 2 2 3xd − 22	 28.	� lim
x l

 

41
 

2

sx 2 4 
− `

	29.	� Let

f sxd − Hs2x 

3 2 x

sx 2 3d2

if x , 0

if 0 < x , 3

if x . 3

	 (a)	 Evaluate each limit, if it exists.

	 (i)	 lim
x l

 

01
 f sxd	 (ii)	 lim

x l
 

02
f sxd	 (iii)	 lim

x l
 

0
 f sxd

	 (iv)	 lim
x l

 

32
 f sxd	 (v)	 lim

x l
 

31
 f sxd	 (vi)	 lim

x l
 

3
 f sxd

	 (b)	 Where is f  discontinuous?
	 (c)	 Sketch the graph of f.

	30.	� Let

tsxd −

2x 2 x 2

2 2 x

x 2 4

�

if 0 < x < 2

if 2 , x < 3

if 3 , x , 4

if x > 4

;

	 (a)	� For each of the numbers 2, 3, and 4, discover whether 
t is continuous from the left, continuous from the 
right, or continuous at the number.

	 (b)	 Sketch the graph of t.

31–32 � Show that the function is continuous on its domain. 
State the domain.

	31.	 hsxd − xesin x	 32.	� tsxd −
sx 2 2 9 

x 2 2 2

33–34 � Use the Intermediate Value Theorem to show that there 
is a root of the equation in the given interval.

	33.	� x 5 2 x 3 1 3x 2 5 − 0,     s1, 2d

	34.	� cossx − e x 2 2,    s0, 1d

	35.	� (a)	� Find the slope of the tangent line to the curve 
y − 9 2 2x 2 at the point s2, 1d.

	 (b)	 Find an equation of this tangent line.

	36.	� �Find equations of the tangent lines to the curve

y −
2

1 2 3x

	 at the points with x-coordinates 0 and 21.

	37.	� �The displacement (in meters) of an object moving in a 
straight line is given by s − 1 1 2t 1 1

4t 2, where t is mea-
sured in seconds.

	 (a)	� Find the average velocity over each time period.
(i)  f1, 3g    (ii)  f1, 2g    (iii)  f1, 1.5g    (iv)  f1, 1.1g

	 (b)	 Find the instantaneous velocity when t − 1.

	38.	� �According to Boyle’s Law, if the temperature of a con-
fined gas is held fixed, then the product of the pressure P 
and the volume V is a constant. Suppose that, for a certain 
gas, PV − 800, where P is measured in pounds per square 
inch and V is measured in cubic inches.

	 (a)	� Find the average rate of change of P as V increases 
from 200 in3 to 250 in3.

	 (b)	� Express V as a function of P and show that the instan- 
taneous rate of change of V with respect to P is 
inversely proportional to the square of P.

	39.	� (a)	� Use the definition of a derivative to find f 9s2d, where 
f sxd − x 3 2 2x.

	 (b)	� Find an equation of the tangent line to the curve 
y − x 3 2 2x at the point (2, 4).

	 (c)	� Illustrate part (b) by graphing the curve and the tan-
gent line on the same screen.

	40.	� Find a function f  and a number a such that

lim
h l

 

0
 
s2 1 hd6 2 64

h
− f 9sad

	41.	� �The total cost of repaying a student loan at an interest rate 
of r% per year is C − f srd.

	 (a)	� What is the meaning of the derivative f 9srd? What are 
its units?

;
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168	 Chapter 2    Limits and Derivatives

	 (b)	 What does the statement f 9s10d − 1200 mean?
	 (c)	 Is f 9srd always positive or does it change sign?

42–44 � Trace or copy the graph of the function. Then sketch a 
graph of its derivative directly beneath.

	42.	

0 x

y   43. 

0 x

y

	44.	

x

y

0

	45.	� (a)	� If f sxd − s3 2 5x , use the definition of a derivative  
to find f 9sxd.

	 (b)	 Find the domains of f  and f 9.
	 (c)	� Graph f  and f 9 on a common screen. Compare the graphs 

to see whether your answer to part (a) is reasonable.

	46.	� (a)	� Find the asymptotes of the graph of f sxd −
4 2 x
3 1 x

 and 
use them to sketch the graph.

	 (b)	 Use your graph from part (a) to sketch the graph of f 9.
	 (c)	 Use the definition of a derivative to find f 9sxd.
	 (d)	� Use a graphing device to graph f 9 and compare with 

your sketch in part (b).

	47.	� �The graph of f  is shown. State, with reasons, the numbers  
at which f  is not differentiable.

x

y

20 4 6_1

	48.	� �The figure shows the graphs of f , f 9, and f 0. Identify each 
curve, and explain your choices.

x

y

a

b

c
0

;

;

	49.	� �Sketch the graph of a function f  that satisfies all of the 
following conditions: The domain of f  is all real numbers 
except 0,  lim

x l 02
 f sxd − 1, lim

x l 01
 f sxd − 0, f 9sxd . 0 for 

all x in the domain of f , lim
xl 2`

 f 9sxd − 0, lim
xl`

 f 9sxd − 1.

	50.	� �Let Pstd be the percentage of Americans under the age of 18 at 
time t. The table gives values of this function in census years 
from 1950 to 2010.

t Pstd t Pstd

1950 	 31.1 1990 	 25.7
1960 	 35.7 2000 	 25.7
1970 	 34.0 2010 	 24.0
1980 	 28.0

	 (a)	 What is the meaning of P9std? What are its units? 
	 (b)	 Construct a table of estimated values for P9std.
	 (c)	 Graph P and P9. 
	 (d)	� How would it be possible to get more accurate values  

for P9std?

	51.	� �Let Bstd be the number of US $20 bills in circulation at time t. 
The table gives values of this function from 1990 to 2010, as 
of December 31, in billions. Interpret and estimate the value 
of B9s2000d.

t 1990 1995 2000 2005 2010

Bstd 3.45 4.21 4.93 5.77 6.53

	52.	� �The total fertility rate at time t, denoted by Fstd, is an esti-
mate of the average number of children born to each woman 
(assuming that current birth rates remain constant). The 
graph of the total fertility rate in the United States shows  
the fluctuations from 1940 to 2010.

	 (a)	� Estimate the values of F9s1950d, F9s1965d, and F9s1987d.
	 (b)	 What are the meanings of these derivatives?
	 (c)	� Can you suggest reasons for the values of these derivatives?

t

y

1940 1960 1970 1980 1990 2000 20101950

1.5

2.0

2.5

3.0

3.5

y=F(t)

baby
boom

baby
bust

baby
boomlet

	53.	� �Suppose that | f sxd | < tsxd for all x, where lim x l a tsxd − 0. 
Find lim x l a f sxd.

	54.	� �Let f sxd − v x b 1 v2x b .
	 (a)	 For what values of a does lim x l a f sxd exist?
	 (b)	 At what numbers is f  discontinuous?
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In our discussion of the principles of problem solving we considered the problem-solving 
strategy of introducing something extra (see page 71). In the following example we show 
how this principle is sometimes useful when we evaluate limits. The idea is to change the 
variable—to introduce a new variable that is related to the original variable—in such a 
way as to make the problem simpler. Later, in Section 5.5, we will make more extensive 
use of this general idea.

Example��  Evaluate lim
x l 0

 
s3 1 1 cx 2 1

x
, where c is a constant.

Solution � As it stands, this limit looks challenging. In Section 2.3 we evaluated sev-
eral limits in which both numerator and denominator approached 0. There our strategy 
was to perform some sort of algebraic manipulation that led to a simplifying cancella-
tion, but here it’s not clear what kind of algebra is necessary.

So we introduce a new variable t by the equation

t − s3 1 1 cx 

We also need to express x in terms of t, so we solve this equation:

 t 3 − 1 1 cx             x −
t 3 2 1

c
    sif c ± 0d

Notice that x l 0 is equivalent to t l 1. This allows us to convert the given limit into 
one involving the variable t:

 lim
x l 0

s3 1 1 cx 2 1

x
− lim

t l1
 

t 2 1

st 3 2 1dyc

 − lim
t l1

 
cst 2 1d
t 3 2 1

The change of variable allowed us to replace a relatively complicated limit by a simpler 
one of a type that we have seen before. Factoring the denominator as a difference of 
cubes, we get

 lim
t l1

 
cst 2 1d
t 3 2 1

− lim
t l1

 
cst 2 1d

st 2 1dst 2 1 t 1 1d

 − lim
t l1

 
c

t 2 1 t 1 1
−

c

3

In making the change of variable we had to rule out the case c − 0. But if c − 0, the 
function is 0 for all nonzero x and so its limit is 0. Therefore, in all cases, the limit  
is cy3.	 n

The following problems are meant to test and challenge your problem-solving skills. 
Some of them require a considerable amount of time to think through, so don’t be dis-
couraged if you can’t solve them right away. If you get stuck, you might find it helpful to 
refer to the discussion of the principles of problem solving on page 71.

	 1.	� Evaluate lim
x l

 

1
 
s3 x 2 1

sx 2 1
.

	 2.	� Find numbers a and b such that lim
x l

 

0
 
sax 1 b 2 2

x
− 1.

Problems Plus

Problems
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	 3.	� Evaluate lim
x l

 

0
 | 2x 2 1 | 2 | 2x 1 1 |

x
.

	 4.	�� The figure shows a point P on the parabola y − x 2 and the point Q where the perpendicular 
bisector of OP intersects the y-axis. As P approaches the origin along the parabola, what 
happens to Q? Does it have a limiting position? If so, find it.

	 5.	� �Evaluate the following limits, if they exist, where v x b  denotes the greatest integer function.

	 (a)	 lim
x l 0

 
v x b

x
	 (b)	 lim

x l 0
 x v1yx b

	 6.	� Sketch the region in the plane defined by each of the following equations.

	 (a)	 v xb 2 1 v yb 2 − 1	 (b)	 v xb 2 2 v yb 2 − 3

	 (c)  v x 1 yb 2 − 1	 (d)	 v xb 1 v yb − 1

	 7.	� Find all values of a such that f  is continuous on R:

f sxd − Hx 1 1

x 2

if   x < a

if   x . a

	 8.	�� A fixed point of a function f  is a number c in its domain such that f scd − c. (The function 
doesn’t move c; it stays fixed.)

	 (a)	�� Sketch the graph of a continuous function with domain f0, 1g whose range also lies in 
f0, 1g. Locate a fixed point of f .

	 (b)	�� Try to draw the graph of a continuous function with domain f0, 1g and range in f0, 1g 
that does not have a fixed point. What is the obstacle?

	 (c)	�� Use the Intermediate Value Theorem to prove that any continuous function with 
domain f0, 1g and range in f0, 1g must have a fixed point. 

	 9.	�� If limx l a f f sxd 1 tsxdg − 2 and limx l a f f sxd 2 tsxdg − 1, find limx l a f f sxd tsxdg.

	10.	� (a)	� The figure shows an isosceles triangle ABC with /B − /C. The bisector of angle B 
intersects the side AC at the point P. Suppose that the base BC remains fixed but the 
altitude | AM | of the triangle approaches 0, so A approaches the midpoint M of BC. 
What happens to P during this process? Does it have a limiting position? If so, find it.

	 (b)	� Try to sketch the path traced out by P during this process. Then find an equation of this 
curve and use this equation to sketch the curve.

	11.	� (a)	�� If we start from 0° latitude and proceed in a westerly direction, we can let Tsxd denote  
the temperature at the point x at any given time. Assuming that T is a continuous func-
tion of x, show that at any fixed time there are at least two diametrically opposite points 
on the equator that have exactly the same temperature.

	 (b)	� Does the result in part (a) hold for points lying on any circle on the earth’s surface?
	 (c)	� Does the result in part (a) hold for barometric pressure and for altitude above sea level?

	12.	� �If f  is a differentiable function and tsxd − x f sxd, use the definition of a derivative to show 
that t9sxd − x f 9sxd 1 f sxd.

	13.	� �Suppose f  is a function that satisfies the equation

f sx 1 yd − f sxd 1 f syd 1 x 2 y 1 xy 2

	 for all real numbers x and y. Suppose also that

lim
x l

 

0
 
 f sxd

x
− 1

	 (a)	 Find f s0d.            (b)  Find f 9s0d.            (c)  Find f 9sxd.

	14.	�� Suppose f  is a function with the property that | f sxd | < x 2 for all x. Show that f s0d − 0. 
Then show that f 9s0d − 0.
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