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In the project on page 208 
you will calculate the distance 

from an airport runway at 
which a pilot should start 

descent for a smooth landing. 
© Mechanik / Shutterstock.com

Differentiation Rules

we have seen how to interpret derivatives as slopes and rates of change. We have seen 
how to estimate derivatives of functions given by tables of values. We have learned how to graph 
derivatives of functions that are defined graphically. We have used the definition of a derivative to 
calculate the derivatives of functions defined by formulas. But it would be tedious if we always 
had to use the definition, so in this chapter we develop rules for finding derivatives without hav-
ing to use the definition directly. These differentiation rules enable us to calculate with relative 
ease the derivatives of polynomials, rational functions, algebraic functions, exponential and loga-
rithmic functions, and trigonometric and inverse trigonometric functions. We then use these rules 
to solve problems involving rates of change and the approximation of functions.

3
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172 Chapter 3  Differentiation Rules

In this section we learn how to differentiate constant functions, power functions, polyno-
mials, and exponential functions.

Let’s start with the simplest of all functions, the constant function f sxd − c. The graph 
of this function is the horizontal line y − c, which has slope 0, so we must have f 9sxd − 0. 
(See Figure 1.) A formal proof, from the definition of a derivative, is also easy:

 f 9sxd − lim
h l 0

 
 f sx 1 hd 2 f sxd

h
− lim

h l 0
 
c 2 c

h
− lim

h l 0
 0 − 0

In Leibniz notation, we write this rule as follows.

Derivative of a Constant Function 

d

dx
 scd − 0

power Functions
We next look at the functions f sxd − xn, where n is a positive integer. If n − 1, the 
graph of f sxd − x is the line y − x, which has slope 1. (See Figure 2.) So

1   
d

dx
 sxd − 1 

(You can also verify Equation 1 from the definition of a derivative.) We have already 
investigated the cases n − 2 and n − 3. In fact, in Section 2.8 (Exercises 19 and 20) we 
found that

2   
d

dx
 sx 2 d − 2x      

d

dx
 sx 3 d − 3x 2 

For n − 4 we find the derivative of f sxd − x 4 as follows:

  f 9sxd − lim
h l 0

 
 f sx 1 hd 2 f sxd

h
− lim

h l 0
 
sx 1 hd4 2 x 4

h

 − lim
h l 0

 
x 4 1 4x 3h 1 6x 2h 2 1 4xh 3 1 h 4 2 x 4

h

 − lim
h l 0

 
4x 3h 1 6x 2h 2 1 4xh 3 1 h 4

h

 − lim
h l 0

 s4x 3 1 6x 2h 1 4xh 2 1 h 3 d − 4x 3

Thus

3   
d

dx
 sx 4 d − 4x 3 

y

c

0 x

y=c

slope=0

FIGURE 1  
The graph of f sxd − c is the line  
y − c, so f 9sxd − 0.

y

0
x

y=x

slope=1

FIGURE 2  
The graph of f sxd − x is the line  
y − x, so f 9sxd − 1.
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 Section 3.1  Derivatives of Polynomials and Exponential Functions  173

Comparing the equations in (1), (2), and (3), we see a pattern emerging. It seems to be a 
rea sonable guess that, when n is a positive integer, sdydxdsxn d − nxn21. This turns out to 
be true.

The Power Rule If n is a positive integer, then

d

dx
 sxn d − nxn21

FirSt ProoF The formula

xn 2 an − sx 2 adsxn21 1 xn22a 1 ∙ ∙ ∙ 1 xan22 1 an21 d

 can be verified simply by multiplying out the right-hand side (or by summing the sec-
ond factor as a geometric series). If f sxd − xn, we can use Equation 2.7.5 for f 9sad and 
the equation above to write

  f 9sad − lim
x l a

 
 f sxd 2 f sad

x 2 a
− lim

x l a
 
xn 2 an

x 2 a

 − lim
x l a

 sxn21 1 xn22a 1 ∙ ∙ ∙ 1 xan22 1 an21 d

 − an21 1 an22a 1 ∙ ∙ ∙ 1 aan22 1 an21

 − nan21

Second ProoF

f 9sxd −  lim
h l 0

 
 f sx 1 hd 2 f sxd

h
−  lim

h l 0
 
sx 1 hdn 2 xn

h

 In finding the derivative of x 4 we had to expand sx 1 hd4. Here we need to expand 
sx 1 hdn and we use the Binomial Theorem to do so:

  f 9sxd − lim
h l 0

 

Fxn 1 nxn21h 1
nsn 2 1d

2
xn22h 2 1 ∙ ∙ ∙ 1 nxhn21 1 hnG 2 xn

h

 − lim
h l 0

 

nxn21h 1
nsn 2 1d

2
xn22h 2 1 ∙ ∙ ∙ 1 nxhn21 1 hn

h

 − lim
h l 0

 Fnxn21 1
nsn 2 1d

2
xn22h 1 ∙ ∙ ∙ 1 nxhn22 1 hn21G

 − nxn21

 because every term except the first has h as a factor and therefore approaches 0. ■

We illustrate the Power Rule using various notations in Example 1.

The Binomial Theorem is given on  
Reference Page 1.
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174 Chapter 3  Differentiation Rules

example 1 
(a) If f sxd − x 6, then f 9sxd − 6x 5. (b) If y − x 1000, then y9 − 1000x 999.

(c) If y − t 4, then 
dy

dt
− 4t 3. (d) 

d

dr
 sr 3 d − 3r 2

	 ■

What about power functions with negative integer exponents? In Exercise 65 we ask 
you to verify from the definition of a derivative that

d

dx
 S 1

xD − 2
1

x 2

We can rewrite this equation as

d

dx
 sx21 d − s21dx22

and so the Power Rule is true when n − 21. In fact, we will show in the next section  
[Exercise 3.2.64(c)] that it holds for all negative integers.

What if the exponent is a fraction? In Example 2.8.3 we found that

d

dx
 sx −

1

2sx 

which can be written as

d

dx
 sx1y2 d − 1

2 x21y2

This shows that the Power Rule is true even when n − 1
2. In fact, we will show in Sec- 

tion 3.6 that it is true for all real numbers n.

The Power Rule (General Version) If n is any real number, then

d

dx
 sxn d − nxn21

example 2� Differentiate:

(a) f sxd −
1

x 2  (b) y − s3 x 2 

SoLUtion In each case we rewrite the function as a power of x.
(a) Since f sxd − x22, we use the Power Rule with n − 22:

f 9sxd −
d

dx
 sx22 d − 22x2221 − 22x23 − 2

2

x 3

(b) 
dy

dx
−

d

dx
 ss3 x 2 d −

d

dx
 sx 2y3 d − 2

3 x s2y3d21 − 2
3 x21y3 ■

Observe from Figure 3 that the function y in Example 2(b) is increasing when y9 is 
positive and is decreasing when y9 is negative. In Chapter 4 we will prove that, in gen-
eral, a function increases when its derivative is positive and decreases when its deriva-
tive is negative.

Figure 3 shows the function y in 
Example 2(b) and its derivative y9. 
Notice that y is not differentiable  
at 0 ( y9 is not defined there). 

2

_2

_3 3

y
yª

FIGURE 3  
y − s3 x 2 
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 SeCtion 3.1  Derivatives of Polynomials and Exponential Functions  175

The Power Rule enables us to find tangent lines without having to resort to the defini- 
tion of a derivative. It also enables us to find normal lines. The normal line to a curve 
C at a point P is the line through P that is perpendicular to the tangent line at P. (In the 
study of optics, one needs to consider the angle between a light ray and the normal line 
to a lens.)

example 3� Find equations of the tangent line and normal line to the curve y − xsx  
at the point s1, 1d. Illustrate by graphing the curve and these lines.

SoLUtion The derivative of f sxd − xsx − xx 1y2 − x 3y2 is

f 9sxd − 3
2 x s3y2d21 − 3

2 x 1y2 − 3
2 sx 

So the slope of the tangent line at (1, 1) is f 9s1d − 3
2. Therefore an equation of the 

tangent line is

y 2 1 − 3
2 sx 2 1d    or    y − 3

2 x 2 1
2

The normal line is perpendicular to the tangent line, so its slope is the negative recipro-
cal of 3

2 , that is, 22
3. Thus an equation of the normal line is

y 2 1 − 22
3 sx 2 1d    or    y − 22

3 x 1 5
3

We graph the curve and its tangent line and normal line in Figure 4. ■

new derivatives from old
When new functions are formed from old functions by addition, subtraction, or multiplica-
tion by a constant, their derivatives can be calculated in terms of derivatives of the old 
func tions. In particular, the following formula says that the derivative of a constant times 
a function is the constant times the derivative of the function.

The Constant Multiple Rule If c is a constant and f  is a differentiable func-
tion, then

d

dx
 fcf sxdg − c 

d

dx
 f sxd

prooF Let tsxd − cf sxd. Then

 t9sxd − lim
h l 0

 
tsx 1 hd 2 tsxd

h
−  lim

h l 0
 
cf sx 1 hd 2 cf sxd

h

  − lim
h l 0

 cF  f sx 1 hd 2 f sxd
h G

  − c lim
h l 0

 
 f sx 1 hd 2 f sxd

h
    (by Limit Law 3)

  − cf 9sxd  ■

Geometric interpretation  
of the Constant multiple rule

x

y

0

y=2ƒ

y=ƒ

Multiplying by c − 2 stretches the 
graph vertically by a factor of 2. All 
the rises have been doubled but the 
runs stay the same. So the slopes are 
doubled too.

3

_1

_1 3

tangent

normal

FIGURE 4�  
y − xsx 
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176 Chapter 3  Differentiation Rules

example 4� 

(a) 
d

dx
 s3x 4 d − 3 

d

dx
 sx 4 d − 3s4x 3 d − 12x 3

(b) 
d

dx
 s2xd −

d

dx
 fs21dxg − s21d 

d

dx
 sxd − 21s1d − 21 ■

The next rule tells us that the derivative of a sum of functions is the sum of the  
derivatives.

The Sum Rule If f  and t are both differentiable, then

d

dx
 f f sxd 1 tsxdg −

d

dx
 f sxd 1

d

dx
 tsxd

prooF Let Fsxd − f sxd 1 tsxd. Then

  F9sxd − lim
h l 0

 
Fsx 1 hd 2 Fsxd

h

  − lim
h l 0

 
f f sx 1 hd 1 tsx 1 hdg 2 f f sxd 1 tsxdg

h

  − lim
h l 0

 F  f sx 1 hd 2 f sxd
h

1
tsx 1 hd 2 tsxd

h G
 − lim

h l 0
 
 f sx 1 hd 2 f sxd

h
1 lim

hl 0
 
tsx 1 hd 2 tsxd

h
    (by Limit Law 1)

  − f 9sxd 1 t9sxd ■

The Sum Rule can be extended to the sum of any number of functions. For instance, 
using this theorem twice, we get

s f 1 t 1 hd9 − fs f 1 td 1 hg9 − s f 1 td9 1 h9 − f 9 1 t9 1 h9

By writing f 2 t as f 1 s21dt and applying the Sum Rule and the Constant Multiple 
Rule, we get the following formula.

The Difference Rule If f  and t are both differentiable, then

d

dx
 f f sxd 2 tsxdg −

d

dx
 f sxd 2

d

dx
 tsxd

The Constant Multiple Rule, the Sum Rule, and the Difference Rule can be com-
bined with the Power Rule to differentiate any polynomial, as the following examples  
demonstrate.

Using prime notation, we can write the  
Sum Rule as

s f 1 td9 − f 9 1 t9
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 SeCtion 3.1  Derivatives of Polynomials and Exponential Functions  177

example 5� 

d

dx
 sx 8 1 12x 5 2 4x 4 1 10x 3 2 6x 1 5d

 − 
d

dx
 sx 8 d 1 12 

d

dx
 sx 5 d 2 4 

d

dx
 sx 4 d 1 10 

d

dx
 sx 3 d 2 6 

d

dx
 sxd 1

d

dx
 s5d

 − 8x 7 1 12s5x 4 d 2 4s4x 3 d 1 10s3x 2 d 2 6s1d 1 0

  − 8x 7 1 60x 4 2 16x 3 1 30x 2 2 6 ■

example 6� Find the points on the curve y − x 4 2 6x 2 1 4 where the tangent line is 
horizontal.

SoLUtion Horizontal tangents occur where the derivative is zero. We have

 
dy

dx
−

d

dx
 sx 4 d 2 6 

d

dx
 sx 2 d 1

d

dx
 s4d

 − 4x 3 2 12x 1 0 − 4xsx 2 2 3d

Thus dyydx − 0 if x − 0 or x 2 2 3 − 0, that is, x − 6s3 . So the given curve has 
horizontal tangents when x − 0, s3 , and 2s3 . The corresponding points are s0, 4d, 
ss3 , 25d, and s2s3 , 25d. (See Figure 5.) ■

example 7 The equation of motion of a particle is s − 2t 3 2 5t 2 1 3t 1 4, where s 
is measured in centimeters and  t in seconds. Find the acceleration as a function of time. 
What is the acceleration after 2 seconds?

SoLUtion The velocity and acceleration are

 vstd −
ds

dt
− 6t 2 2 10t 1 3

astd −
dv
dt

− 12 t 2 10

The acceleration after 2 s is as2d − 14 cmys2. ■

exponential Functions
Let’s try to compute the derivative of the exponential function f sxd − bx using the defi-
nition of a derivative:

  f 9sxd − lim
h l 0

 
 f sx 1 hd 2 f sxd

h
− lim

h l 0
 
bx1h 2 bx

h

 − lim
h l 0

 
bxbh 2 bx

h
− lim

h l 0
 
bxsbh 2 1d

h

The factor bx doesn’t depend on h, so we can take it in front of the limit:

f 9sxd − bx lim
h l 0

 
bh 2 1

h

0 x

y

(0, 4)

{œ„3, _5}{_œ„3, _5}

FIGURE 5�  
The curve y − x 4 2 6x 2 1 4 and its 
horizontal tangents
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178 Chapter 3  Differentiation Rules

Notice that the limit is the value of the derivative of f  at 0, that is,

 lim
h l 0

 
bh 2 1

h
− f 9s0d

Therefore we have shown that if the exponential function f sxd − bx is differentiable at 
0, then it is differentiable everywhere and

4�   f 9sxd − f 9s0dbx
 

This equation says that the rate of change of any exponential function is proportional to 
the function itself. (The slope is proportional to the height.)

Numerical evidence for the existence of f 9s0d is given in the table at the left for the  
cases b − 2 and b − 3. (Values are stated correct to four decimal places.) It appears that 
the limits exist and 

for b − 2,   f 9s0d − lim
h l 0

 
2h 2 1

h
< 0.69

for b − 3,   f 9s0d − lim
h l 0

 
3h 2 1

h
< 1.10

In fact, it can be proved that these limits exist and, correct to six decimal places, the 
values are

d

dx
 s2x d Z

x−0
< 0.693147      d

dx
 s3x d Z

x−0
< 1.098612

Thus, from Equation 4, we have

5�   
d

dx
 s2x d < s0.69d2x      

d

dx
 s3x d < s1.10d3x 

Of all possible choices for the base b in Equation 4, the simplest differentiation formula 
occurs when f 9s0d − 1. In view of the estimates of f 9s0d for b − 2 and b − 3, it seems 
rea sonable that there is a number b between 2 and 3 for which f 9s0d − 1. It is traditional to  
denote this value by the letter e. (In fact, that is how we introduced e in Section 1.4.) Thus 
we have the following definition.

Definition of the Number e 

e is the number such that  lim
h l 0

 
eh 2 1

h
− 1

In Exercise 1 we will see that e lies 
between 2.7 and 2.8. Later we will 
be able to show that, correct to five 
decimal places,

e < 2.71828

Geometrically, this means that of all the possible exponential functions y − bx, the 
function f sxd − ex is the one whose tangent line at (0, 1d has a slope f 9s0d that is exactly 
1. (See Figures 6 and 7.)

h
2 h 2 1

h

3h 2 1

h

0.1 0.7177 1.1612

0.01 0.6956 1.1047

0.001 0.6934 1.0992

0.0001 0.6932 1.0987
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0

y

1

x

slope=1

slope=e®

y=e®

{x, e ® }

0

y

1

x

y=2®

y=e®

y=3®

FIGURE 6 FIGURE 7

If we put b − e and, therefore, f 9s0d − 1 in Equation 4, it becomes the following 
impor tant differentiation formula.

Derivative of the Natural Exponential Function

d

dx
 sex d − ex

TEC Visual 3.1 uses the slope-a-
scope to illustrate this formula.

Thus the exponential function f sxd − ex has the property that it is its own derivative. 
The geometrical significance of this fact is that the slope of a tangent line to the curve 
y − ex is equal to the y-coordinate of the point (see Figure 7).

example 8� If f sxd − ex 2 x, find f 9 and f 99. Compare the graphs of f  and f 9.

SoLUtion Using the Difference Rule, we have

f 9sxd −
d

dx
 sex 2 xd −

d

dx
 sex d 2

d

dx
 sxd − ex 2 1

In Section 2.8 we defined the second derivative as the derivative of f 9, so

f 99sxd −
d

dx
 sex 2 1d −

d

dx
 sex d 2

d

dx
 s1d − ex

The function f  and its derivative f 9 are graphed in Figure 8. Notice that f  has a hori-
zontal tangent when x − 0; this corresponds to the fact that f 9s0d − 0. Notice also that,  
for x . 0, f 9sxd is positive and f  is increasing. When x , 0, f 9sxd is negative and f  is 
decreasing. ■

example 9� At what point on the curve y − ex is the tangent line parallel to the  
line y − 2x?

SoLUtion Since y − ex, we have y9 − ex. Let the x-coordinate of the point in ques-
tion be a. Then the slope of the tangent line at that point is ea. This tangent line will be 
parallel to the line y − 2x if it has the same slope, that is, 2. Equating slopes, we get

ea − 2      a − ln 2

Therefore the required point is sa, ea d − sln 2, 2d. (See Figure 9.) ■

3

_1

1.5_1.5

f

fª

FIGURE 8 

1

1

0 x

2

3

y

y=´

y=2x

(ln 2, 2)

FIGURE 9� 
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180 Chapter 3  Differentiation Rules

 1. (a) How is the number e defined?
 (b)  Use a calculator to estimate the values of the limits

lim
h l 0

 
2.7h 2 1

h
    and    lim

h l 0
 
2.8h 2 1

h

   correct to two decimal places. What can you conclude 
about the value of e?

 2. (a)  Sketch, by hand, the graph of the function f sxd − e x, 
paying particular attention to how the graph crosses the  
y-axis. What fact allows you to do this?

 (b)  What types of functions are f sxd − e x and tsxd − x e ? 
Compare the differentiation formulas for f  and t.

 (c)  Which of the two functions in part (b) grows more rapidly 
when x is large?

3–32 Differentiate the function.

 3. f sxd − 2 40 4. f sxd − e 5

 5. f sxd − 5.2x 1 2.3 6. tsxd − 7
4 x 2 2 3x 1 12

 7. f std − 2t 3 2 3t 2 2 4t 8. f std − 1.4t 5 2 2.5t 2 1 6.7

 9. tsxd − x 2s1 2 2xd 10. Hsud − s3u 2 1dsu 1 2d

 11. tstd − 2t23y4 12. Bsyd − cy26

 13. Fsrd −
5

r 3  14. y − x 5y3 2 x 2y3

 15. Rsad − s3a 1 1d2 16. hstd − s4 t  2 4e t

 17. Ss pd − sp 2 p 18. y − s3 x s2 1 xd

 19. y − 3e x 1
4

s3 x 
 20. SsRd − 4�R 2

 21. hsud − Au 3 1 Bu 2 1 Cu 22. y −
sx 1 x

x 2

 23. y −
x 2 1 4x 1 3

sx 
 24. Gstd − s5t 1

s7 

t

 25. jsxd − x 2.4 1 e 2.4 26. ksrd − e r 1 r e

 27. Gsqd − s1 1 q21d2 28. Fszd −
A 1 Bz 1 Cz 2

z 2

 29. f svd −
s3 v 2 2ve v

v
 30. Dstd −

1 1 16t 2

s4td3

 31. z −
A

y10 1 Be
y
 32. y − e x11 1 1

33–36 Find an equation of the tangent line to the curve at the  
given point.

 33. y − 2x 3 2 x 2 1 2, s1, 3d

 34. y − 2e x 1 x, s0, 2d

 35. y − x 1
2

x
, s2, 3d 36. y − s4 x 2 x, s1, 0d

37–38 Find equations of the tangent line and normal line to the 
curve at the given point.

 37. y − x4 1 2e x,  s0, 2d 38. y 2 − x 3,  s1, 1d

39–40 Find an equation of the tangent line to the curve at the 
given point. Illustrate by graphing the curve and the tangent line 
on the same screen.

 39.  y − 3x2 2 x3,  s1, 2d 40. y − x 2 sx ,  s1, 0d

41–42 Find f 9sxd. Compare the graphs of f  and f 9 and use them 
to explain why your answer is reasonable.

 41. f sxd − x 4 2 2x 3 1 x 2

 42. f sxd − x 5 2 2x 3 1 x 2 1

 43.  (a)  Graph the function 

f sxd − x 4 2 3x 3 2 6x 2 1 7x 1 30 

 in the viewing rectangle f23, 5g by f210, 50g.
 (b)  Using the graph in part (a) to estimate slopes, make  

a rough sketch, by hand, of the graph of f 9. (See  
Example 2.8.1.)

 (c)  Calculate f 9sxd and use this expression, with a graphing 
device, to graph f 9. Compare with your sketch in part (b).

 44. (a)  Graph the function tsxd − e x 2 3x 2 in the viewing rect-
angle f21, 4g by f28, 8g.

 (b)  Using the graph in part (a) to estimate slopes, make a 
rough sketch, by hand, of the graph of t9. (See  
Example 2.8.1.)

 (c)  Calculate t9sxd and use this expression, with a graphing 
device, to graph t9. Compare with your sketch in part (b).

45–46 Find the first and second derivatives of the function.

 45. f sxd − 0.001x 5 2 0.02x 3 46. G srd − sr  1 s3 r  

47–48 Find the first and second derivatives of the function. Check 
to see that your answers are reasonable by comparing the graphs 
of f , f 9, and f 99.

 47. f sxd − 2x 2 5x 3y4 48. f sxd − e x 2 x 3

;

;

;

;

;

3.1 exerCises
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 Section 3.1  Derivatives of Polynomials and Exponential Functions 181

 55.  Find the points on the curve y − 2x 3 1 3x 2 2 12x 1 1 
where the tangent is horizontal.

 56.  For what value of x does the graph of f sxd − e x 2 2x have 
a horizontal tangent?

 57.  Show that the curve y − 2e x 1 3x 1 5x 3 has no tangent 
line with slope 2.

 58.  Find an equation of the tangent line to the curve y − x 4 1 1 
that is parallel to the line 32x 2 y − 15.

 59.  Find equations of both lines that are tangent to the curve 
y − x 3 2 3x 2 1 3x 2 3 and are parallel to the line 
3x 2 y − 15.

 60.  At what point on the curve y − 1 1 2e x 2 3x is the tangent 
line parallel to the line 3x 2 y − 5? Illustrate by graphing 
the curve and both lines.

 61.  Find an equation of the normal line to the curve y − sx  
that is parallel to the line 2x 1 y − 1.

 62.  Where does the normal line to the parabola y − x 2 2 1 at 
the point s21, 0d intersect the parabola a second time? 
Illustrate with a sketch.

 63.  Draw a diagram to show that there are two tangent lines to 
the parabola y − x 2 that pass through the point s0, 24d. 
Find the coordinates of the points where these tangent lines 
intersect the parabola.

 64. (a)  Find equations of both lines through the point s2, 23d 
that are tangent to the parabola y − x 2 1 x.

 (b)  Show that there is no line through the point s2, 7d that 
is tangent to the parabola. Then draw a diagram to see 
why.

 65.  Use the definition of a derivative to show that if f sxd − 1yx, 
then f 9sxd − 21yx 2. (This proves the Power Rule for the 
case n − 21.)

 66.  Find the nth derivative of each function by calculating the 
first few derivatives and observing the pattern that occurs.

 (a)  f sxd − x n (b) f sxd − 1yx

 67.  Find a second-degree polynomial P such that Ps2d − 5, 
P9s2d − 3, and P99s2d − 2.

 68.  The equation y99 1 y9 2 2y − x 2 is called a differential 
equation because it involves an unknown function y and its 
derivatives y9 and y99. Find constants A, B, and C such that 
the function y − Ax 2 1 Bx 1 C satisfies this equation. 
(Differential equations will be studied in detail in 
Chapter 9.)

 69.  Find a cubic function y − ax 3 1 bx 2 1 cx 1 d whose 
graph has horizontal tangents at the points s22, 6d and 
s2, 0d.

 70.  Find a parabola with equation y − ax 2 1 bx 1 c that has 
slope 4 at x − 1, slope 28 at x − 21, and passes through 
the point s2, 15d.

;

 49.  The equation of motion of a particle is s − t 3 2 3t, where s 
is in meters and t is in seconds. Find

 (a) the velocity and acceleration as functions of t,
 (b) the acceleration after 2 s, and
 (c) the acceleration when the velocity is 0.

 50.  The equation of motion of a particle is 
s − t 4 2 2t 3 1 t 2 2 t, where s is in meters and t is in 
seconds.

 (a)  Find the velocity and acceleration as functions of t.
 (b)  Find the acceleration after 1 s.
 (c)  Graph the position, velocity, and acceleration functions  

on the same screen.

 51.  Biologists have proposed a cubic polynomial to model the 
length L of Alaskan rockfish at age A:

L − 0.0155A3 2 0.372A2 1 3.95A 1 1.21

  where L is measured in inches and A in years. Calculate

dL

dA
 Z

A−12

  and interpret your answer.

 52.  The number of tree species S in a given area A in the Pasoh 
Forest Reserve in Malaysia has been modeled by the power 
function

SsAd − 0.882A0.842

   where A is measured in square meters. Find S9s100d and 
interpret your answer.

Source: Adapted from K. Kochummen et al., “Floristic Composition of Pasoh 

Forest Reserve, A Lowland Rain Forest in Peninsular Malaysia,” Journal of 

Tropical Forest Science 3 (1991):1–13.

 53.  Boyle’s Law states that when a sample of gas is compressed 
at a constant temperature, the pressure P of the gas is 
inversely proportional to the volume V of the gas.

 (a)  Suppose that the pressure of a sample of air that occu-
pies 0.106 m3 at 25°C is 50 kPa. Write V as a function 
of P.

 (b)  Calculate dVydP when P − 50 kPa. What is the mean-
ing of the derivative? What are its units?

 54.  Car tires need to be inflated properly because overinflation 
or underinflation can cause premature tread wear. The data 
in the table show tire life L (in thousands of miles) for a 
certain type of tire at various pressures P (in lbyin2).

P 26 28 31 35 38 42 45

L 50 66 78 81 74 70 59

 (a)  Use a calculator to model tire life with a quadratic func-
tion of the pressure.

  (b)  Use the model to estimate dLydP when P − 30 and 
when P − 40. What is the meaning of the derivative? 
What are the units? What is the significance of the signs 
of the derivatives?

;

;
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applied project building a better roller coaster

 79.  What is the value of c such that the line y − 2x 1 3 is tangent 
to the parabola y − cx 2?

 80.  The graph of any quadratic function f sxd − ax 2 1 bx 1 c is a 
parabola. Prove that the average of the slopes of the tangent 
lines to the parabola at the endpoints of any interval f p, qg 
equals the slope of the tangent line at the midpoint of the 
interval.

 81. Let

f sxd − Hx 2

mx 1 b

if x < 2

if x . 2

   Find the values of m and b that make f  differentiable 
everywhere.

 82.  A tangent line is drawn to the hyperbola xy − c at a point P.
 (a)  Show that the midpoint of the line segment cut from this 

tangent line by the coordinate axes is P.
 (b)  Show that the triangle formed by the tangent line and the 

coordinate axes always has the same area, no matter where 
P is located on the hyperbola.

 83.  Evaluate lim
x l 1

 
x 1000 2 1

x 2 1
.

 84.  Draw a diagram showing two perpendicular lines that intersect 
on the y-axis and are both tangent to the parabola y − x 2. 
Where do these lines intersect?

 85.  If c . 1
2, how many lines through the point s0, cd are normal 

lines to the parabola y − x 2? What if c < 1
2?

 86.  Sketch the parabolas y − x 2 and y − x 2 2 2x 1 2. Do you 
think there is a line that is tangent to both curves? If so, find 
its equation. If not, why not?

 71. Let

f sxd − Hx 2 1 1

x 1 1

if x , 1

if x > 1

  Is f  differentiable at 1? Sketch the graphs of f  and f 9.

 72. At what numbers is the following function t differentiable?

tsxd − H2x

2x 2 x 2

2 2 x

if x < 0

if  0 , x , 2

if x > 2

  Give a formula for t9 and sketch the graphs of t and t9.

 73. (a)  For what values of x is the function f sxd − | x 2 2 9 | 
differentiable? Find a formula for f 9.

 (b) Sketch the graphs of f  and f 9.

 74.  Where is the function hsxd − | x 2 1 | 1 | x 1 2 | differenti-
able? Give a formula for h9 and sketch the graphs of h and h9.

 75.  Find the parabola with equation y − ax 2 1 bx whose tangent 
line at (1, 1) has equation y − 3x 2 2.

 76.  Suppose the curve y − x 4 1 ax 3 1 bx 2 1 cx 1 d has a tan- 
gent line when x − 0 with equation y − 2x 1 1 and a tangent 
line when x − 1 with equation y − 2 2 3x. Find the values of 
a, b, c, and d.

 77.  For what values of a and b is the line 2x 1 y − b tangent to the 
parabola y − ax 2 when x − 2?

 78.  Find the value of c such that the line y − 3
2 x 1 6 is tangent to 

the curve y − csx .

 

Suppose you are asked to design the first ascent and drop for a new roller coaster. By study-
ing photographs of your favorite coasters, you decide to make the slope of the ascent 0.8 and 
the slope of the drop 21.6. You decide to connect these two straight stretches y − L1sxd and 
y − L 2sxd with part of a parabola y − f sxd − ax 2 1 bx 1 c, where x and f sxd are measured 
in feet. For the track to be smooth there can’t be abrupt changes in direction, so you want the 
linear segments L1 and L 2 to be tangent to the parabola at the transition points P and Q. (See 
the figure.) To simplify the equations, you decide to place the origin at P.

1.  (a)  Suppose the horizontal distance between P and Q is 100 ft. Write equations in a, b, and 
c that will ensure that the track is smooth at the transition points.

 (b)  Solve the equations in part (a) for a, b, and c to find a formula for f sxd.
 (c)  Plot L1, f , and L 2 to verify graphically that the transitions are smooth.
 (d)  Find the difference in elevation between P and Q.

2.  The solution in Problem 1 might look smooth, but it might not feel smooth because the 
piecewise defined function [consisting of L1sxd for x , 0, f sxd for 0 < x < 100, and 

;7et0301apun01
01/13/10
MasterID: 00344

L™

L¡ P
f

Q
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 Section 3.2  The Product and Quotient Rules 183

   L 2sxd for x . 100] doesn’t have a continuous second derivative. So you decide to 
improve the design by using a quadratic function qsxd − ax 2 1 bx 1 c only on the 
interval 10 < x < 90 and connecting it to the linear functions by means of two cubic 
functions:

 tsxd − kx3 1 lx2 1 mx 1 n  0 < x , 10

 hsxd − px 3 1 qx 2 1 rx 1 s  90 , x < 100

   (a)  Write a system of equations in 11 unknowns that ensure that the functions and their 
first two derivatives agree at the transition points.

 CAS   (b)  Solve the equations in part (a) with a computer algebra system to find formulas for 
qsxd, tsxd, and hsxd.

   (c)  Plot L1, t, q, h, and L 2, and compare with the plot in Problem 1(c).

©
 S

us
an

a 
Or

te
ga

 / 
Sh

ut
te
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om

The formulas of this section enable us to differentiate new functions formed from old 
functions by multiplication or division.

the Product Rule
By analogy with the Sum and Difference Rules, one might be tempted to guess, as Leib-
niz did three centuries ago, that the derivative of a product is the product of the deriva-
tives. We can see, however, that this guess is wrong by looking at a particular example. 
Let f sxd − x and tsxd − x 2. Then the Power Rule gives f 9sxd − 1 and t9sxd − 2x. But 
s ftdsxd − x 3, so s ftd9sxd − 3x 2. Thus s ftd9 ± f 9t9. The correct formula was discovered 
by Leibniz (soon after his false start) and is called the Product Rule.

Before stating the Product Rule, let’s see how we might discover it. We start by assum-
ing that u − f sxd and v − tsxd are both positive differentiable functions. Then we can  
interpret the product uv as an area of a rectangle (see Figure 1). If x changes by an 
amount Dx, then the corresponding changes in u and v are

Du − f sx 1 Dxd 2 f sxd      Dv − tsx 1 Dxd 2 tsxd

and the new value of the product, su 1 Dudsv 1 Dvd, can be interpreted as the area of the 
large rectangle in Figure 1 (provided that Du and Dv happen to be positive).

The change in the area of the rectangle is

1    Dsuvd − su 1 Dudsv 1 Dvd 2 uv − u Dv 1 v Du 1 Du Dv

  − the sum of the three shaded areas

If we divide by Dx, we get

Dsuvd
Dx

− u 
Dv

Dx
1 v 

Du

Dx
1 Du 

Dv

Dx

u Î√Î√

√ u√

u

Îu Î√

√ Îu

Îu

FIGURE 1  
The geometry of the Product Rule
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184 Chapter 3  Differentiation Rules

If we now let Dx l 0, we get the derivative of uv:

 
d

dx
 suvd −  lim

Dx l 0
 
Dsuvd

Dx
− lim

Dx l 0
 Su 

Dv

Dx
1 v 

Du

Dx
1 Du 

Dv

DxD
 − u lim

Dx l 0
 
Dv

Dx
1 v lim

Dx l 0

Du

Dx
1 S lim

Dx l 0
 DuDS lim

Dx l 0
 
Dv

DxD
 − u 

dv

dx
1 v 

du

dx
1 0 ?

dv

dx

2    
d

dx
 suvd − u 

dv

dx
1 v 

du

dx

(Notice that Du l 0 as Dx l 0 since f  is differentiable and therefore continuous.)
Although we started by assuming (for the geometric interpretation) that all the quanti-

ties are positive, we notice that Equation 1 is always true. (The algebra is valid whether 
u, v, Du, and Dv are positive or negative.) So we have proved Equation 2, known as the  
Product Rule, for all differentiable functions u and v.

The Product Rule If f  and t are both differentiable, then

d

dx
 f f sxdtsxdg − f sxd 

d

dx
 ftsxdg 1 tsxd 

d

dx
 f f sxdg

In prime notation:

s ftd9 − ft9 1 t f 9

In words, the Product Rule says that the derivative of a product of two functions is the 
first function times the derivative of the second function plus the second function times 
the derivative of the first function.

ExamplE 1� 
(a) If f sxd − xex, find f 9sxd.
(b) Find the nth derivative, f sndsxd.

SOLUtION 
(a) By the Product Rule, we have

  f 9sxd −
d

dx
 sxex d

 − x 
d

dx
 sex d 1 ex 

d

dx
 sxd

 − xex 1 ex ∙ 1 − sx 1 1dex

(b) Using the Product Rule a second time, we get

  f 99sxd −
d

dx
 fsx 1 1dex g

 − sx 1 1d 
d

dx
 sex d 1 ex 

d

dx
 sx 1 1d

     − sx 1 1dex 1 ex ? 1 − sx 1 2dex

Recall that in Leibniz notation the 
definition of a derivative can be written 
as

dy

dx
− lim

Dx l 0
 
Dy

Dx

3

_1

_3 1.5
ff ª

Figure 2 shows the graphs of the 
function f  of Example 1 and its 
derivative f 9. Notice that f 9sxd is 
positive when f  is increasing and 
negative when f  is decreasing.

FIGURE 2
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Further applications of the Product Rule give

f 999sxd − sx 1 3dex      f s4dsxd − sx 1 4dex

In fact, each successive differentiation adds another term ex, so

f sndsxd − sx 1 ndex ■

ExamplE 2� Differentiate the function f std − st   sa 1 btd.

SoLUtion 1 Using the Product Rule, we have

  f 9std − st    
d

dt
 sa 1 btd 1 sa 1 btd 

d

dt
 (st )

 − st   ? b 1 sa 1 btd ? 1
2 t21y2

 − bst  1
a 1 bt

2st  
−

a 1 3bt

2st  

SoLUtion 2 If we first use the laws of exponents to rewrite f std, then we can proceed 
directly without using the Product Rule.

 f std − ast  1 btst  − at 1y2 1 bt 3y2

  f 9std − 1
2at21y2 1 3

2 bt 1y2

which is equivalent to the answer given in Solution 1. ■

Example 2 shows that it is sometimes easier to simplify a product of functions before 
differentiating than to use the Product Rule. In Example 1, however, the Product Rule is 
the only possible method.

ExamplE 3� If f sxd − sx  tsxd, where ts4d − 2 and t9s4d − 3, find f 9s4d.

SoLUtion Applying the Product Rule, we get

  f 9sxd −
d

dx
  fsx  tsxdg − sx   

d

dx
 ftsxdg 1 tsxd 

d

dx
 fsx g

 − sx  t9sxd 1 tsxd ∙ 12 x21y2

 − sx  t9sxd 1
tsxd
2sx 

So f 9s4d − s4  t9s4d 1
ts4d
2s4 

− 2 ∙ 3 1
2

2 ∙ 2
− 6.5 ■

the Quotient Rule
We find a rule for differentiating the quotient of two differentiable functions u − f sxd 
and v − tsxd in much the same way that we found the Product Rule. If x, u, and v change 

In Example 2, a and b are constants.  
It is customary in mathematics to use 
letters near the beginning of the 
alphabet to represent constants and 
letters near the end of the alphabet to 
represent variables.
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186 Chapter 3  Differentiation Rules

by amounts Dx, Du, and Dv, then the corresponding change in the quotient uyv is

 DS u

vD −
u 1 Du

v 1 Dv
2

u

v
−

su 1 Dudv 2 usv 1 Dvd
vsv 1 Dvd

 −
vDu 2 uDv

vsv 1 Dvd

so

d

dxS u

vD − lim
Dx l 0

 
Dsuyvd

Dx
− lim

Dx l 0
 

v 
Du

Dx
2 u 

Dv

Dx

vsv 1 Dvd

As Dx l 0, Dv l 0 also, because v − tsxd is differentiable and therefore continuous. 
Thus, using the Limit Laws, we get

d

dxS u

vD −

v lim
Dx l 0

 
Du

Dx
2 u lim

Dx l 0
 
Dv

Dx

v lim
Dx l 0

sv 1 Dvd
−

v 
du

dx
2 u 

dv

dx

v2

The Quotient Rule If f  and t are differentiable, then

d

dx
 F  f sxd

tsxd G −

tsxd 
d

dx
 f f sxdg 2 f sxd 

d

dx
 ftsxdg

ftsxdg 2

In words, the Quotient Rule says that the derivative of a quotient is the denominator 
times the derivative of the numerator minus the numerator times the derivative of the  
denominator, all divided by the square of the denominator.

The Quotient Rule and the other differentiation formulas enable us to compute the  
derivative of any rational function, as the next example illustrates.

ExamplE 4� Let y −
x 2 1 x 2 2

x 3 1 6
. Then

 y9 −

sx 3 1 6d 
d

dx
 sx 2 1 x 2 2d 2 sx 2 1 x 2 2d 

d

dx
 sx 3 1 6d

sx 3 1 6d2

 −
sx 3 1 6ds2x 1 1d 2 sx 2 1 x 2 2ds3x 2 d

sx 3 1 6d2

 −
s2x 4 1 x 3 1 12x 1 6d 2 s3x 4 1 3x 3 2 6x 2 d

sx 3 1 6d2

 −
2x 4 2 2x 3 1 6x 2 1 12x 1 6

sx 3 1 6d2 ■

We can use a graphing device to  
check that the answer to Example 4  
is plausible. Figure 3 shows the graphs  
of the function of Example 4 and its 
derivative. Notice that when y grows 
rapidly (near 22), y9 is large. And  
when y grows slowly, y9 is near 0.

1.5

_1.5

_4 4

yª

y

FIGURE 3

In prime notation:

S f

tD9
−

t f 9 2 ft9

t2
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ExamplE 5� Find an equation of the tangent line to the curve y − exys1 1 x 2 d at 
  the point s1, 12ed.
SoLUtion According to the Quotient Rule, we have

 
dy

dx
−

s1 1 x 2 d 
d

dx
 sex d 2 ex  

d

dx
 s1 1 x 2 d

s1 1 x 2 d2

 −
s1 1 x2dex 2 exs2xd

s1 1 x2d2 −
exs1 2 2x 1 x2d

s1 1 x2d2

 −
exs1 2 xd2

s1 1 x 2 d2

So the slope of the tangent line at s1, 12ed is

dy

dx Z
x−1

− 0

This means that the tangent line at s1, 12ed is horizontal and its equation is y − 1
2e. fSee 

Figure 4. Notice that the function is increasing and crosses its tangent line at s1, 12ed.g
■

NOTE Don’t use the Quotient Rule every time you see a quotient. Sometimes it’s 
easier to rewrite a quotient first to put it in a form that is simpler for the purpose of dif-
ferentiation. For instance, although it is possible to differentiate the function

Fsxd −
3x 2 1 2sx 

x

using the Quotient Rule, it is much easier to perform the division first and write the func-
tion as

Fsxd − 3x 1 2x21y2

before differentiating.
We summarize the differentiation formulas we have learned so far as follows.

Table of Differentiation Formulas

 
d

dx
 scd − 0 d

dx
 sxn d − nxn21 d

dx
 sex d − ex

 scf d9 − cf 9 s f 1 td9 − f 91 t9 s f 2 td9 − f 92 t9

 s ftd9 − ft9 1 tf 9 S f

tD9
−

tf 9 2 ft9

t2

2.5

0
_2 3.5

y= ´
1+≈

y= e1
2

FIGURE 4 
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 29. f sxd −
x 2

1 1 e x  30. f sxd −
x

x 2 2 1

31–32 Find an equation of the tangent line to the given curve at 
the specified point.

 31. y −
x 2 2 1

x 2 1 x 1 1
, s1, 0d 32. y −

1 1 x

1 1 e x , (0, 12)

33–34 Find equations of the tangent line and normal line to the 
given curve at the specified point.

 33. y − 2xe x,  s0, 0d 34. y −
2x

x 2 1 1
,  s1, 1d

 35. (a)  The curve y − 1ys1 1 x2d is called a witch of Maria 
Agnesi. Find an equation of the tangent line to this curve 
at the point s21, 12 d.

 (b)  Illustrate part (a) by graphing the curve and the tangent 
line on the same screen.

 36. (a)  The curve y − xys1 1 x 2 d is called a serpentine. Find 
an equation of the tangent line to this curve at the point 
s3, 0.3d.

 (b)  Illustrate part (a) by graphing the curve and the tangent 
line on the same screen.

 37. (a) If f sxd − sx 3 2 xde x, find f 9sxd.
 (b)  Check to see that your answer to part (a) is reasonable by 

comparing the graphs of f  and f 9.

 38. (a) If f sxd − e xys2x 2 1 x 1 1d, find f 9sxd.
 (b)  Check to see that your answer to part (a) is reasonable by 

comparing the graphs of f  and f 9.

 39. (a)  If f sxd − sx 2 2 1dysx 2 1 1d, find f 9sxd and f 99sxd.
 (b)  Check to see that your answers to part (a) are reasonable 

by comparing the graphs of f , f 9, and f 99.

 40. (a)  If f sxd − sx 2 2 1de x, find f 9sxd and f 99sxd.
 (b)  Check to see that your answers to part (a) are reasonable 

by comparing the graphs of f , f 9, and f 99.

 41.  If f sxd − x 2ys1 1 xd, find f 99s1d.

 42.  If tsxd − xye x, find t sndsxd.

 43.  Suppose that f s5d − 1, f 9s5d − 6, ts5d − 23, and t9s5d − 2. 
Find the following values.

 (a) s ftd9s5d (b) s fytd9s5d (c) styf d9s5d

 44.   Suppose that f s4d − 2, ts4d − 5, f 9s4d − 6, and t9s4d − 23. 
Find h9s4d.

 (a)  hsxd − 3 f sxd 1 8tsxd (b) hsxd − f sxdtsxd

 (c) hsxd −
f sxd
tsxd

 (d) hsxd −
tsxd

f sxd 1 tsxd

;

;

;

;

;

;

3.2 exerCises

 1.  Find the derivative of f sxd − s1 1 2x 2dsx 2 x 2d in two ways: 
by using the Product Rule and by performing the multiplica-
tion first. Do your answers agree?

 2.  Find the derivative of the function

Fsxd −
x 4 2 5x 3 1 sx 

x 2

   in two ways: by using the Quotient Rule and by simplifying 
first. Show that your answers are equivalent. Which method do 
you prefer?

3–26 Differentiate.

 3. f sxd − s3x 2 2 5xde x 4. tsxd − (x 1 2sx ) ex

 5. y −
x

e x  6. y −
e x

1 2 e x

 7. tsxd −
1 1 2x

3 2 4x
 8. Gsxd −

x 2 2 2

2x 1 1

 9. Hsud − su 2 su dsu 1 su d

 10. Jsvd − sv 3 2 2vdsv24 1 v22d

 11. Fsyd − S 1

y2 2
3

y4Dsy 1 5y3d

 12. f szd − s1 2 e zdsz 1 e zd

 13. y −
x 2 1 1

x 3 2 1
 14. y −

sx 

2 1 x

 15. y −
t 3 1 3t

t 2 2 4t 1 3
 16. y −

1

t 3 1 2t 2 2 1

 17. y − e psp 1 psp d 18. hsrd −
ae r

b 1 e r

 19. y −
s 2 ss 

s 2  20. y − sz 2 1 e zdsz 

 21. f std −
s3 t 

t 2 3
 22. Vstd −

4 1 t

te t

 23. f sxd −
x 2e x

x 2 1 e x  24. Fstd −
At

Bt 2 1 Ct 3

 25. f sxd −
x

x 1
c

x

 26. f sxd −
ax 1 b

cx 1 d

27–30 Find f 9sxd and f 99sxd.

 27. f sxd − sx 3 1 1de x 28. f sxd − sx e x
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 54.  Find equations of the tangent lines to the curve

y −
x 2 1

x 1 1

   that are parallel to the line x 2 2y − 2.

 55.  Find R9s0d, where

Rsxd −
x 2 3x 3 1 5x 5

1 1 3x 3 1 6x 6 1 9x 9

   Hint: Instead of finding R9sxd first, let f sxd be the numerator 
and tsxd the denominator of Rsxd and compute R9s0d from f s0d, 
f 9s0d, ts0d, and t9s0d.

 56.  Use the method of Exercise 55 to compute Q9s0d, where

Qsxd −
1 1 x 1 x 2 1 xe x

1 2 x 1 x 2 2 xe x

 57.  In this exercise we estimate the rate at which the total personal 
income is rising in the Richmond-Petersburg, Virginia, metro - 
politan area. In 1999, the population of this area was 961,400, 
and the population was increasing at roughly 9200 people per 
year. The average annual income was $30,593 per capita, and 
this average was increasing at about $1400 per year (a little 
above the national average of about $1225 yearly). Use the 
Product Rule and these figures to estimate the rate at which 
total personal income was rising in the Richmond-Petersburg 
area in 1999. Explain the meaning of each term in the Product 
Rule.

 58.  A manufacturer produces bolts of a fabric with a fixed width. 
The quantity q of this fabric (measured in yards) that is sold is 
a function of the selling price p (in dollars per yard), so we can 
write q − f spd. Then the total revenue earned with selling price 
p is Rspd − pf spd.

 (a)  What does it mean to say that f s20d − 10,000 and 
f 9s20d − 2350?

 (b)  Assuming the values in part (a), find R9s20d and interpret 
your answer.

 59.  The Michaelis-Menten equation for the enzyme chymotrypsin 
is

v −
0.14fSg

0.015 1 fSg

   where v is the rate of an enzymatic reaction and [S] is the con- 
centration of a substrate S. Calculate dvyd fSg and interpret it.

 60.  The biomass Bstd of a fish population is the total mass of the 
members of the population at time t. It is the product of the 
number of individuals Nstd in the population and the average 
mass Mstd of a fish at time t. In the case of guppies, breeding 
occurs continually. Suppose that at time t − 4 weeks the pop-
ulation is 820 guppies and is growing at a rate of 50 guppies 
per week, while the average mass is 1.2 g and is increasing at 
a rate of 0.14 gyweek. At what rate is the biomass increasing 
when t − 4?

 45. If f sxd − e xtsxd, where ts0d − 2 and t9s0d − 5, find f 9s0d.

 46. If hs2d − 4 and h9s2d − 23, find

d

dx
 S hsxd

x DZ
x−2

 47.  If tsxd − xf sxd, where f s3d − 4 and f 9s3d − 22, find an 
equation of the tangent line to the graph of t at the point  
where x − 3.

 48.  If f s2d − 10 and f 9sxd − x 2 f sxd for all x, find f 99s2d.

 49.  If f  and t are the functions whose graphs are shown, let 
usxd − f sxdtsxd and vsxd − f sxdytsxd.

 (a) Find u9s1d. (b) Find v9s5d.

f
g

x

y

0

1

1

 50.  Let Psxd − FsxdGsxd and Qsxd − FsxdyGsxd, where F and G 
are the functions whose graphs are shown.

 (a)  Find P9s2d. (b) Find Q9s7d.

F

G

x

y

0 1

1

 51.  If t is a differentiable function, find an expression for the  
derivative of each of the following functions.

 (a) y − xtsxd (b) y −
x

tsxd

 (c) y −
tsxd

x

 52.  If f  is a differentiable function, find an expression for the 
derivative of each of the following functions.

 (a) y − x 2 f sxd (b) y −
 f sxd

x 2

 (c) y −
x 2

f sxd
 (d) y −

1 1 x f sxd
sx 

 53.  How many tangent lines to the curve y − xysx 1 1) pass 
through the point s1, 2d? At which points do these tangent lines 
touch the curve?
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190 Chapter 3  Differentiation Rules

 64. (a)  If t is differentiable, the Reciprocal Rule says that

d

dx
 F 1

tsxdG − 2
t9sxd

ftsxdg2

   Use the Quotient Rule to prove the Reciprocal Rule.
 (b)  Use the Reciprocal Rule to differentiate the function in 

Exercise 16.
 (c)  Use the Reciprocal Rule to verify that the Power Rule is 

valid for negative integers, that is,

d

dx
 sx2nd − 2nx2n21

   for all positive integers n.

 61. (a)  Use the Product Rule twice to prove that if f , t, and h are 
differentiable, then s fthd9 − f 9th 1 ft9h 1 fth9.

 (b) Taking f − t − h in part (a), show that

d

dx
 f f sxdg3 − 3f f sxdg2 f 9sxd

 (c)  Use part (b) to differentiate y − e 3x.

 62. (a)  If Fsxd − f sxd tsxd, where f  and t have derivatives of all 
orders, show that F99 − f 99t 1 2 f 9t9 1 ft99.

 (b)  Find similar formulas for F999 and F s4d.
 (c)  Guess a formula for F snd.

 63.  Find expressions for the first five derivatives of f sxd − x 2e x. 
Do you see a pattern in these expressions? Guess a formula for 
f sndsxd and prove it using mathematical induction.

Before starting this section, you might need to review the trigonometric functions. In 
particular, it is important to remember that when we talk about the function f  defined for 
all real numbers x by

f sxd − sin x

it is understood that sin x means the sine of the angle whose radian measure is x. A simi-
lar convention holds for the other trigonometric functions cos, tan, csc, sec, and cot. 
Recall from Section 2.5 that all of the trigonometric functions are continuous at every 
number in their domains.

If we sketch the graph of the function f sxd − sin x and use the interpretation of f 9sxd  
as the slope of the tangent to the sine curve in order to sketch the graph of f 9 (see Exer-
cise 2.8.16), then it looks as if the graph of f 9 may be the same as the cosine curve (see 
Figure 1).

x0 2π

x0 π
2

π

π
2

π

ƒ=y= sin x

y

y

fª(xy= )

FIGURE 1

TEC Visual 3.3 shows an animation 
of Figure 1.

A review of the trigonometric functions 
is given in Appendix D.
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Let’s try to confirm our guess that if f sxd − sin x, then f 9sxd − cos x. From the defi-
nition of a derivative, we have

  f 9sxd − lim
h l 0

 
 f sx 1 hd 2 f sxd

h
− lim

h l 0
 
sinsx 1 hd 2 sin x

h

 − lim
h l 0

 
sin x cos h 1 cos x sin h 2 sin x

h

 − lim
h l 0

 F sin x cos h 2 sin x

h
1

cos x sin h

h G
 − lim

h l 0
 Fsin x S cos h 2 1

h D 1 cos x S sin h

h DG
1    − lim

h l 0
 sin x ? lim

h l 0
 
cos h 2 1

h
1 lim

h l 0
 cos x ? lim

h l 0
 
sin h

h

Two of these four limits are easy to evaluate. Since we regard x as a constant when com-
puting a limit as h l 0, we have

lim
h l 0

 sin x − sin x    and    lim
h l 0

 cos x − cos x

The limit of ssin hdyh is not so obvious. In Example 2.2.3 we made the guess, on the basis 
of numerical and graphical evidence, that

2   lim
� l 0

 
sin �

�
− 1

We now use a geometric argument to prove Equation 2. Assume first that � lies between  
0 and �y2. Figure 2(a) shows a sector of a circle with center O, central angle �, and  
radius 1. BC is drawn perpendicular to OA. By the definition of radian measure, we have 
arc AB − �. Also | BC | − | OB | sin � − sin �. From the diagram we see that

| BC | , | AB | , arc AB

Therefore sin � , �    so    
sin �

�
, 1

Let the tangent lines at A and B intersect at E. You can see from Figure 2(b) that the  
cir cumference of a circle is smaller than the length of a circumscribed polygon, and so 
arc AB , | AE | 1 | EB |. Thus

 � − arc AB , | AE | 1 | EB |
 , | AE | 1 | ED |
 − | AD | − | OA | tan �

 − tan �

(In Appendix F the inequality � < tan � is proved directly from the definition of the 

We have used the addition formula for 
sine. See Appendix D.

(b)

(a)

B

A

E

O

¨

B

A
O

1

D

E

C

FIGURE 2
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192 Chapter 3  Differentiation Rules

length of an arc without resorting to geometric intuition as we did here.) Therefore we 
have

 � ,
sin �

cos �

so  cos � ,
sin �

�
, 1

We know that lim � l 0 1 − 1 and lim � l 0 cos � − 1, so by the Squeeze Theorem, we have

lim
�l

 

01
 
sin �

�
− 1

But the function ssin �dy� is an even function, so its right and left limits must be equal. 
Hence, we have

lim
� l 0

 
sin �

�
− 1

so we have proved Equation 2.
We can deduce the value of the remaining limit in (1) as follows:

 lim
� l 0

 
cos � 2 1

�
− lim

� l 0
 S cos � 2 1

�
?

cos � 1 1

cos � 1 1D − lim
� l 0

 
cos2� 2 1

� scos � 1 1d

 − lim
� l 0

 
2sin2�

� scos � 1 1d
− 2lim

� l 0
 S sin �

�
?

sin �

cos � 1 1D
 − 2lim

� l 0
 
sin �

�
? lim

� l 0
 

sin �

cos � 1 1

 − 21 ? S 0

1 1 1D − 0    (by Equation 2)

3   lim
� l 0

 
cos � 2 1

�
− 0

If we now put the limits (2) and (3) in (1), we get

 f 9sxd − lim
h l 0

 sin x ? lim
h l 0

 
cos h 2 1

h
1 lim

h l 0
 cos x ? lim

h l 0
 
sin h

h

 − ssin xd ? 0 1 scos xd ? 1 − cos x

So we have proved the formula for the derivative of the sine function:

4   
d

dx
 ssin xd − cos x

We multiply numerator and denomina-
tor by cos � 1 1 in order to put the 
function in a form in which we can use 
the limits we know.
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ExamplE 1 Differentiate y − x 2 sin x.

SoLUtion Using the Product Rule and Formula 4, we have

 
dy

dx
− x 2 

d

dx
 ssin xd 1 sin x 

d

dx
 sx 2 d

 − x 2 cos x 1 2x sin x ■

Using the same methods as in the proof of Formula 4, one can prove (see Exercise 
20) that

5   
d

dx
 scos xd − 2sin x

The tangent function can also be differentiated by using the definition of a derivative,    
but it is easier to use the Quotient Rule together with Formulas 4 and 5:

 
d

dx
 stan xd −

d

dx
 S sin x

cos xD
 −

cos x 
d

dx
 ssin xd 2 sin x 

d

dx
 scos xd

cos2x

 −
cos x ? cos x 2 sin x s2sin xd

cos2x

 −
cos2x 1 sin2x

cos2x

 −
1

cos2x
− sec2x

6   
d

dx
 stan xd − sec2x

The derivatives of the remaining trigonometric functions, csc, sec, and cot, can also 
be found easily using the Quotient Rule (see Exercises 17–19). We collect all the dif-
ferentiation formulas for trigonometric functions in the following table. Remember that 
they are valid only when x is measured in radians.

Derivatives of Trigonometric Functions 

 
d

dx
 ssin xd − cos x 

d

dx
 scsc xd − 2csc x cot x

 
d

dx
 scos xd − 2sin x 

d

dx
 ssec xd − sec x tan x

 
d

dx
 stan xd − sec2x 

d

dx
 scot xd − 2csc2x

5

_5

_4 4

yyª

FIGURE 3

Figure 3 shows the graphs of the 
function of Example 1 and its deriva-
tive. Notice that y9 − 0 whenever y has 
a horizontal tangent.

When you memorize this table, it is 
helpful to notice that the minus signs 
go with the derivatives of the “cofunc-
tions,” that is, cosine, cosecant, and 
cotangent.
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194 Chapter 3  Differentiation Rules

ExamplE 2 Differentiate f sxd −
sec x

1 1 tan x
. For what values of x does the graph  

of f  have a horizontal tangent?

SoLUtion The Quotient Rule gives 

  f 9sxd −

s1 1 tan xd 
d

dx
 ssec xd 2 sec x 

d

dx
 s1 1 tan xd

s1 1 tan xd2

 −
s1 1 tan xd sec x tan x 2 sec x ? sec2x

s1 1 tan xd2

 −
sec x stan x 1 tan2x 2 sec2xd

s1 1 tan xd2

 −
sec x stan x 2 1d

s1 1 tan xd2

In simplifying the answer we have used the identity tan2x 1 1 − sec2x.
Since sec x is never 0, we see that f 9sxd − 0 when tan x − 1, and this occurs when 

x − n� 1 �y4, where n is an integer (see Figure 4). ■

Trigonometric functions are often used in modeling real-world phenomena. In par-
ticular, vibrations, waves, elastic motions, and other quantities that vary in a periodic 
manner can be described using trigonometric functions. In the following example we 
discuss an instance of simple harmonic motion.

ExamplE 3 An object at the end of a vertical spring is stretched 4 cm beyond its rest 
position and released at time t − 0. (See Figure 5 and note that the downward direction 
is positive.) Its position at time t is

s − f std − 4 cos t

Find the velocity and acceleration at time t and use them to analyze the motion of the 
object.

SoLUtion The velocity and acceleration are

v −
ds

dt
−

d

dt
 s4 cos td − 4 

d

dt
 scos td − 24 sin t

a −
dv
dt

−
d

dt
 s24 sin td − 24 

d

dt
 ssin td − 24 cos t

The object oscillates from the lowest point ss − 4 cmd to the highest point 
ss − 24 cmd. The period of the oscillation is 2�, the period of cos t.

The speed is | v | − 4| sin t |, which is greatest when | sin t | − 1, that is, when 
cos t − 0. So the object moves fastest as it passes through its equilibrium position 
ss − 0d. Its speed is 0 when sin t − 0, that is, at the high and low points.

The acceleration a − 24 cos t − 0 when s − 0. It has greatest magnitude at the 
high and low points. See the graphs in Figure 6. ■

3

_3

_3 5

FIGURE 4 
 The horizontal tangents in Example 2 

s

0

4

FIGURE 5

2

_2

√
s a

π 2π t0

FIGURE 6
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 SeCtion 3.3  Derivatives of Trigonometric Functions 195

ExamplE 4 Find the 27th derivative of cos x.

SoLUtion The first few derivatives of f sxd − cos x are as follows:

f 9sxd − 2sin x

 f 99sxd − 2cos x

 f999sxd − sin x

f s4dsxd − cos x

 f s5dsxd − 2sin x

We see that the successive derivatives occur in a cycle of length 4 and, in particular, 
f sndsxd − cos x whenever n is a multiple of 4. Therefore

f s24dsxd − cos x

and, differentiating three more times, we have

f s27dsxd − sin x ■

Our main use for the limit in Equation 2 has been to prove the differentiation formula 
for the sine function. But this limit is also useful in finding certain other trigonometric 
limits, as the following two examples show.

ExamplE 5� Find lim
x l 0

 
sin 7x

4x
.

SoLUtion In order to apply Equation 2, we first rewrite the function by multiplying 
and dividing by 7:

sin 7x

4x
−

7

4 S sin 7x

7x D
If we let � − 7x, then � l 0 as x l 0, so by Equation 2 we have

lim
x l 0

 
sin 7x

4x
−

7

4
 lim
x l 0

S sin 7x

7x D
   −

7

4
 lim
� l 0

 
sin �

�
−

7

4
? 1 −

7

4
■

ExamplE 6 Calculate lim
x l 0

 x cot x.

SoLUtion Here we divide numerator and denominator by x:

  lim
x l 0

 x cot x − lim
x l 0

 
x cos x

sin x

  − lim
x l 0

 
cos x

sin x

x

−
lim
x l 0 

cos x

lim
x l 0

 
sin x

x

 −
cos 0

1
    (by the continuity of cosine and Equation 2)

  − 1 ■

PS  Look for a pattern.

Note that sin 7x ± 7 sin x.
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196 Chapter 3  Differentiation Rules

 31. (a)  Use the Quotient Rule to differentiate the function

f sxd −
tan x 2 1

sec x

 (b)  Simplify the expression for f sxd by writing it in terms  
of sin x and cos x, and then find f 9sxd.

 (c)  Show that your answers to parts (a) and (b) are  
equivalent.

 32.  Suppose f s�y3d − 4 and f 9s�y3d − 22, and let 
tsxd − f sxd sin x and hsxd − scos xdyf sxd. Find 

 (a) t9s�y3d (b) h9s�y3d

33–34 For what values of x does the graph of f  have a horizon-
tal tangent?

 33. f sxd − x 1 2 sin x 34. f sxd − e x cos x

 35�.  A mass on a spring vibrates horizontally on a smooth  
level surface (see the figure). Its equation of motion is  
xstd − 8 sin t, where t is in seconds and x in centimeters.

 (a) Find the velocity and acceleration at time t.
 (b)  Find the position, velocity, and acceleration of the mass  

at time t − 2�y3. In what direction is it moving at that 
time?

x x0

equilibrium
position

 36.  An elastic band is hung on a hook and a mass is hung on the 
lower end of the band. When the mass is pulled downward 
and then released, it vibrates vertically. The equation of 
motion is s − 2 cos t 1 3 sin t, t > 0, where s is measured  
in centi meters and t in seconds. (Take the positive direction 
to be downward.)

 (a) Find the velocity and acceleration at time t.
 (b) Graph the velocity and acceleration functions.
 (c)  When does the mass pass through the equilibrium  

position for the first time?
 (d)  How far from its equilibrium position does the mass 

travel?
 (e)  When is the speed the greatest?

 37.  A ladder 10 ft long rests against a vertical wall. Let � be the 
angle between the top of the ladder and the wall and let x be 
the distance from the bottom of the ladder to the wall. If the 
bottom of the ladder slides away from the wall, how fast 
does x change with respect to � when � − �y3?

 38.  An object with weight W is dragged along a horizontal 
plane by a force acting along a rope attached to the object. 

;

1–16 Differentiate.

 1. f sxd − x 2 sin x 2. f sxd − x cos x 1 2 tan x

 3. f sxd − e x cos x 4. y − 2 sec x 2 csc x

 5�. y − sec � tan � 6. ts�d − e�stan� 2 �d

 7. y − c cos t 1 t 2 sin t 8. f std −
cot t

e t

 9. y −
x

2 2 tan x
 10. y − sin � cos �

 11. f s�d −
sin �

1 1 cos �
 12. y −

cos x

1 2 sin x

 13. y −
t sin t

1 1 t
 14. y −

sin t

1 1 tan t

 15�. f s�d − � cos � sin � 16. f std − te t cot t

 17. Prove that 
d

dx
 scsc xd − 2csc x cot x.

 18. Prove that 
d

dx
 ssec xd − sec x tan x.

 19. Prove that 
d

dx
 scot xd − 2csc2x.

 20.  Prove, using the definition of derivative, that if  
f sxd − cos x, then f 9sxd − 2sin x.

21–24 Find an equation of the tangent line to the curve at the 
given point.

 21. y − sin x 1 cos x, s0, 1d 22. y − e x cos x, s0, 1d

 23. y − cos x 2 sin x, s�, 21d 24. y − x 1 tan x, s�, �d

 25�. (a)  Find an equation of the tangent line to the curve 
y − 2x sin x at the point s�y2, �d.

 (b)  Illustrate part (a) by graphing the curve and the tangent 
line on the same screen.

 26. (a)  Find an equation of the tangent line to the curve 
y − 3x 1 6 cos x at the point s�y3, � 1 3d.

 (b)  Illustrate part (a) by graphing the curve and the tangent 
line on the same screen.

 27. (a)  If f sxd − sec x 2 x, find f 9sxd.
 (b)  Check to see that your answer to part (a) is reasonable by 

graphing both f  and f 9 for | x | , �y2.

 28. (a)  If f sxd − e x cos x, find f 9sxd and f 99sxd.
 (b)  Check to see that your answers to part (a) are reasonable 

by graphing f , f 9, and f 99.

 29.  If Hs�d − � sin �, find H9s�d and H99s�d.

 30.  If f std − sec t, find f 0s�y4d.

;

;

;

;

3.3 exerCiSeS
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 5�5�.  Differentiate each trigonometric identity to obtain a new  
(or familiar) identity.

 (a) tan x −
sin x

cos x
 (b) sec x −

1

cos x

 (c) sin x 1 cos x −
1 1 cot x

csc x

 5�6.  A semicircle with diameter PQ sits on an isosceles triangle 
PQR to form a region shaped like a two-dimensional 
ice-cream cone, as shown in the figure. If As�d is the area of 
the semicircle and Bs�d is the area of the triangle, find

lim
�l

 

01 
As�d
Bs�d

P Q

R

B(¨)

A(¨)

¨

10 cm 10 cm

 5�7.  The figure shows a circular arc of length s and a chord of 
length d, both subtended by a central angle �. Find

lim
�l

 

01 
s

d

d

¨

s

 5�8.  Let f sxd −
x

s1 2 cos 2x 
.

 (a)  Graph f . What type of discontinuity does it appear to  
have at 0?

 (b)  Calculate the left and right limits of f  at 0. Do these  
values confirm your answer to part (a)?

;

If the rope makes an angle � with the plane, then the 
magnitude of the force is

F −
�W

� sin � 1 cos �

   where � is a constant called the coefficient of friction.
 (a) Find the rate of change of F with respect to �.
 (b) When is this rate of change equal to 0?
 (c)  If W − 50 lb and � − 0.6, draw the graph of F as 

a function of � and use it to locate the value of � for 
which dFyd� − 0. Is the value consistent with your 
answer to part (b)?

39–5�0 Find the limit.

 39. lim
xl0

 
sin 5x

3x
 40. lim

xl0
 

sin x

sin �x

 41. lim
t l 0

 
tan 6t

sin 2t
 42. lim

� l 0
 
cos � 2 1

sin �

 43. lim
x l 0

 
sin 3x

5x 3 2 4x
 44. lim

x l 0
 
sin 3x sin 5x

x 2

 45�. lim
� l 0

 
sin �

� 1 tan �
 46. lim

xl0
 csc x sinssin xd

 47. lim
� l 0

 
cos � 2 1

2� 2  48. lim
x l 0

 
sinsx 2d

x

 49. lim
x l �y4

 
1 2 tan x

sin x 2 cos x
 5�0. lim

x l 1
 

sinsx 2 1d
x 2 1 x 2 2

5�1–5�2 Find the given derivative by finding the first few deriva-
tives and observing the pattern that occurs.

 5�1. 
d 99

dx99
 ssin xd 5�2. 

d 35

dx 35
 sx sin xd

 5�3.  Find constants A and B such that the function 
y − A sin x 1 B cos x satisfies the differential equation 
y99 1 y9 2 2y − sin x.

 5�4. (a) Evaluate lim
x l `

 x sin 
1

x
.

 (b) Evaluate lim
x l 0

 x sin 
1

x
.

 (c) Illustrate parts (a) and (b) by graphing y − x sins1yxd.

;

;

Suppose you are asked to differentiate the function 

Fsxd − sx 2 1 1

The differentiation formulas you learned in the previous sections of this chapter do not  
enable you to calculate F9sxd.
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198 Chapter 3  Differentiation Rules

Observe that F is a composite function. In fact, if we let y − f sud − su  and let 
u − tsxd − x 2 1 1, then we can write y − Fsxd − f stsxdd, that is, F − f 8 t. We know 
how to differentiate both f  and t, so it would be useful to have a rule that tells us how to 
find the derivative of F − f 8 t in terms of the derivatives of f  and t.

It turns out that the derivative of the composite function f 8 t is the product of the  
derivatives of f  and t. This fact is one of the most important of the differentiation rules and 
is called the Chain Rule. It seems plausible if we interpret derivatives as rates of change.  
Regard duydx as the rate of change of u with respect to x, dyydu as the rate of change of 
y with respect to u, and dyydx as the rate of change of y with respect to x. If u changes 
twice as fast as x and y changes three times as fast as u, then it seems reasonable that y 
changes six times as fast as x, and so we expect that

dy

dx
−

dy

du
 
du

dx

The Chain Rule If t is differentiable at x and f  is differentiable at tsxd, then 
the composite function F − f 8 t defined by Fsxd − f stsxdd is differentiable at x 
and F9 is given by the product

F9sxd − f 9stsxdd ? t9sxd

 In Leibniz notation, if y − f sud and u − tsxd are both differentiable functions, 
then

dy

dx
−

dy

du
 
du

dx

Comments on the proof of the Chain rule Let Du be the change in u correspond-
ing to a change of Dx in x, that is,

Du − tsx 1 Dxd 2 tsxd

 Then the corresponding change in y is

Dy − f su 1 Dud 2 f sud

 It is tempting to write

  
dy

dx
− lim

Dxl 0
 
Dy

Dx

1    − lim
Dx l 0

 
Dy

Du
?

Du

Dx

  − lim
Dx l 0

 
Dy

Du
? lim

Dx l 0
 
Du

Dx

  − lim
Du l 0

 
Dy

Du
? lim

Dx l 0
 
Du

Dx
 

(Note that Du l 0 as Dx l 0 
since t is continuous.)

  −
dy

du
 
du

dx

James Gregory
The first person to formulate the 
Chain Rule was the Scottish mathe- 
matician James Gregory (1638–1675), 
who also designed the first practical 
reflecting telescope. Gregory discov- 
ered the basic ideas of calculus at 
about the same time as Newton.  
He became the first Professor of 
Mathematics at the University of  
St. Andrews and later held the same 
position at the University of Edin- 
burgh. But one year after accep- 
ting that position he died at the age 
of 36.

See Section 1.3 for a review of  
composite functions.
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The only flaw in this reasoning is that in (1) it might happen that Du − 0 (even when 
Dx ± 0) and, of course, we can’t divide by 0. Nonetheless, this reasoning does at least 
suggest that the Chain Rule is true. A full proof of the Chain Rule is given at the end of 
this section. ■

The Chain Rule can be written either in the prime notation

2  s f 8 td9sxd − f 9stsxdd ? t9sxd

or, if y − f sud and u − tsxd, in Leibniz notation:

3  
dy

dx
−

dy

du
 
du

dx

Equation 3 is easy to remember because if dyydu and duydx were quotients, then we 
could cancel du. Remember, however, that du has not been defined and duydx should not 
be thought of as an actual quotient.

ExamplE 1 Find F9sxd if Fsxd − sx 2 1 1.

SoLUtion 1 (using Equation 2): At the beginning of this section we expressed F as 
Fsxd − s f 8 tdsxd − f stsxdd where f sud − su  and tsxd − x 2 1 1. Since

f 9sud − 1
2 u21y2 −

1

2su 
    and    t9sxd − 2x

we have  F9sxd − f 9stsxdd ? t9sxd

−
1

2sx 2 1 1
? 2x −

x

sx 2 1 1

SoLUtion 2 (using Equation 3): If we let u − x 2 1 1 and y − su , then

  F9sxd −
dy

du
 
du

dx
−

1

2su 
 s2xd −

1

2sx 2 1 1
s2xd −

x

sx 2 1 1
 ■

When using Formula 3 we should bear in mind that dyydx refers to the derivative of  
y when y is considered as a function of x (called the derivative of y with respect to x), 
whereas dyydu refers to the derivative of y when considered as a function of u (the 
derivative of y with respect to u). For instance, in Example 1, y can be considered as a 
function of x (y − sx 2 1 1) and also as a function of u (y − su ). Note that

dy

dx
− F9sxd −

x

sx 2 1 1
    whereas    

dy

du
− f 9sud −

1

2su 

NOTE In using the Chain Rule we work from the outside to the inside. Formula 2 
says that we differentiate the outer function f  [at the inner function tsxd] and then we 
multiply by the derivative of the inner function.

d

dx
f stsxdd − f 9 stsxdd ? t9sxd

 

outer
function

evaluated
at inner
function

derivative
of outer
function

evaluated
at inner
function

derivative
of inner
function

7et0304note1
01/13/10
MasterID: 01592
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200 Chapter 3  Differentiation Rules

ExamplE 2� Differentiate (a) y − sinsx 2 d and (b) y − sin2x.

SOLUtION 
(a) If y − sinsx 2 d, then the outer function is the sine function and the inner function is 
the squaring function, so the Chain Rule gives

 
dy

dx
−

d

dx
sin sx 2 d − cos sx 2 d ? 2x

 

outer
function

evaluated
at inner
function

derivative
of outer
function

evaluated
at inner
function

derivative
of inner
function

7et0304note2
01/13/10
MasterID: 01593

 − 2x cossx 2 d

(b) Note that sin2x − ssin xd2. Here the outer function is the squaring function and the 
inner function is the sine function. So

dy

dx
−

d

dx
 ssin xd2           −            2 ? ssin xd ? cos x

 

inner
function

derivative
of outer
function

evaluated
at inner
function

derivative
of inner
function

7et0304note3
01/13/10
MasterID: 01594

 

inner
function

derivative
of outer
function

evaluated
at inner
function

derivative
of inner
function

7et0304note3
01/13/10
MasterID: 01594

The answer can be left as 2 sin x cos x or written as sin 2x (by a trigonometric identity 
known as the double-angle formula). ■

In Example 2(a) we combined the Chain Rule with the rule for differentiating the sine 
function. In general, if y − sin u, where u is a differentiable function of x, then, by the 
Chain Rule,

dy

dx
−

dy

du
 
du

dx
− cos u 

du

dx

Thus 
d

dx
 ssin ud − cos u 

du

dx

In a similar fashion, all of the formulas for differentiating trigonometric functions can 
be combined with the Chain Rule.

Let’s make explicit the special case of the Chain Rule where the outer function f  is 
a power function. If y − ftsxdgn, then we can write y − f sud − un where u − tsxd. By 
using the Chain Rule and then the Power Rule, we get

dy

dx
−

dy

du
 
du

dx
− nun21 

du

dx
− nftsxdgn21t9sxd

4  The Power Rule Combined with the Chain Rule If n is any real number 
and u − tsxd is differentiable, then

d

dx
 sun d − nun21 

du

dx

 Alternatively, 
d

dx
 ftsxdgn − nftsxdgn21 ? t9sxd

Notice that the derivative in Example 1 could be calculated by taking n − 1
2 in Rule 4.

See Reference Page 2 or Appendix D.
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 SeCtION 3.4  The Chain Rule 201

ExamplE 3� Differentiate y − sx 3 2 1d100.

SOLUtION Taking u − tsxd − x 3 2 1 and n − 100 in (4), we have

 
dy

dx
−

d

dx
 sx 3 2 1d100 − 100sx 3 2 1d99 

d

dx
 sx 3 2 1d

  − 100sx 3 2 1d99 ? 3x 2 − 300x 2sx 3 2 1d99  
■

ExamplE 4� Find f 9sxd if f sxd −
1

s3 x 2 1 x 1 1
.

SOLUtION First rewrite f : f sxd − sx 2 1 x 1 1d21y3

Thus  f 9sxd − 21
3 sx 2 1 x 1 1d24y3 

d

dx
 sx 2 1 x 1 1d

  − 21
3 sx 2 1 x 1 1d24y3s2x 1 1d ■

ExamplE 5� Find the derivative of the function 

tstd − S t 2 2

2t 1 1D9

SOLUtION Combining the Power Rule, Chain Rule, and Quotient Rule, we get 

 t9std − 9S t 2 2

2t 1 1D8

 
d

dt
 S t 2 2

2t 1 1D
 − 9S t 2 2

2t 1 1D8

 
s2t 1 1d ? 1 2 2st 2 2d

s2t 1 1d2  −
45st 2 2d8

s2t 1 1d10 ■

ExamplE 6� Differentiate y − s2x 1 1d5sx 3 2 x 1 1d4.

SOLUtION In this example we must use the Product Rule before using the Chain Rule:

 
dy

dx
− s2x 1 1d5 

d

dx
 sx 3 2 x 1 1d4 1 sx 3 2 x 1 1d4 

d

dx
 s2x 1 1d5

  − s2x 1 1d5 ? 4sx 3 2 x 1 1d3 
d

dx
 sx 3 2 x 1 1d

  1 sx 3 2 x 1 1d4 ? 5s2x 1 1d4 
d

dx
 s2x 1 1d

  − 4s2x 1 1d5sx 3 2 x 1 1d3s3x 2 2 1d 1 5sx 3 2 x 1 1d4s2x 1 1d4 ? 2

Noticing that each term has the common factor 2s2x 1 1d4sx 3 2 x 1 1d3, we could  
factor it out and write the answer as

 
dy

dx
− 2s2x 1 1d4sx 3 2 x 1 1d3s17x 3 1 6x 2 2 9x 1 3d ■

10

_10

_2 1

y

yª

FIGURE 1

The graphs of the functions y and y9  
in Example 6 are shown in Figure 1. 
Notice that y9 is large when y increases 
rapidly and y9 − 0 when y has a hori- 
zontal tangent. So our answer appears  
to be reasonable.
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202 Chapter 3  Differentiation Rules

ExamplE 7� Differentiate y − e sin x.

SOLUtION Here the inner function is tsxd − sin x and the outer function is the expo-
nential function f sxd − ex. So, by the Chain Rule,

 
dy

dx
−

d

dx
 se sin x d − e sin x 

d

dx
 ssin xd − e sin x cos x ■

We can use the Chain Rule to differentiate an exponential function with any base 
b . 0. Recall from Section 1.5 that b − e ln b. So

bx − se ln b dx − e sln bdx

and the Chain Rule gives

 
d

dx
 sbx d −

d

dx
 se sln bdx d − e sln bdx 

d

dx
 sln bdx

 − e sln bdx ∙ ln b − bx ln b

because ln b is a constant. So we have the formula

5   
d

dx
 sbx d − bx ln b

In particular, if b − 2, we get

6   
d

dx
 s2x d − 2x ln 2

In Section 3.1 we gave the estimate

d

dx
 s2x d < s0.69d2x

This is consistent with the exact formula (6) because ln 2 < 0.693147. 
The reason for the name “Chain Rule” becomes clear when we make a longer chain 

by adding another link. Suppose that y − f sud, u − tsxd, and x − hstd, where f , t, and 
h are differentiable functions. Then, to compute the derivative of y with respect to t, we 
use the Chain Rule twice:

dy

dt
−

dy

dx
 
dx

dt
−

dy

du
 
du

dx
 
dx

dt

ExamplE 8� If f sxd − sinscosstan xdd, then

  f 9sxd − cosscosstan xdd 
d

dx
 cosstan xd

 − cosscosstan xddf2sinstan xdg 
d

dx
 stan xd

 − 2cosscosstan xdd sinstan xd sec2x

Notice that we used the Chain Rule twice. ■

More generally, the Chain Rule gives

d

dx
 seud − eu 

du

dx

Don’t confuse Formula 5 (where x is 
the exponent) with the Power Rule 
(where x is the base):

d

dx
 sx n d − nx n21
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 SeCtION 3.4  The Chain Rule 203

ExamplE 9� Differentiate y − e sec 3 �.

SOLUtION The outer function is the exponential function, the middle function is the 
secant function, and the inner function is the tripling function. So we have

 
dy

d�
− e sec 3� 

d

d�
 ssec 3�d

 − e sec 3� sec 3� tan 3� 
d

d�
 s3�d

 − 3e sec 3� sec 3� tan 3� ■

how to prove the Chain rule
Recall that if y − f sxd and x changes from a to a 1 Dx, we define the increment of y as

Dy − f sa 1 Dxd 2 f sad

According to the definition of a derivative, we have

lim
Dx l 0

 
Dy

Dx
− f 9sad

So if we denote by « the difference between the difference quotient and the derivative,  
we obtain

lim
Dx l 0

 « − lim
Dx l 0

SDy

Dx
2 f 9sadD − f 9sad 2 f 9sad − 0

But « −
Dy

Dx
2 f 9sad ? Dy − f 9sad Dx 1 « Dx

If we define « to be 0 when Dx − 0, then « becomes a continuous function of Dx. Thus, 
for a differentiable function f, we can write

7   Dy − f 9sad Dx 1 « Dx where     « l 0 as Dx l 0

and « is a continuous function of Dx. This property of differentiable functions is what  
enables us to prove the Chain Rule.

prOOf Of the ChaIN rULe Suppose u − tsxd is differentiable at a and y − f sud is dif-
ferentiable at b − tsad. If Dx is an increment in x and Du and Dy are the corresponding 
increments in u and y, then we can use Equation 7 to write

8   Du − t9sad Dx 1 «1 Dx − ft9sad 1 «1g Dx

where «1 l 0 as Dx l 0. Similarly

9   Dy − f 9sbd Du 1 «2 Du − f f 9sbd 1 «2 g Du

where «2 l 0 as Du l 0. If we now substitute the expression for Du from Equation 8 
into Equation 9, we get

Dy − f f 9sbd 1 «2 g ft9sad 1 «1g Dx
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204 Chapter 3  Differentiation Rules

 3�1. Fstd − et sin 2t 3�2�. Fstd −
t 2

st 3 1 1 

 3�3�. Gsxd − 4 Cyx 3�4�. Usyd − S y 4 1 1

y 2 1 1D5

 3�5�. y − cosS 1 2 e2x

1 1 e2xD 3�6�. y − x 2e21yx

 3�7�. y − cot2ssin �d 3�8�. y − s1 1 xe22x 

 3�9�. f std − tanssecscos tdd 4�0. y − e sin 2x 1 sinse 2xd

 4�1. f std − sin2se sin2 t d 4�2�. y − sx 1 sx 1 sx 

 4�3�. tsxd − s2ra rx 1 ndp 4�4�. y − 2 34x

 4�5�. y − cosssinstan �xd 4�6�. y − fx 1 sx 1 sin2xd3g 4

4�7�–5�0 Find y9 and y 99.

 4�7�. y − cosssin 3�d 4�8�. y −
1

s1 1 tan xd2

 4�9�. y − s1 2 sec t  5�0. y − eex

5�1–5�4� Find an equation of the tangent line to the curve at the given 
point.

 5�1. y − 2 x, s0, 1d 5�2�. y − s1 1 x 3 

, s2, 3d

 5�3�. y − sinssin xd, s�, 0d 5�4�. y − xe2x 2

, s0, 0d

 5�5�. (a)  Find an equation of the tangent line to the curve 
y − 2ys1 1 e2x d at the point s0, 1d.

 (b)  Illustrate part (a) by graphing the curve and the tangent line 
on the same screen.

;

3�.4� exerCISeS

1–6� Write the composite function in the form f stsxdd.  
[Identify the inner function u − tsxd and the outer function 
y − f sud.] Then find the derivative dyydx.

 1. y − s3 1 1 4x  2�. y − s2x 3 1 5d4

 3�. y − tan �x 4�. y − sinscot xd

 5�. y − esx 

 6�. y − s2 2 e x 

7�–4�6� Find the derivative of the function.

 7�. Fsxd − s5x 6 1 2x 3d4 8�. Fsxd − s1 1 x 1 x 2d99

 9�. f sxd − s5x 1 1  10. f sxd −
1

s3 x 2 2 1 

 11. f s�d − coss� 2d 12�. ts�d − cos2 �

 13�. y − x 2e23x 14�. f std − t sin �t

 15�. f std − e at sin bt 16�. tsxd − e x 22x

 17�. f sxd − s2x 2 3d4sx 2 1 x 1 1d5

 18�. tsxd − sx 2 1 1d3sx 2 1 2d6

 19�. hstd − st 1 1d2y3s2t 2 2 1d3

 2�0. Fstd − s3t 2 1d4s2t 1 1d23

 2�1. y − Î x

x 1 1
  2�2�. y − Sx 1

1

xD5

 2�3�. y − e tan � 2�4�. f std − 2 t 3

 2�5�. tsud − S u 3 2 1

u 3 1 1D
8

 2�6�. sstd − Î 1 1 sin t

1 1 cos t
 

 2�7�. rstd − 10 2st  

 2�8�. f szd − e zysz21d

 2�9�. Hsrd −
sr 2 2 1d3

s2r 1 1d5  3�0. Js�d − tan2sn�d

so 
Dy

Dx
− f f 9sbd 1 «2 g ft9sad 1 «1g

 As Dx l 0, Equation 8 shows that Du l 0. So both «1 l 0 and «2 l 0 as Dx l 0. 
Therefore

 
dy

dx
− lim

Dx l 0
 
Dy

Dx
− lim

Dx l 0
 f f 9sbd 1 «2 g ft9sad 1 «1g

 − f 9sbd t9sad − f 9stsadd t9sad

This proves the Chain Rule. ■
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 Section 3.4  The Chain Rule 205

 66.  If f  is the function whose graph is shown, let hsxd − f s f sxdd 
and tsxd − f sx 2 d. Use the graph of f  to estimate the value  
of each derivative.

 (a) h9s2d      (b) t9s2d

x

y

0 1

y=ƒ

1

 67.  If tsxd − sf sxd , where the graph of f  is shown, evaluate 
t9s3d.

x

y

0

1

1

f

 68.  Suppose f  is differentiable on R and � is a real number.  
Let Fsxd − f sx � d and Gsxd − f f sxdg�. Find expressions  
for (a) F9sxd and (b) G9sxd.

 69.  Suppose f  is differentiable on R. Let Fsxd − f se x d and 
Gsxd − e f sxd. Find expressions for (a) F9sxd and (b) G9sxd.

 70.  Let tsxd − e cx 1 f sxd and hsxd − ekx f sxd, where f s0d − 3, 
f 9s0d − 5, and f 99s0d − 22.

 (a)  Find t9s0d and t99s0d in terms of c.
 (b)  In terms of k, find an equation of the tangent line to the 

graph of h at the point where x − 0.

 71.  Let rsxd − f stshsxddd, where hs1d − 2, ts2d − 3, h9s1d − 4, 
t9s2d − 5, and f 9s3d − 6. Find r9s1d.

 72.  If t is a twice differentiable function and f sxd − xtsx 2 d, find 
f 99 in terms of t, t9, and t99.

 73.   If Fsxd − f s3f s4 f sxddd, where f s0d − 0 and f 9s0d − 2,  
find F9s0d.

 74.   If Fsxd − f sx f sx f sxddd, where f s1d − 2, f s2d − 3,  
f 9s1d − 4, f 9s2d − 5, and f 9s3d − 6, find F9s1d.

 75.  Show that the function y − e 2xsA cos 3x 1 B sin 3xd satisfies 
the differential equation y99 2 4y9 1 13y − 0.

 76.  For what values of r does the function y − erx satisfy the  
differential equation y99 2 4y9 1 y − 0?

 77.  Find the 50th derivative of y − cos 2x.

 78. Find the 1000th derivative of f sxd − xe2x.

 56. (a)  The curve y − | x |ys2 2 x 2  is called a bullet-nose 
curve. Find an equation of the tangent line to this curve at 
the point s1, 1d.

 (b)  Illustrate part (a) by graphing the curve and the tangent 
line on the same screen.

 57. (a)  If f sxd − xs2 2 x 2 , find f 9sxd.
 (b)  Check to see that your answer to part (a) is reasonable by 

comparing the graphs of f  and f 9.

 58.  The function f sxd − sinsx 1 sin 2xd, 0 < x < �, arises in 
applications to frequency modulation (FM) synthesis.

 (a)  Use a graph of f  produced by a calculator to make a 
rough sketch of the graph of f 9.

 (b)  Calculate f 9sxd and use this expression, with a calculator, 
to graph f 9. Compare with your sketch in part (a).

 59.  Find all points on the graph of the function 
f sxd − 2 sin x 1 sin2x at which the tangent line is horizontal.

 60.  At what point on the curve y − s1 1 2x  is the tangent line 
perpendicular to the line 6x 1 2y − 1?

 61.  If Fsxd − f stsxdd, where f s22d − 8, f 9s22d − 4, f 9s5d − 3, 
ts5d − 22, and t9s5d − 6, find F9s5d.

 62.  If hsxd − s4 1 3f sxd , where f s1d − 7 and f 9s1d − 4,  
find h9s1d.

 63. A table of values for f , t, f 9, and t9 is given.

x f sxd tsxd f 9sxd t9sxd

1 3 2 4 6
2 1 8 5 7
3 7 2 7 9

 (a) If hsxd − f stsxdd, find h9s1d.
 (b) If Hsxd − ts f sxdd, find H9s1d.

 64. Let f  and t be the functions in Exercise 63.
 (a) If Fsxd − f s f sxdd, find F9s2d.
 (b) If Gsxd − tstsxdd, find G9s3d.

 65.  If f  and t are the functions whose graphs are shown, let 
usxd − f stsxdd, vsxd − ts f sxdd, and wsxd − tstsxdd. Find 
each derivative, if it exists. If it does not exist, explain why.

 (a) u9s1d      (b) v9s1d      (c) w9s1d

x

y

0

f

g
1

1

;

;

;
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206 Chapter 3  Differentiation Rules

 (c)  Graph p for the case a − 10, k − 0.5 with t measured in 
hours. Use the graph to estimate how long it will take for 
80% of the population to hear the rumor.

 8�5�.  The average blood alcohol concentration (BAC) of eight 
male subjects was measured after consumption of 15 mL of 
ethanol (corresponding to one alcoholic drink). The resulting 
data were modeled by the concentration function

Cstd − 0.0225te20.0467t

   where t is measured in minutes after consumption and C is 
measured in mgymL.

 (a) How rapidly was the BAC increasing after 10 minutes?
 (b) How rapidly was it decreasing half an hour later?

  Source: Adapted from P. Wilkinson et al., “Pharmacokinetics of Ethanol after 
Oral Administration in the Fasting State,” Journal of Pharmacokinetics and 
Biopharmaceutics 5 (1977): 207–24.

 8�6�.  In Section 1.4 we modeled the world population from 1900 
to 2010 with the exponential function

Pstd − s1436.53d ? s1.01395d t

   where t − 0 corresponds to the year 1900 and Pstd is 
measured in millions. According to this model, what was the 
rate of increase of world population in 1920? In 1950? In 
2000?

 8�7�.  A particle moves along a straight line with displacement sstd, 
velocity vstd, and acceleration astd. Show that

astd − vstd 
dv

ds

   Explain the difference between the meanings of the 
derivatives dvydt and dvyds.

 8�8�.  Air is being pumped into a spherical weather balloon. At  
any time t, the volume of the balloon is Vstd and its radius  
is rstd.

 (a)  What do the derivatives dVydr and dVydt represent?
 (b)  Express dVydt in terms of drydt.

 8�9�.  The flash unit on a camera operates by storing charge on a 
capacitor and releasing it suddenly when the flash is set off. 
The following data describe the charge Q remaining on the 
capacitor (measured in microcoulombs, mC) at time t (mea- 
sured in seconds).

t  0.00  0.02  0.04  0.06  0.08  0.10

Q 100.00 81.87 67.03 54.88 44.93 36.76

 (a)  Use a graphing calculator or computer to find an expo-
nential model for the charge.

 (b)  The derivative Q9std represents the electric current (mea-
sured in microamperes, mA) flowing from the capacitor 
to the flash bulb. Use part (a) to estimate the current 
when t − 0.04 s. Compare with the result of Example 
2.1.2.

;

;

 7�9�.  The displacement of a particle on a vibrating string is given 
by the equation sstd − 10 1 1

4 sins10� td where s is measured 
in centimeters and t in seconds. Find the velocity of the 
particle after t seconds.

 8�0.  If the equation of motion of a particle is given by 
s − A coss�t 1 �d, the particle is said to undergo simple  
harmonic motion.

 (a) Find the velocity of the particle at time t.
 (b) When is the velocity 0?

 8�1.   A Cepheid variable star is a star whose brightness alternately 
increases and decreases. The most easily visible such star is 
Delta Cephei, for which the interval between times of max- 
imum brightness is 5.4 days. The average brightness of this 
star is 4.0 and its brightness changes by 60.35. In view of 
these data, the brightness of Delta Cephei at time t, where t 
is mea sured in days, has been modeled by the function

Bstd − 4.0 1 0.35 sinS 2� t

5.4 D
 (a) Find the rate of change of the brightness after t days.
 (b)  Find, correct to two decimal places, the rate of increase 

after one day.

 8�2�.  In Example 1.3.4 we arrived at a model for the length of day- 
light (in hours) in Philadelphia on the tth day of the year:

Lstd − 12 1 2.8 sinF 2�

365
st 2 80dG

   Use this model to compare how the number of hours of 
day light is increasing in Philadelphia on March 21 and  
May 21.

 8�3�.  The motion of a spring that is subject to a frictional force or  
a damping force (such as a shock absorber in a car) is often 
modeled by the product of an exponential function and a sine 
or cosine function. Suppose the equation of motion of a 
point on such a spring is

sstd − 2e21.5 t sin 2�t

   where s is measured in centimeters and t in seconds. Find  
the velocity after t seconds and graph both the position and 
velocity functions for 0 < t < 2.

 8�4�.  Under certain circumstances a rumor spreads according to  
the equation

pstd −
1

1 1 ae 2k t

   where pstd is the proportion of the population that has heard 
the rumor at time t and a and k are positive constants. [In 
Sec tion 9.4 we will see that this is a reasonable equation  
for pstd.]

 (a) Find lim t l ` pstd.
 (b) Find the rate of spread of the rumor.

;
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 SeCtION 3.4  The Chain Rule 207

 9�4�.  Use the Chain Rule and the Product Rule to give an  
alternative proof of the Quotient Rule.

  [Hint: Write f sxdytsxd − f sxdftsxdg21.]

 9�5�. (a) If n is a positive integer, prove that

d

dx
 ssinnx cos nxd − n sinn21x cossn 1 1dx

 (b)  Find a formula for the derivative of y − cosnx cos nx 
that is similar to the one in part (a).

 9�6�.  Suppose y − f sxd is a curve that always lies above the  
x-axis and never has a horizontal tangent, where f  is 
dif ferentiable everywhere. For what value of y is the rate  
of change of y 5 with respect to x eighty times the rate of 
change of y with respect to x?

 9�7�.  Use the Chain Rule to show that if � is measured in 
degrees, then

d

d�
 ssin �d −

�

180
 cos �

   (This gives one reason for the convention that radian 
measure is always used when dealing with trigonometric 
functions in calculus: the differentiation formulas would 
not be as simple if we used degree measure.)

 9�8�. (a) Write | x | − sx 2  and use the Chain Rule to show that

d

dx
 | x | −

x

| x |
 (b)  If f sxd − | sin x |, find f 9sxd and sketch the graphs of f   

and f 9. Where is f  not differentiable?
 (c)  If tsxd − sin | x |, find t9sxd and sketch the graphs of t  

and t9. Where is t not differentiable?

 9�9�.  If y − f sud and u − tsxd, where f  and t are twice differ- 
en tiable functions, show that

d 2 y

dx 2 −
d 2 y

du 2 S du

dxD2

1
dy

du
 

d 2u

dx 2

 100.  If y − f sud and u − tsxd, where f  and t possess third 
derivatives, find a formula for d 3yydx 3 similar to the one 
given in Exercise 99.

 9�0.   The table gives the US population from 1790 to 1860.

Year Population Year Population

1790 3,929,000 1830 12,861,000
1800 5,308,000 1840 17,063,000
1810 7,240,000 1850 23,192,000
1820 9,639,000 1860 31,443,000

 (a)  Use a graphing calculator or computer to fit an expo-
nential function to the data. Graph the data points and 
the exponential model. How good is the fit?

 (b)  Estimate the rates of population growth in 1800 and 
1850 by averaging slopes of secant lines.

 (c)  Use the exponential model in part (a) to estimate the 
rates of growth in 1800 and 1850. Compare these esti-
mates with the ones in part (b).

 (d)  Use the exponential model to predict the popula-
tion in 1870. Compare with the actual population of 
38,558,000. Can you explain the discrepancy?

 9�1.  Computer algebra systems have commands that differentiate 
functions, but the form of the answer may not be convenient 
and so further commands may be necessary to simplify the 
answer.

 (a)  Use a CAS to find the derivative in Example 5 and 
compare with the answer in that example. Then use the 
simplify command and compare again.

 (b)  Use a CAS to find the derivative in Example 6. What  
happens if you use the simplify command? What hap-
pens if you use the factor command? Which form of the 
answer would be best for locating horizontal tangents?

 9�2�. (a) Use a CAS to differentiate the function

f sxd − Î x 4 2 x 1 1

x 4 1 x 1 1

  and to simplify the result.
 (b) Where does the graph of f  have horizontal tangents?
 (c)  Graph f  and f 9 on the same screen. Are the graphs 

consistent with your answer to part (b)?

 9�3�. Use the Chain Rule to prove the following.
 (a)  The derivative of an even function is an odd function.
 (b)  The derivative of an odd function is an even function.

;

CAS

CAS
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208 Chapter 3  Differentiation Rules

APPLIED ProjEct whErE shouLD A PILot stArt DEscEnt?

An approach path for an aircraft landing is shown in the figure and satisfies the following  
conditions:

 (i)  The cruising altitude is h when descent starts at a horizontal distance , from touch-
down at the origin.

 (ii) The pilot must maintain a constant horizontal speed v throughout descent.

 (iii)  The absolute value of the vertical acceleration should not exceed a constant k (which is 
much less than the acceleration due to gravity). 

1.  Find a cubic polynomial Psxd − ax 3 1 bx 2 1 cx 1 d that satisfies condition (i) by  
imposing suitable conditions on Psxd and P9sxd at the start of descent and at touchdown.

2. Use conditions (ii) and (iii) to show that  

6hv 2

,2 < k

3.  Suppose that an airline decides not to allow vertical acceleration of a plane to exceed  
k − 860 miyh2. If the cruising altitude of a plane is 35,000 ft and the speed is 300 miyh, 
how far away from the airport should the pilot start descent?

4. Graph the approach path if the conditions stated in Problem 3 are satisfied.

y

x0

y=P(x)

�

h

;

The functions that we have met so far can be described by expressing one variable explic-
itly in terms of another variable—for example,

y − sx 3 1 1    or    y − x sin x

or, in general, y − f sxd. Some functions, however, are defined implicitly by a relation 
between x and y such as

1   x 2 1 y 2 − 25

or

2   x 3 1 y 3 − 6xy

In some cases it is possible to solve such an equation for y as an explicit function (or 
several functions) of x. For instance, if we solve Equation 1 for y, we get y − 6s25 2 x 2 ,  
so two of the functions determined by the implicit Equation l are f sxd − s25 2 x 2  and 
tsxd − 2s25 2 x 2 . The graphs of f  and t are the upper and lower semicircles of the  
cir cle x 2 1 y 2 − 25. (See Figure 1.)

0 x

y

0 x

y

0 x

y

(c) ©=_œ„„„„„„25-≈(b) ƒ=œ„„„„„„25-≈(a) ≈+¥=25FIGurE 1
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It’s not easy to solve Equation 2 for y explicitly as a function of x by hand. (A com-
puter algebra system has no trouble, but the expressions it obtains are very complicated.) 
Nonetheless, (2) is the equation of a curve called the folium of Descartes shown in  
Figure 2 and it implicitly defines y as several functions of x. The graphs of three such 
functions are shown in Figure 3. When we say that f  is a function defined implicitly by 
Equa tion 2, we mean that the equation

x 3 1 f f sxdg3 − 6x f sxd

is true for all values of x in the domain of f .

x

y

0

˛+Á=6xy

x

y

0 x

y

0x

y

0

FIGURE 2 The folium of Descartes FIGURE 3  Graphs of three functions defined by the folium of Descartes

Fortunately, we don’t need to solve an equation for y in terms of x in order to find the 
derivative of y. Instead we can use the method of implicit differentiation. This consists 
of differentiating both sides of the equation with respect to x and then solving the resul-
ting equation for y9. In the examples and exercises of this section it is always assumed 
that the given equation determines y implicitly as a differentiable function of x so that the 
method of implicit differentiation can be applied.

ExamplE 1 

(a) If x 2 1 y 2 − 25, find 
dy

dx
.

(b) Find an equation of the tangent to the circle x 2 1 y 2 − 25 at the point s3, 4d.

SOLUtION 1
(a) Differentiate both sides of the equation x 2 1 y 2 − 25:

 
d

dx
 sx 2 1 y 2 d −

d

dx
 s25d

 
d

dx
 sx 2 d 1

d

dx
 sy 2 d − 0

Remembering that y is a function of x and using the Chain Rule, we have 

d

dx
 sy 2 d −

d

dy
 sy 2 d 

dy

dx
− 2y 

dy

dx

Thus 2x 1 2y 
dy

dx
− 0
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210 Chapter 3  Differentiation Rules

Now we solve this equation for dyydx: 

dy

dx
− 2

x

y

(b) At the point s3, 4d we have x − 3 and y − 4, so

dy

dx
− 2

3

4

An equation of the tangent to the circle at s3, 4d is therefore

y 2 4 − 23
4 sx 2 3d    or    3x 1 4y − 25

SOLUtION 2
(b) Solving the equation x 2 1 y 2 − 25 for y, we get y − 6s25 2 x 2 . The point 
s3, 4d lies on the upper semicircle y − s25 2 x 2  and so we consider the function 
f sxd − s25 2 x 2 . Differentiating f  using the Chain Rule, we have

  f 9sxd − 1
2 s25 2 x 2 d21y2 

d

dx
 s25 2 x 2 d

 − 1
2 s25 2 x 2 d21y2s22xd − 2

x

s25 2 x 2
 

So  f 9s3d − 2
3

s25 2 32 
− 2

3

4

and, as in Solution 1, an equation of the tangent is 3x 1 4y − 25. ■

NOTE 1 The expression dyydx − 2xyy in Solution 1 gives the derivative in terms of 
both x and y. It is correct no matter which function y is determined by the given equation. 
For instance, for y − f sxd − s25 2 x 2  we have

dy

dx
− 2

x

y
− 2

x

s25 2 x 2 

whereas for y − tsxd − 2s25 2 x 2  we have

dy

dx
− 2

x

y
− 2

x

2s25 2 x 2 
−

x

s25 2 x 2 

ExamplE 2� 
(a) Find y9 if x 3 1 y 3 − 6xy.
(b) Find the tangent to the folium of Descartes x 3 1 y 3 − 6xy at the point s3, 3d.
(c) At what point in the first quadrant is the tangent line horizontal?

SOLUtION
(a) Differentiating both sides of x 3 1 y 3 − 6xy with respect to x, regarding y as a 
function of x, and using the Chain Rule on the term y 3 and the Product Rule on the 
term 6xy, we get

  3x 2 1 3y 2 y9 − 6xy9 1 6y

or    x 2 1 y 2y9 − 2xy9 1 2y

Example 1 illustrates that even when  
it is possible to solve an equation 
explicitly for y in terms of x, it may be 
easier to use implicit differentiation.
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We now solve for y9:  y 2y9 2 2xy9 − 2y 2 x 2

  sy 2 2 2xdy9 − 2y 2 x 2

  y9 −
2y 2 x 2

y 2 2 2x

(b) When x − y − 3,

y9 −
2 ? 3 2 32

32 2 2 ? 3
− 21 

and a glance at Figure 4 confirms that this is a reasonable value for the slope at s3, 3d. 
So an equation of the tangent to the folium at s3, 3d is

y 2 3 − 21sx 2 3d    or    x 1 y − 6

(c) The tangent line is horizontal if y9 − 0. Using the expression for y9 from part (a),  
we see that y9 − 0 when 2y 2 x 2 − 0 (provided that y 2 2 2x ± 0d. Substituting 
y − 1

2 x 2 in the equation of the curve, we get

x 3 1 (1
2 x 2)3

− 6x(1
2 x 2)

which simplifies to x 6 − 16x 3. Since x ± 0 in the first quadrant, we have x 3 − 16. If 
x − 161y3 − 24y3, then y − 1

2 s28y3 d − 25y3. Thus the tangent is horizontal at s24y3, 25y3 d, 
which is approximately (2.5198, 3.1748). Looking at Figure 5, we see that our answer  
is reasonable. ■

NOTE 2 There is a formula for the three roots of a cubic equation that is like the 
quad ratic formula but much more complicated. If we use this formula (or a computer 
algebra system) to solve the equation x 3 1 y 3 − 6xy for y in terms of x, we get three 
functions determined by the equation: 

y − f sxd − s3 21
2 x 3 1 s1

4 x 6 2 8x 3  1 s3 21
2 x 3 2 s1

4 x 6 2 8x 3 
 

and

y − 1
2 f2f sxd 6 s23 (s3 21

2 x 3 1 s1
4

x 6 2 8x 3  2 s3 21
2 x 3 2 s1

4
x 6 2 8x 3  )g

(These are the three functions whose graphs are shown in Figure 3.) You can see that the 
method of implicit differentiation saves an enormous amount of work in cases such as 
this. Moreover, implicit differentiation works just as easily for equations such as

y 5 1 3x 2 y 2 1 5x 4 − 12

for which it is impossible to find a similar expression for y in terms of x.

ExamplE 3� Find y9 if sinsx 1 yd − y 2 cos x.

SOLUtION Differentiating implicitly with respect to x and remembering that y is a 
function of x, we get

cossx 1 yd ? s1 1 y9d − y 2s2sin xd 1 scos xds2yy9d

0

y

x

(3, 3)

FIGURE 4

FIGURE 5

4

0 4

Abel and Galois
The Norwegian mathematician Niels 
Abel proved in 1824 that no general 
formula can be given for the roots of 
a fifth-degree equation in terms of 
radicals. Later the French mathemati-
cian Evariste Galois proved that it is 
impossible to find a general formula 
for the roots of an nth-degree equa-
tion (in terms of algebraic operations 
on the coefficients) if n is any integer 
larger than 4.
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212 Chapter 3  Differentiation Rules

(Note that we have used the Chain Rule on the left side and the Product Rule and Chain 
Rule on the right side.) If we collect the terms that involve y9, we get

cossx 1 yd 1 y 2 sin x − s2y cos xdy9 2 cossx 1 yd ? y9

So y9 −
 y 2 sin x 1 cossx 1 yd
2y cos x 2 cossx 1 yd

Figure 6, drawn with the implicit-plotting command of a computer algebra system, 
shows part of the curve sinsx 1 yd − y 2 cos x. As a check on our calculation, notice 
that y9 − 21 when x − y − 0 and it appears from the graph that the slope is approxi-
mately 21 at the origin. ■

Figures 7, 8, and 9 show three more curves produced by a computer algebra system 
with an implicit-plotting command. In Exercises 41–42 you will have an opportunity to 
create and examine unusual curves of this nature.

15

_15

_15 15

4 

_4

_4 4

12

_12

_12 12

FIGURE 7�
sx 2 2 1dsx 2 2 4dsx 2 2 9d

− y 2sy 2 2 4dsy 2 2 9d

FIGURE 8�
cossx 2 sin yd − sinsy 2 sin xd

FIGURE 9�
sinsxyd − sin x 1 sin y

The following example shows how to find the second derivative of a function that is  
defined implicitly.

ExamplE 4� Find y99 if x 4 1 y 4 − 16.

SOLUtION Differentiating the equation implicitly with respect to x, we get

4x 3 1 4y 3y9 − 0

Solving for y9 gives

3   y9 − 2
x 3

y 3

To find y99 we differentiate this expression for y9 using the Quotient Rule and remem-
bering that y is a function of x:

 y99 −
d

dx
 S2

x 3

y 3 D − 2
y 3 sdydxdsx 3 d 2 x 3 sdydxdsy 3 d

sy 3 d2

 − 2
y 3 ? 3x 2 2 x 3s3y 2 y9d

y 6

2

_2

_2 2

FIGURE 6 
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If we now substitute Equation 3 into this expression, we get

 y99 − 2

3x 2 y 3 2 3x 3y 2S2
x 3

y 3D
y 6

 − 2
3sx 2 y 4 1 x 6 d

y 7 − 2
3x 2sy 4 1 x 4 d

y 7

But the values of x and y must satisfy the original equation x 4 1 y 4 − 16. So the 
answer simplifies to

 y99 − 2
3x 2s16d

y 7 − 248 
x 2

y 7  ■

 

x

2

y

20

x$+y$=16

 

Derivatives of Inverse trigonometric Functions
The inverse trigonometric functions were reviewed in Section 1.5. We discussed their 
continuity in Section 2.5 and their asymptotes in Section 2.6. Here we use implicit 
differentia tion to find the derivatives of the inverse trigonometric functions, assuming 
that these functions are differentiable. [In fact, if f  is any one-to-one differentiable func-
tion, it can be proved that its inverse function f 21 is also differentiable, except where its 
tangents are vertical. This is plausible because the graph of a differentiable function has 
no corner or kink and so if we reflect it about y − x, the graph of its inverse function also 
has no corner or kink.]

Recall the definition of the arcsine function:

y − sin21x    means    sin y − x  and  2
�

2
< y <

�

2

Differentiating sin y − x implicitly with respect to x, we obtain

cos y 
dy

dx
− 1    or    

dy

dx
−

1

cos y

Now cos y > 0, since 2�y2 < y < �y2, so

cos y − s1 2 sin 2 y − s1 2 x 2 

FIGURE 10

Figure 10 shows the graph of the curve 
x 4 1 y 4 − 16 of Example 4. Notice 
that it’s a stretched and flat tened version 
of the circle x 2 1 y 2 − 4. For this 
reason it’s sometimes called a fat circle. 
It starts out very steep on the left but 
quickly becomes very flat. This can be 
seen from the expression

y9 − 2
x 3

y 3 − 2S x

yD3
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214 Chapter 3  Differentiation Rules

Therefore 
dy

dx
−

1

cos y
−

1

s1 2 x 2 

 
d

dx
 ssin21xd −

1

s1 2 x 2 

The formula for the derivative of the arctangent function is derived in a similar way. 
If y − tan21x, then tan y − x. Differentiating this latter equation implicitly with respect 
to x, we have

 sec2 y 
dy

dx
− 1

 
dy

dx
−

1

sec2 y
−

1

1 1 tan2 y
−

1

1 1 x 2

 
d

dx
 stan21xd −

1

1 1 x 2

ExamplE 5� Differentiate (a) y −
1

sin21x
 and (b) f sxd − x arctansx .

SOLUtION

(a)  
dy

dx
−

d

dx
 ssin21xd21 − 2ssin21xd22 

d

dx
 ssin21xd

  − 2
1

ssin21xd2 s1 2 x 2 

(b)   f 9sxd − x 
1

1 1 (sx )2  ( 1
2 x21y2) 1 arctansx 

  −
sx 

2s1 1 xd
1 arctansx  ■

The inverse trigonometric functions that occur most frequently are the ones that we 
have just discussed. The derivatives of the remaining four are given in the following 
table. The proofs of the formulas are left as exercises.

Derivatives of Inverse Trigonometric Functions 

 
d

dx
 ssin21xd −

1

s1 2 x 2
         

d

dx
 scsc21xd − 2

1

xsx 2 2 1

 
d

dx
 scos21xd − 2

1

s1 2 x 2 
         

d

dx
 ssec21xd −

1

xsx 2 2 1

 
d

dx
 stan21xd −

1

1 1 x 2              
d

dx
 scot21xd − 2

1

1 1 x 2

The formulas for the derivatives of 
csc21x and sec21x depend on the 
definitions that are used for these 
functions. See Exercise 64.

Figure 11 shows the graph of 
f sxd − tan21x and its derivative 
f 9sxd − 1ys1 1 x 2 d. Notice that f  is 
increasing and f 9sxd is always positive. 
The fact that tan21x l 6�y2 as 
x l 6` is reflected in the fact that 
f 9sxd l 0 as x l 6`.

1.5

_1.5

_6 6

y=tan–! x
y= 1

1+≈

FIGURE 11

Recall that arctan x is an alternative  
notation for tan21x.

The same method can be used to find  
a formula for the derivative of any 
inverse function. See Exercise 77.
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 2�9. x2 1 y2 − s2x2 1 2y2 2 xd2, s0, 12d, (cardioid)

x

y

 3�0. x 2y3 1 y 2y3 − 4, s23s3, 1d, (astroid)

x

y

0 8

 3�1. 2sx 2 1 y 2 d2 − 25sx 2 2 y 2 d, (3, 1), (lemniscate)

x

y

0

 3�2�. y2sy2 2 4d − x2sx2 2 5d, (0, 22), (devil’s curve)

x

y

 3�3�. (a)  The curve with equation y 2 − 5x 4 2 x 2 is called a 
kampyle of Eudoxus. Find an equation of the tangent 
line to this curve at the point s1, 2d.

 (b)  Illustrate part (a) by graphing the curve and the tangent 
line on a common screen. (If your graphing device will 
graph implicitly defined curves, then use that capabil-
ity. If not, you can still graph this curve by graphing its 
upper and lower halves separately.)

 3�4�. (a)  The curve with equation y 2 − x 3 1 3x 2 is called the 
Tschirnhausen cubic. Find an equation of the tangent 
line to this curve at the point s1, 22d.

 (b)  At what points does this curve have horizontal 
tangents?

 (c)  Illustrate parts (a) and (b) by graphing the curve and the 
tangent lines on a common screen.

;

;

3�.5� exerCISeS

1–4� 
(a) Find y9 by implicit differentiation.
(b)  Solve the equation explicitly for y and differentiate to get y9 

in terms of x.
(c)  Check that your solutions to parts (a) and (b) are consistent 

by substituting the expression for y into your solution for 
part (a).

 1. 9x 2 2 y 2 − 1 2�. 2x 2 1 x 1 xy − 1

 3�. sx 1 sy − 1 4�. 
2

x
2

1

y
− 4

5�–2�0 Find dyydx by implicit differentiation.

 5�. x 2 2 4xy 1 y 2 − 4 6. 2x 2 1 xy 2 y 2 − 2

 7. x 4 1 x 2y 2 1 y 3 − 5 8. x 3 2 xy 2 1 y 3 − 1

 9. 
x 2

x 1 y
− y 2 1 1 10. xe y − x 2 y

 11. y cos x − x 2 1 y 2 12�. cossxyd − 1 1 sin y

 13�. sx 1 y − x 4 1 y 4 14�. e y sin x − x 1 xy

 15�. e xyy − x 2 y 16. xy − sx 2 1 y 2 

 17. tan21sx 2yd − x 1 xy 2 18. x sin y 1 y sin x − 1

 19. sinsxyd − cossx 1 yd 2�0. tansx 2 yd −
y

1 1 x 2

 2�1.  If f sxd 1 x2 f f sxdg3 − 10 and f s1d − 2, find f 9s1d.

 2�2�.  If tsxd 1 x sin tsxd − x 2, find t9s0d.

 2�3�–2�4� Regard y as the independent variable and x as the depen-
dent variable and use implicit differentiation to find dxydy.

 2�3�. x 4y2 2 x 3y 1 2xy3 − 0 2�4�. y sec x − x tan y

2�5�–3�2� Use implicit differentiation to find an equation of the 
tangent line to the curve at the given point.

 2�5�. y sin 2x − x cos 2y,  s�y2, �y4d

 2�6. sinsx 1 yd − 2x 2 2y,  s�, �d

 2�7. x 2 2 xy 2 y 2 − 1, s2, 1d (hyperbola)

 2�8. x 2 1 2xy 1 4y 2 − 12, s2, 1d (ellipse)
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216 Chapter 3  Differentiation Rules

function. If y − x pyq, then y q − x p. Use implicit differentia-
tion to show that

y9 −
 p

q
 x s pyqd21

4�9–60 Find the derivative of the function. Simplify where 
possible.

 4�9. y − stan21xd2 5�0. y − tan21sx 2d

 5�1. y − sin21s2x 1 1d 5�2�. tsxd − arccossx 

 5�3�. Fsxd − x sec21sx 3d

 5�4�. y − tan21sx 2 s1 1 x 2 d
 5�5�. hstd − cot21std 1 cot21s1ytd 5�6. Rstd − arcsins1ytd

 5�7. y − x sin21 x 1 s1 2 x 2  

 5�8. y − cos21ssin21 td

 5�9. y − arccosS b 1 a cos x

a 1 b cos xD, 0 < x < �, a . b . 0

 60. y − arctanÎ 1 2 x

1 1 x

61–62� Find f 9sxd. Check that your answer is reasonable by 
comparing the graphs of f  and f 9.

 61. f sxd − s1 2 x 2  arcsin x 62�. f sxd − arctansx 2 2 xd

 63�.  Prove the formula for sdydxdscos21xd by the same method as  
for sdydxdssin21xd.

 64�. (a)  One way of defining sec21x is to say that 
y − sec21x &? sec y − x and 0 < y , �y2 or 
� < y , 3�y2. Show that, with this definition,

d

dx
 ssec21xd −

1

xsx 2 2 1

 (b)  Another way of defining sec21x that is sometimes 
used is to say that y − sec21x &? sec y − x and 
0 < y < �, y ± �y2. Show that, with this definition,

d

dx
ssec21xd −

1

| x |sx 2 2 1

65�–68 Two curves are orthogonal if their tangent lines are 
perpendicular at each point of intersection. Show that the given 
families of curves are orthogonal trajectories of each other; that 
is, every curve in one family is orthogonal to every curve in the 
other family. Sketch both families of curves on the same axes.

 65�. x 2 1 y 2 − r 2,   ax 1 by − 0

 66. x 2 1 y 2 − ax,   x 2 1 y 2 − by

 67. y − cx 2,   x 2 1 2y 2 − k

 68. y − ax 3,   x 2 1 3y 2 − b

;

3�5�–3�8 Find y99 by implicit differentiation.

 3�5�. x 2 1 4y 2 − 4 3�6. x 2 1 xy 1 y 2 − 3

 3�7. sin y 1 cos x − 1 3�8. x 3 2 y 3 − 7

 3�9.  If xy 1 e y − e, find the value of y99 at the point where 
x − 0.

 4�0.  If x 2 1 xy 1 y 3 − 1, find the value of y999 at the point 
where x − 1.

 4�1.  Fanciful shapes can be created by using the implicit plotting 
capabilities of computer algebra systems.

 (a) Graph the curve with equation

ysy 2 2 1dsy 2 2d − xsx 2 1dsx 2 2d

   At how many points does this curve have horizontal  
tangents? Estimate the x-coordinates of these points.

 (b)  Find equations of the tangent lines at the points (0, 1)  
and (0, 2).

 (c)  Find the exact x-coordinates of the points in part (a).
 (d)  Create even more fanciful curves by modifying the  

equation in part (a).

 4�2�. (a) The curve with equation

2y 3 1 y 2 2 y 5 − x 4 2 2x 3 1 x 2

   has been likened to a bouncing wagon. Use a computer 
algebra system to graph this curve and discover why.

 (b)  At how many points does this curve have horizontal  
tangent lines? Find the x-coordinates of these points.

 4�3�.  Find the points on the lemniscate in Exercise 31 where the  
tangent is horizontal.

 4�4�.  Show by implicit differentiation that the tangent to the 
ellipse

x 2

a 2 1
 y 2

b2 − 1

  at the point sx0, y0 d is
x0 x

a 2 1
 y0 y

b2 − 1

 4�5�. Find an equation of the tangent line to the hyperbola

x 2

a 2 2
 y 2

b2 − 1

  at the point sx0, y0d.

 4�6.  Show that the sum of the x- and y-intercepts of any tangent
  line to the curve sx 1 sy − sc  is equal to c.

 4�7.  Show, using implicit differentiation, that any tangent line at  
a point P to a circle with center O is perpendicular to the  
radius OP.

 4�8.  The Power Rule can be proved using implicit differentiation  
for the case where n is a rational number, n − pyq, and 
y − f sxd − x n is assumed beforehand to be a differentiable 

CAS

CAS
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 (b)  Illustrate part (a) by graphing the ellipse and the normal 
line.

 75.  Find all points on the curve x 2 y 2 1 xy − 2 where the slope 
of the tangent line is 21.

 76.  Find equations of both the tangent lines to the ellipse 
x 2 1 4y 2 − 36 that pass through the point s12, 3d.

 77. (a)  Suppose f  is a one-to-one differentiable function and its 
inverse function f 21 is also differentiable. Use implicit 
differentiation to show that

s f 21d9sxd −
1

 f 9s f 21sxdd

  provided that the denominator is not 0.
 (b) If f s4d − 5 and f 9s4d − 2

3, find s f 21d9s5d.

 78. (a)  Show that f sxd − x 1 e x is one-to-one.
 (b) What is the value of f 21s1d?
 (c)  Use the formula from Exercise 77(a) to find s f 21d9s1d.

 79.  The Bessel function of order 0, y − J sxd, satisfies the 
differential equation xy99 1 y9 1 xy − 0 for all values of x 
and its value at 0 is J s0d − 1.

 (a)  Find J9s0d.
 (b)  Use implicit differentiation to find J99s0d.

 80.  The figure shows a lamp located three units to the right of  
the y-axis and a shadow created by the elliptical region 
x 2 1 4y 2 < 5. If the point s25, 0d is on the edge of the 
shadow, how far above the x-axis is the lamp located?

?

x

y

30_5
≈+4¥=5

; 69.  Show that the ellipse x 2ya 2 1 y 2yb 2 − 1 and the hyperbola 
x 2yA2 2 y 2yB 2 − 1 are orthogonal trajectories if A2 , a 2 
and a 2 2 b 2 − A2 1 B 2 (so the ellipse and hyperbola have 
the same foci).

 70.  Find the value of the number a such that the families of 
curves y − sx 1 cd21 and y − asx 1 kd1y3 are orthogonal 
trajectories.

 71. (a)  The van der Waals equation for n moles of a gas is

SP 1
n 2a

V 2 DsV 2 nbd − nRT

   where P is the pressure, V is the volume, and T is the 
temperature of the gas. The constant R is the universal 
gas constant and a and b are positive constants that are 
characteristic of a particular gas. If T remains constant, 
use implicit differentiation to find dVydP.

 (b)  Find the rate of change of volume with respect to 
pressure of 1 mole of carbon dioxide at a volume 
of V − 10 L and a pressure of P − 2.5 atm. Use 
a − 3.592 L2-atmymole2 and b − 0.04267 Lymole.

 72. (a)  Use implicit differentiation to find y9 if

x 2 1 xy 1 y 2 1 1 − 0

 (b)  Plot the curve in part (a). What do you see? Prove that 
what you see is correct.

 (c)  In view of part (b), what can you say about the  
expression for y9 that you found in part (a)?

 73.  The equation x 2 2 xy 1 y 2 − 3 represents a “rotated 
ellipse,” that is, an ellipse whose axes are not parallel to the 
coordinate axes. Find the points at which this ellipse crosses 
the x-axis and show that the tangent lines at these points are 
parallel.

 74. (a)  Where does the normal line to the ellipse 
x 2 2 xy 1 y 2 − 3 at the point s21, 1d intersect the 
ellipse a second time? 

CAS

laboratory Project CAS  Families oF imPlicit curves

In this project you will explore the changing shapes of implicitly defined curves as you vary the 
constants in a family, and determine which features are common to all members of the family.

1. Consider the family of curves

y 2 2 2x 2sx 1 8d − cfsy 1 1d2sy 1 9d 2 x 2g

 (a)  By graphing the curves with c − 0 and c − 2, determine how many points of inter-
section there are. (You might have to zoom in to find all of them.)

 (b)  Now add the curves with c − 5 and c − 10 to your graphs in part (a). What do you 
notice? What about other values of c?
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218 Chapter 3  Differentiation Rules

2. (a)  Graph several members of the family of curves

x 2 1 y 2 1 cx 2y 2 − 1

   Describe how the graph changes as you change the value of c.
 (b)  What happens to the curve when c − 21? Describe what appears on the screen.  

Can you prove it algebraically?
 (c)  Find y9 by implicit differentiation. For the case c − 21, is your expression for y9 

consistent with what you discovered in part (b)?

In this section we use implicit differentiation to find the derivatives of the logarithmic 
func tions y − log b x and, in particular, the natural logarithmic function y − ln x. [It can 
be proved that logarithmic functions are differentiable; this is certainly plausible from 
their graphs (see Figure 1.5.12).]

1   
d

dx
 slog b xd −

1

x ln b

proof Let y − log b x. Then
by − x

 Differentiating this equation implicitly with respect to x, using Formula 3.4.5, we get

bysln bd 
dy

dx
− 1

 and so 
dy

dx
−

1

by ln b
−

1

x ln b
 ■

If we put b − e in Formula 1, then the factor ln b on the right side becomes ln e − 1 
and we get the formula for the derivative of the natural logarithmic function loge x − ln x:

2   
d

dx
 sln xd −

1

x

By comparing Formulas 1 and 2, we see one of the main reasons that natural loga-
rithms (logarithms with base e) are used in calculus: The differentiation formula is sim-
plest when b − e because ln e − 1.

ExamplE 1� Differentiate y − lnsx 3 1 1d.

SoLUtIoN To use the Chain Rule, we let u − x 3 1 1. Then y − ln u, so

dy

dx
−

dy

du
 
du

dx
−

1

u
 
du

dx

 −  
1

x 3 1 1
 s3x 2 d −

3x 2

x 3 1 1
■

Formula 3.4.5 says that

d

dx
 sb x d − b x  ln b
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In general, if we combine Formula 2 with the Chain Rule as in Example 1, we get

3   
d

dx
 sln ud −

1

u
 
du

dx
 or 

d

dx
 fln tsxdg −

t9sxd
tsxd

ExamplE 2� Find 
d

dx
 lnssin xd.

SOLUtION Using (3), we have

d

dx
 lnssin xd −

1

sin x
 

d

dx
 ssin xd −

1

sin x
 cos x − cot x ■

ExamplE 3� Differentiate f sxd − sln x .

SOLUtION This time the logarithm is the inner function, so the Chain Rule gives

f 9sxd − 1
2 sln xd21y2 

d

dx
 sln xd −

1

2sln x 
?

1

x
−

1

2xsln x 
■

ExamplE 4� Differentiate f sxd − log10s2 1 sin xd.

SOLUtION Using Formula 1 with b − 10, we have

  f 9sxd −
d

dx
 log10s2 1 sin xd

 −
1

s2 1 sin xd ln 10
 

d

dx
 s2 1 sin xd

 −
cos x

s2 1 sin xd ln 10
■

ExamplE 5� Find 
d

dx
 ln 

x 1 1

sx 2 2 
.

SOLUtION 1 

 
d

dx
 ln 

x 1 1

sx 2 2 
−

1

x 1 1

sx 2 2 

 
d

dx
 

x 1 1

sx 2 2 

 −
sx 2 2 

x 1 1
 
sx 2 2  ∙ 1 2 sx 1 1d(1

2)sx 2 2d21y2

x 2 2

 −
x 2 2 2 1

2 sx 1 1d
sx 1 1dsx 2 2d

 −
x 2 5

2sx 1 1dsx 2 2d

Figure 1 shows the graph of the 
function f  of Example 5 together with 
the graph of its derivative. It gives a 
visual check on our calculation. Notice 
that f 9sxd is large negative when f  is 
rapidly decreasing.

x0

y

1

f

f ª

FIGURE 1
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220 Chapter 3  Differentiation Rules

SOLUtION 2 If we first simplify the given function using the laws of logarithms, then 
the differentiation becomes easier:

 
d

dx
 ln 

x 1 1

sx 2 2 
−

d

dx
 flnsx 1 1d 2 1

2 lnsx 2 2dg

 −
1

x 1 1
2

1

2 S 1

x 2 2D
(This answer can be left as written, but if we used a common denominator we would 
see that it gives the same answer as in Solution 1.) ■

ExamplE 6� Find f 9sxd if f sxd − ln | x |.
SOLUtION Since

f sxd − Hln x

lns2xd
if x . 0

if x , 0

it follows that

f 9sxd −

1

x
if x . 0

1

2x
 s21d −

1

x
   if x , 0

Thus f 9sxd − 1yx for all x ± 0. ■

The result of Example 6 is worth remembering:

4   
d

dx
 ln | x | −

1

x
 

Logarithmic Differentiation
The calculation of derivatives of complicated functions involving products, quotients, or 
powers can often be simplified by taking logarithms. The method used in the following  
example is called logarithmic differentiation.

ExamplE 7� Differentiate y −
x 3y4 sx 2 1 1

s3x 1 2d5
.

SOLUtION We take logarithms of both sides of the equation and use the Laws of Loga-
rithms to simplify:

ln y − 3
4 ln x 1 1

2 lnsx 2 1 1d 2 5 lns3x 1 2d

Differentiating implicitly with respect to x gives

1

y
 
dy

dx
−

3

4
?

1

x
1

1

2
?

2x

x 2 1 1
2 5 ?

3

3x 1 2

Solving for dyydx, we get

  
dy

dx
− yS 3

4x
1

x

x 2 1 1
2

15

3x 1 2D

3

_3

_3 3

f

f ª

Figure 2 shows the graph of the 
function f sxd − ln | x | in Example 6 
and its derivative f 9sxd − 1yx. Notice 
that when x is small, the graph of 
y − ln | x | is steep and so f 9sxd is large 
(positive or negative).

FIGURE 2
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Because we have an explicit expression for y, we can substitute and write

dy

dx
−

x 3y4 sx 2 1 1

s3x 1 2d5 S 3

4x
1

x

x 2 1 1
2

15

3x 1 2D ■

Steps in Logarithmic Differentiation 

1.  Take natural logarithms of both sides of an equation y − f sxd and use the Laws 
of Logarithms to simplify.

2. Differentiate implicitly with respect to x.

3. Solve the resulting equation for y9.

If f sxd , 0 for some values of x, then ln f sxd is not defined, but we can write  

| y | − | f sxd | and use Equation 4. We illustrate this procedure by proving the general 
version of the Power Rule, as promised in Section 3.1.

The Power Rule If n is any real number and f sxd − xn, then

f 9sxd − nxn21

Proof Let y − xn and use logarithmic differentiation:

ln | y | − ln | x |n − n ln | x |    x ± 0

 Therefore 
y9

y
−

n

x

 Hence y9 − n 
y

x
− n 

xn

x
− nxn21 ■

You should distinguish carefully between the Power Rule fsxn d9 − nxn21 g, where the 
base is variable and the exponent is constant, and the rule for differentiating exponential 
functions fsbx d9 − bx ln bg, where the base is constant and the exponent is variable.

In general there are four cases for exponents and bases:

1. 
d

dx
 sbnd − 0    (b and n are constants)

2. 
d

dx
 f f sxdgn − nf f sxdgn21 f 9sxd

3. 
d

dx
 fb tsxdg − b tsxdsln bdt9sxd

4.  To find sdydxdf f sxdg tsxd, logarithmic differentiation can be used, as in the next 
example.

If x − 0, we can show that f 9s0d − 0 
for n . 1 directly from the definition  
of a derivative.

Constant base, constant exponent

Variable base, constant exponent

Constant base, variable exponent

Variable base, variable exponent

If we hadn’t used logarithmic differen-
tiation in Example 7, we would have 
had to use both the Quotient Rule  
and the Product Rule. The resulting 
calculation would have been  
horrendous.
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222 Chapter 3  Differentiation Rules

ExamplE 8� Differentiate y − xsx 

.

SOLUtION 1 Since both the base and the exponent are variable, we use logarithmic 
differentiation:

 ln y − ln xsx 

− sx  ln x

 
 y9

y
− sx ?

1

x
1 sln xd 

1

2sx 
 

 y9 − yS 1

sx 
1

ln x

2sx D − xsx S 2 1 ln x

2sx D
SOLUtION 2 Another method is to write xsx 

− se ln x dsx 

:

d

dx
 sxsx d −

d

dx
 sesx  ln x d − esx  ln x 

d

dx
 ssx  ln xd

 − xsx S 2 1 ln x

2sx D    (as in Solution 1) ■

the Number e as a Limit
We have shown that if f sxd − ln x, then f 9sxd − 1yx. Thus f 9s1d − 1. We now use this 
fact to express the number e as a limit.

From the definition of a derivative as a limit, we have

  f 9s1d − lim
h l 0

 
 f s1 1 hd 2 f s1d

h
− lim

x l 0
 
 f s1 1 xd 2 f s1d

x

 − lim
x l 0

 
lns1 1 xd 2 ln 1

x
− lim

x l 0
 
1

x
 lns1 1 xd

 − lim
x l 0

 lns1 1 xd1yx

Because f 9s1d − 1, we have
lim
x l 0

 lns1 1 xd1yx − 1

Then, by Theorem 2.5.8 and the continuity of the exponential function, we have

e − e1 − elim x l 0 lns11xd1yx

− lim
x l 0

 elns11xd1yx

− lim
x l 0

 s1 1 xd1yx

5   e − lim
x l 0

 s1 1 xd1yx

Formula 5 is illustrated by the graph of the function y − s1 1 xd1yx in Figure 4 and a 
table of values for small values of x. This illustrates the fact that, correct to seven decimal 
places,

e < 2.7182818

If we put n − 1yx in Formula 5, then n l ` as x l 01 and so an alternative expres-
sion for e is

6   e − lim
n l `

 S1 1
1

nDn

1

1

f

f ª

x0

y

FIGURE 3

Figure 3 illustrates Example 8 by 
showing the graphs of f sxd − x sx and 
its derivative.

x s1 1 xd1yx

0.1 2.59374246
0.01 2.70481383
0.001 2.71692393
0.0001 2.71814593
0.00001 2.71826824
0.000001 2.71828047
0.0000001 2.71828169
0.00000001 2.71828181

2

3
y=(1+x)!?®

1

0

y

x

FIGURE 4
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33–34 Find an equation of the tangent line to the curve at the 
given point.

 33. y − lnsx 2 2 3x 1 1d,  s3, 0d

 34. y − x 2 ln x,  s1, 0d

 35.  If f sxd − sin x 1 ln x, find f 9sxd. Check that your answer is 
reasonable by comparing the graphs of f  and f 9.

 36.  Find equations of the tangent lines to the curve y − sln xdyx 
at the points s1, 0d and se, 1yed. Illustrate by graphing the 
curve and its tangent lines.

 37.  Let f sxd − cx 1 lnscos xd. For what value of c is 
f 9s�y4d − 6?

 38.  Let f sxd − logbs3x 2 2 2d. For what value of b is f 9s1d − 3?

39–50 Use logarithmic differentiation to find the derivative of the 
function.

 39. y − sx 2 1 2d2sx 4 1 4d4 40. y −
e2x cos2x

x 2 1 x 1 1

 41. y − Î x 2 1

x 4 1 1  42. y − sx ex22xsx 1 1d2y3

 43. y − x x 44. y − x cos x

 45. y − x sin x 46. y − (sx ) x

 47. y − scos xdx 48. y − ssin xd ln x

 49. y − stan xd1yx 50. y − sln xdcos x

 51. Find y9 if y − lnsx 2 1 y 2 d.

 52. Find y9 if x y − y x.

 53. Find a formula for f sndsxd if f sxd − lnsx 2 1d.

 54. Find 
d 9

dx 9 sx 8 ln xd.

 55. Use the definition of derivative to prove that

lim
x l 0

 
lns1 1 xd

x
− 1

 56. Show that lim
n l `

 S1 1
x

nDn

− e x for any x . 0.

;

;

3.6 exerciSeS

 1.  Explain why the natural logarithmic function y − ln x is used 
much more frequently in calculus than the other logarithmic 
functions y − logb x.

2–22 Differentiate the function.

 2. f sxd − x ln x 2 x

 3. f sxd − sinsln xd 4. f sxd − lnssin2xd

 5. f sxd − ln 
1

x
 6. y −

1

ln x

 7. f sxd − log10s1 1 cos xd 8. f sxd − log10 sx 

 9. tsxd − lnsxe22xd 10. tstd − s1 1 ln t 

 11. Fstd − sln td2 sin t 12. hsxd − lnsx 1 sx 2 2 1 d

 13. Gsyd − ln 
s2y 1 1d5

sy 2 1 1 
 14. Psvd −

ln v
1 2 v

 15. Fssd − ln ln s 16. y − ln | 1 1 t 2 t 3 |
 17. T szd − 2z log2 z 18. y − lnscsc x 2 cot xd

 19. y − lnse2x 1 xe2x d 20. Hszd − lnÎ a 2 2 z 2

a 2 1 z 2  

 21. y − tan flnsax 1 bdg 22. y − log2 sx log5 xd

23–26 Find y9 and y99.

 23. y − sx  ln x 24. y −
ln x

1 1 ln x

 25. y − ln | sec x | 26. y − lns1 1 ln xd

27–30 Differentiate f  and find the domain of f .

 27. f sxd −
x

1 2 lnsx 2 1d
 28. f sxd − s2 1 ln x 

 29. f sxd − lnsx 2 2 2xd 30. f sxd − ln ln ln x

 31.  If f sxd − lnsx 1 ln xd, find f 9s1d.

 32. If f sxd − cossln x 2d, find f 9s1d.
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224 Chapter 3  Differentiation Rules

We know that if y − f sxd, then the derivative dyydx can be interpreted as the rate of 
change of y with respect to x. In this section we examine some of the applications of this 
idea to physics, chemistry, biology, economics, and other sciences.

Let’s recall from Section 2.7 the basic idea behind rates of change. If x changes from 
x1 to x2, then the change in x is

Dx − x2 2 x1

and the corresponding change in y is

Dy − f sx2 d 2 f sx1d

The difference quotient 

Dy

Dx
−

 f sx2 d 2 f sx1d
x2 2 x1

is the average rate of change of y with respect to x over the interval fx1, x2 g and can 
be interpreted as the slope of the secant line PQ in Figure 1. Its limit as Dx l 0 is the 
derivative f 9sx1d, which can therefore be interpreted as the instantaneous rate of change 
of y with respect to x or the slope of the tangent line at Psx1, f sx1dd. Using Leibniz nota-
tion, we write the process in the form

dy

dx
− lim

Dx l 0
 
Dy

Dx

Whenever the function y − f sxd has a specific interpretation in one of the sciences, its 
derivative will have a specific interpretation as a rate of change. (As we discussed in Sec-
tion 2.7, the units for dyydx are the units for y divided by the units for x.) We now look 
at some of these interpretations in the natural and social sciences.

physics
If s − f std is the position function of a particle that is moving in a straight line, then DsyDt 
represents the average velocity over a time period Dt, and v − dsydt represents the instan-
taneous velocity (the rate of change of displacement with respect to time). The instanta-
neous rate of change of velocity with respect to time is acceleration: astd − v9std − s99std.  
This was discussed in Sections 2.7 and 2.8, but now that we know the differentiation 
formulas, we are able to solve problems involving the motion of objects more easily.

ExamplE 1 The position of a particle is given by the equation

s − f std − t 3 2 6t 2 1 9t 

where t is measured in seconds and s in meters.
(a) Find the velocity at time t.
(b) What is the velocity after 2 s? After 4 s?
(c) When is the particle at rest?
(d) When is the particle moving forward (that is, in the positive direction)?
(e) Draw a diagram to represent the motion of the particle.
(f) Find the total distance traveled by the particle during the first five seconds.
(g) Find the acceleration at time t and after 4 s.

0 x

y

Îy

⁄

P{⁄, fl}

Q{¤, ‡}

Îx

¤

mPQ � average rate of change

m=fª(⁄)=instantaneous rate
of change

FIGURE 1
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(h) Graph the position, velocity, and acceleration functions for 0 < t < 5.
(i) When is the particle speeding up? When is it slowing down?

SOLUtION 
(a) The velocity function is the derivative of the position function.

 s − f std − t 3 2 6t 2 1 9t

 vstd −
ds

dt
− 3t 2 2 12t 1 9

(b) The velocity after 2 s means the instantaneous velocity when t − 2, that is,

vs2d −
ds

dt Z
t−2

− 3s2d2 2 12s2d 1 9 − 23 mys

The velocity after 4 s is

vs4d − 3s4d2 2 12s4d 1 9 − 9 mys

(c) The particle is at rest when vstd − 0, that is,

3t 2 2 12t 1 9 − 3st 2 2 4t 1 3d − 3st 2 1dst 2 3d − 0

and this is true when t − 1 or t − 3. Thus the particle is at rest after 1 s and after 3 s.

(d) The particle moves in the positive direction when vstd . 0, that is,

3t 2 2 12t 1 9 − 3st 2 1dst 2 3d . 0

This inequality is true when both factors are positive st . 3d or when both factors are 
negative st , 1d. Thus the particle moves in the positive direction in the time intervals 
t , 1 and t . 3. It moves backward (in the negative direction) when 1 , t , 3.

(e) Using the information from part (d) we make a schematic sketch in Figure 2 of the 
motion of the particle back and forth along a line (the s-axis).

(f) Because of what we learned in parts (d) and (e), we need to calculate the distances 
traveled during the time intervals [0, 1], [1, 3], and [3, 5] separately.

The distance traveled in the first second is

| f s1d 2 f s0d | − | 4 2 0 | − 4 m

From t − 1 to t − 3 the distance traveled is

| f s3d 2 f s1d | − | 0 2 4 | − 4 m

From t − 3 to t − 5 the distance traveled is

| f s5d 2 f s3d | − | 20 2 0 | − 20 m

The total distance is 4 1 4 1 20 − 28 m.

(g) The acceleration is the derivative of the velocity function:

astd −
d 2s

dt 2 −
dv

dt
− 6t 2 12

as4d − 6s4d 2 12 − 12 mys2

(h) Figure 3 shows the graphs of s, v, and a.

t=0
s=0

t=1
s=4

s

t=3
s=0

FIGURE 2

25

-12

0 5

√ s
a

FIGURE 3
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226 Chapter 3  Differentiation Rules

( i) The particle speeds up when the velocity is positive and increasing (v and a are  
both positive) and also when the velocity is negative and decreasing (v and a are both 
negative). In other words, the particle speeds up when the velocity and acceleration  
have the same sign. (The particle is pushed in the same direction it is moving.) From 
Figure 3 we see that this happens when 1 , t , 2 and when t . 3. The particle slows 
down when v and a have opposite signs, that is, when 0 < t , 1 and when 2 , t , 3. 
Figure 4 summarizes the motion of the particle.

1

5

_5

√
s

a

forward

slows
down

slows
down

backward

speeds
up

speeds
up

forward

t0

■

ExamplE 2 If a rod or piece of wire is homogeneous, then its linear density is uniform 
and is defined as the mass per unit length s� − myld and measured in kilograms per 
meter. Suppose, however, that the rod is not homogeneous but that its mass measured 
from its left end to a point x is m − f sxd, as shown in Figure 5.

x¡ x™
This part of the rod has mass ƒ. 

x

The mass of the part of the rod that lies between x − x1 and x − x2 is given by 
Dm − f sx2 d 2 f sx1d, so the average density of that part of the rod is

average density −
Dm

Dx
−

 f sx2 d 2 f sx1d
x2 2 x1

If we now let Dx l 0 (that is, x2 l x1), we are computing the average density over 
smaller and smaller intervals. The linear density � at x1 is the limit of these average 
densities as Dx l 0; that is, the linear density is the rate of change of mass with 
respect to length. Symbolically, 

� − lim
Dx l 0

 
Dm

Dx
−

dm

dx

Thus the linear density of the rod is the derivative of mass with respect to length.
For instance, if m − f sxd − sx , where x is measured in meters and m in kilograms, 

then the average density of the part of the rod given by 1 < x < 1.2 is

Dm

Dx
−

 f s1.2d 2 f s1d
1.2 2 1

−
s1.2 2 1

0.2
< 0.48 kgym

TEC In Module 3.7 you can see 
an animation of Figure 4 with an 
expression for s that you can choose 
yourself.

FIGURE 4

FIGURE 5
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while the density right at x − 1 is

 � −
dm

dx Z
x−1

−
1

2sx 
 Z

x−1
− 0.50 kgym ■

ExamplE 3 A current exists whenever electric charges move. Figure 6 shows part 
of a wire and electrons moving through a plane surface, shaded red. If DQ is the net 
charge that passes through this surface during a time period Dt, then the average cur-
rent during this time interval is defined as

average current −
DQ

Dt
−

Q2 2 Q1

t2 2 t1

If we take the limit of this average current over smaller and smaller time intervals, 
we get what is called the current I at a given time t1:

I − lim
Dt l 0

 
DQ

Dt
−

dQ

dt

Thus the current is the rate at which charge flows through a surface. It is measured in 
units of charge per unit time (often coulombs per second, called amperes). ■

Velocity, density, and current are not the only rates of change that are important in 
physics. Others include power (the rate at which work is done), the rate of heat flow, 
temperature gradient (the rate of change of temperature with respect to position), and the 
rate of decay of a radioactive substance in nuclear physics.

Chemistry

ExamplE 4 A chemical reaction results in the formation of one or more substances 
(called products) from one or more starting materials (called reactants). For instance, 
the “equation”

2H2 1 O2 l 2H2O

indicates that two molecules of hydrogen and one molecule of oxygen form two mol-
ecules of water. Let’s consider the reaction

A 1 B l C

where A and B are the reactants and C is the product. The concentration of a reactant 
A is the number of moles (1 mole − 6.022 3 1023 molecules) per liter and is denoted 
by fAg. The concentration varies during a reaction, so fAg, fBg, and fCg are all func-
tions of time std. The average rate of reaction of the product C over a time interval 
t1 < t < t2 is

DfCg
Dt

−
fCgst2 d 2 fCgst1d

t2 2 t1

But chemists are more interested in the instantaneous rate of reaction, which is 
obtained by taking the limit of the average rate of reaction as the time interval Dt 
approaches 0:

rate of reaction − lim
Dt l 0

 
DfCg

Dt
−

dfCg
dt

�
�

��
� �

�

FIGURE 6
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228 Chapter 3  Differentiation Rules

Since the concentration of the product increases as the reaction proceeds, the derivative 
dfCgydt will be positive, and so the rate of reaction of C is positive. The concentrations 
of the reactants, however, decrease during the reaction, so, to make the rates of reaction 
of A and B positive numbers, we put minus signs in front of the derivatives dfAgydt 
and dfBgydt. Since fAg and fBg each decrease at the same rate that fCg increases, we 
have

rate of reaction −
dfCg

dt
− 2

dfAg
dt

− 2
dfBg
dt

More generally, it turns out that for a reaction of the form

aA 1 bB l cC 1 dD

we have

2
1

a
 
dfAg

dt
− 2

1

b
 
dfBg

dt
−

1

c
 
dfCg

dt
−

1

d
 
dfDg

dt

The rate of reaction can be determined from data and graphical methods. In some cases 
there are explicit formulas for the concentrations as functions of time, which enable us 
to compute the rate of reaction (see Exercise 24). ■

ExamplE 5 One of the quantities of interest in thermodynamics is compressibility. 
If a given substance is kept at a constant temperature, then its volume V  depends on its 
pressure P. We can consider the rate of change of volume with respect to pressure— 
namely, the derivative dVydP. As P increases, V  decreases, so dVydP , 0. The com-
pressibility is defined by introducing a minus sign and dividing this derivative by the 
volume V:

isothermal compressibility − � − 2
1

V
 
dV

dP

Thus � measures how fast, per unit volume, the volume of a substance decreases as the 
pressure on it increases at constant temperature.

For instance, the volume V  (in cubic meters) of a sample of air at 258C was found to 
be related to the pressure P (in kilopascals) by the equation

V −
5.3

P

The rate of change of V  with respect to P when P − 50 kPa is

 
dV

dP Z
P−50

− 2
5.3

P 2 Z
P−50

 − 2
5.3

2500
− 20.00212 m3ykPa

The compressibility at that pressure is

 � − 2
1

V
 
dV

dP Z
P−50

−
0.00212

5.3

50

− 0.02 sm3ykPadym3 ■
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Biology

ExamplE 6� Let n − f std be the number of individuals in an animal or plant popu la- 
tion at time t. The change in the population size between the times t − t1 and t − t2 
is Dn − f st2 d 2 f st1d, and so the average rate of growth during the time period 
t1 < t < t2 is

average rate of growth −
Dn

Dt
−

 f st2 d 2 f st1d
t2 2 t1

The instantaneous rate of growth is obtained from this average rate of growth by let-
ting the time period Dt approach 0:

growth rate − lim
Dt l 0

 
Dn

Dt
−

dn

dt

Strictly speaking, this is not quite accurate because the actual graph of a population 
function n − f std would be a step function that is discontinuous whenever a birth or 
death occurs and therefore not differentiable. However, for a large animal or plant  
population, we can replace the graph by a smooth approximating curve as in Figure 7.

t

n

0

To be more specific, consider a population of bacteria in a homogeneous nutrient 
medium. Suppose that by sampling the population at certain intervals it is determined 
that the population doubles every hour. If the initial population is n0 and the time t is 
measured in hours, then

  f s1d − 2 f s0d − 2n0

  f s2d − 2 f s1d − 22n0

  f s3d − 2 f s2d − 23n0

and, in general,
f std − 2tn0 

The population function is n − n0 2t.

FIGURE 7 
 A smooth curve approximating  

a growth function
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e 

of
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E. coli bacteria are about 2 micrometers 
(mm) long and 0.75 mm wide. The 
image was produced with a scanning 
electron microscope.
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230 Chapter 3  Differentiation Rules

In Section 3.4 we showed that

d

dx
 sbx d − bx ln b

So the rate of growth of the bacteria population at time t is

dn

dt
−

d

dt
 sn02td − n02t ln 2

For example, suppose that we start with an initial population of n0 − 100 bacteria. 
Then the rate of growth after 4 hours is

dn

dt
 Z

t−4
− 100 ? 24 ln 2 − 1600 ln 2 < 1109

This means that, after 4 hours, the bacteria population is growing at a rate of about 
1109 bacteria per hour. ■

ExamplE 7� When we consider the flow of blood through a blood vessel, such as a 
vein or artery, we can model the shape of the blood vessel by a cylindrical tube with 
radius R and length l as illustrated in Figure 8.

R r

l

Because of friction at the walls of the tube, the velocity v of the blood is greatest along 
the central axis of the tube and decreases as the distance r from the axis increases until 
v becomes 0 at the wall. The relationship between v and r is given by the law of lami-
nar flow discovered by the French physician Jean-Louis-Marie Poiseuille in 1840. This 
law states that

1   v −
P

4�l
 sR2 2 r 2 d

where � is the viscosity of the blood and P is the pressure difference between the ends 
of the tube. If P and l are constant, then v is a function of r with domain f0, Rg.

The average rate of change of the velocity as we move from r − r1 outward to 
r − r2 is given by

Dv

Dr
−

vsr2 d 2 vsr1d
r2 2 r1

and if we let Dr l 0, we obtain the velocity gradient, that is, the instantaneous rate of 
change of velocity with respect to r:

velocity gradient − lim
Dr l 0

 
Dv

Dr
−

dv

dr

Using Equation 1, we obtain

dv

dr
−

P

4�l
 s0 2 2rd − 2

Pr

2�l

FIGURE 8�  
Blood flow in an artery

For more detailed information, see  
W. Nichols and M. O’Rourke (eds.), 
McDonald’s Blood Flow in Arteries: 
Theoretical, Experimental, and Clinical 
Principles, 5th ed. (New York, 2005).
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For one of the smaller human arteries we can take � − 0.027, R − 0.008 cm,  
l − 2 cm, and P − 4000 dynesycm2, which gives

 v −
4000

4s0.027d2
 s0.000064 2 r 2 d

 < 1.85 3 104s6.4 3 1025 2 r 2 d

At r − 0.002 cm the blood is flowing at a speed of

 vs0.002d < 1.85 3 104s64 3 1026 2 4 3 1026 d

 − 1.11 cmys

and the velocity gradient at that point is

dv

dr Z
r−0.002

− 2
4000s0.002d
2s0.027d2

< 274 scmysdycm

To get a feeling for what this statement means, let’s change our units from centi -
meters to micrometers (1 cm − 10,000 mm). Then the radius of the artery is 80 mm. 
The velocity at the central axis is 11,850 mmys, which decreases to 11,110 mmys at 
a distance of r − 20 mm. The fact that dvydr − 274 (mmys)ymm means that, when 
r − 20 mm, the velocity is decreasing at a rate of about 74 mmys for each micrometer 
that we proceed away from the center. ■

economics

ExamplE 8� Suppose Csxd is the total cost that a company incurs in producing  
x units of a certain commodity. The function C is called a cost function. If the  
number of items produced is increased from x1 to x2, then the additional cost is 
DC − Csx2 d 2 Csx1d, and the average rate of change of the cost is

DC

Dx
−

Csx2 d 2 Csx1d
x2 2 x1

−
Csx1 1 Dxd 2 Csx1d

Dx

The limit of this quantity as Dx l 0, that is, the instantaneous rate of change of  
cost with respect to the number of items produced, is called the marginal cost by  
economists:

marginal cost − lim
Dx l 0

 
DC

Dx
−

dC

dx

[Since x often takes on only integer values, it may not make literal sense to let Dx 
approach 0, but we can always replace Csxd by a smooth approximating function as in 
Example 6.]

Taking Dx − 1 and n large (so that Dx is small compared to n), we have

C9snd < Csn 1 1d 2 Csnd

Thus the marginal cost of producing n units is approximately equal to the cost of pro-
ducing one more unit [the sn 1 1dst unit].

It is often appropriate to represent a total cost function by a polynomial

Csxd − a 1 bx 1 cx 2 1 dx 3
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where a represents the overhead cost (rent, heat, maintenance) and the other terms  
represent the cost of raw materials, labor, and so on. (The cost of raw materials may be 
proportional to x, but labor costs might depend partly on higher powers of x because of 
overtime costs and inefficiencies involved in large-scale operations.)

For instance, suppose a company has estimated that the cost (in dollars) of produc-
ing x items is

Csxd − 10,000 1 5x 1 0.01x 2

Then the marginal cost function is

C9sxd − 5 1 0.02x

The marginal cost at the production level of 500 items is

C9s500d − 5 1 0.02s500d − $15yitem

This gives the rate at which costs are increasing with respect to the production level 
when x − 500 and predicts the cost of the 501st item.

The actual cost of producing the 501st item is

 Cs501d 2 Cs500d − f10,000 1 5s501d 1 0.01s501d2 g

2 f10,000 1 5s500d 1 0.01s500d2 g

 − $15.01

Notice that C9s500d < Cs501d 2 Cs500d. ■

Economists also study marginal demand, marginal revenue, and marginal profit, 
which are the derivatives of the demand, revenue, and profit functions. These will be 
considered in Chapter 4 after we have developed techniques for finding the maximum 
and minimum values of functions.

other Sciences
Rates of change occur in all the sciences. A geologist is interested in knowing the rate 
at which an intruded body of molten rock cools by conduction of heat into surrounding 
rocks. An engineer wants to know the rate at which water flows into or out of a reservoir. 
An urban geographer is interested in the rate of change of the population density in a city 
as the distance from the city center increases. A meteorologist is concerned with the rate 
of change of atmospheric pressure with respect to height (see Exercise 3.8.19).

In psychology, those interested in learning theory study the so-called learning curve, 
which graphs the performance Pstd of someone learning a skill as a function of the 
training time t. Of particular interest is the rate at which performance improves as time 
passes, that is, dPydt.

In sociology, differential calculus is used in analyzing the spread of rumors (or innova-
tions or fads or fashions). If pstd denotes the proportion of a population that knows a rumor 
by time t, then the derivative dpydt represents the rate of spread of the rumor (see Exer- 
 cise 3.4.84).

a Single idea, Many interpretations
Velocity, density, current, power, and temperature gradient in physics; rate of reaction 
and compressibility in chemistry; rate of growth and blood velocity gradient in biology; 

41550_ch03_ptg1_hr_230-239.indd   232 10/16/14   11:03 AM



 SeCtion 3.7  Rates of Change in the Natural and Social Sciences 233

marginal cost and marginal profit in economics; rate of heat flow in geology; rate of 
improvement of performance in psychology; rate of spread of a rumor in sociology—
these are all special cases of a single mathematical concept, the derivative.

This is an illustration of the fact that part of the power of mathematics lies in its  
abstractness. A single abstract mathematical concept (such as the derivative) can have dif- 
ferent interpretations in each of the sciences. When we develop the properties of the  
mathematical concept once and for all, we can then turn around and apply these results to  
all of the sciences. This is much more efficient than developing properties of special con-
cepts in each separate science. The French mathematician Joseph Fourier (1768–1830) 
put it succinctly: “Mathematics compares the most diverse phenomena and discovers the 
secret analogies that unite them.”

3.7� exerCiSeS

  7�.  The height (in meters) of a projectile shot vertically upward 
from a point 2 m above ground level with an initial velocity 
of 24.5 mys is h − 2 1 24.5t 2 4.9t 2 after t seconds.

 (a) Find the velocity after 2 s and after 4 s.
 (b) When does the projectile reach its maximum height?
 (c) What is the maximum height?
 (d) When does it hit the ground?
 (e) With what velocity does it hit the ground?

 8�.  If a ball is thrown vertically upward with a velocity of  
80 ftys, then its height after t seconds is s − 80t 2 16t 2.

 (a) What is the maximum height reached by the ball?
 (b)  What is the velocity of the ball when it is 96 ft above the 

ground on its way up? On its way down?

 9.  If a rock is thrown vertically upward from the surface of  
Mars with velocity 15 mys, its height after t seconds is 
h − 15t 2 1.86t 2.

 (a) What is the velocity of the rock after 2 s?
 (b)  What is the velocity of the rock when its height is 25 m 

on its way up? On its way down?

 10.  A particle moves with position function

s − t 4 2 4t 3 2 20t 2 1 20t    t > 0

 (a)  At what time does the particle have a velocity of 20 mys?
 (b)  At what time is the acceleration 0? What is the signifi-

cance of this value of t?

 11. (a)  A company makes computer chips from square wafers  
of silicon. It wants to keep the side length of a wafer very 
close to 15 mm and it wants to know how the area Asxd of  
a wafer changes when the side length x changes. Find 
A9s15d and explain its meaning in this situation.

 (b)  Show that the rate of change of the area of a square 
with respect to its side length is half its perimeter. Try 
to explain geometrically why this is true by drawing a 
square whose side length x is increased by an amount Dx.  
How can you approximate the resulting change in area 
DA if Dx is small?

1–4 A particle moves according to a law of motion s − f std, 
t > 0, where t is measured in seconds and s in feet.
(a) Find the velocity at time t.
(b) What is the velocity after 1 second?
(c) When is the particle at rest?
(d) When is the particle moving in the positive direction?
(e) Find the total distance traveled during the first 6 seconds.
(f)  Draw a diagram like Figure 2 to illustrate the motion of the 

particle.
(g) Find the acceleration at time t and after 1 second.
(h)  Graph the position, velocity, and acceleration functions  

for 0 < t < 6.
(i)  When is the particle speeding up? When is it slowing down?

 1. f std − t 3 2 8t 2 1 24t 2. f std −
9t

t 2 1 9

 3. f std − sins�ty2d 4. f std − t 2e2t

 5.  Graphs of the velocity functions of two particles are shown, 
where t is measured in seconds. When is each particle 
speeding up? When is it slowing down? Explain.

 (a)  (b) 

t

√

0 1 t

√

0 1

    

t

√

0 1 t

√

0 1

 6.  Graphs of the position functions of two particles are shown, 
where t is measured in seconds. When is each particle 
speeding up? When is it slowing down? Explain.

 
(a)  (b) 

t

s

0 1 t

s

0 1

    

t

s

0 1 t

s

0 1

;
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 19.  The quantity of charge Q in coulombs (C) that has passed 
through a point in a wire up to time t (measured in seconds) is 
given by Qstd − t 3 2 2t 2 1 6t 1 2. Find the current when  
(a) t − 0.5 s and (b) t − 1 s. [See Example 3. The unit of 
current is an ampere (1 A − 1 Cys).] At what time is the 
current lowest?

 20.  Newton’s Law of Gravitation says that the magnitude F of the 
force exerted by a body of mass m on a body of mass M is

F −
GmM

r 2

   where G is the gravitational constant and r is the distance 
between the bodies.

 (a)  Find dFydr and explain its meaning. What does the minus 
sign indicate?

 (b)  Suppose it is known that the earth attracts an object with  
a force that decreases at the rate of 2 Nykm when  
r − 20,000 km. How fast does this force change when  
r − 10,000 km?

 21.  The force F acting on a body with mass m and velocity v is the 
rate of change of momentum: F − sdydtdsmvd. If m is constant, 
this becomes F − ma, where a − dvydt is the acceleration. But 
in the theory of relativity the mass of a particle varies with v as 
follows: m − m0ys1 2 v 2yc 2 , where m0 is the mass of the 
particle at rest and c is the speed of light. Show that

F −
m0a

s1 2 v 2yc 2d3y2

 22.  Some of the highest tides in the world occur in the Bay of 
Fundy on the Atlantic Coast of Canada. At Hopewell Cape the  
water depth at low tide is about 2.0 m and at high tide it is 
about 12.0 m. The natural period of oscillation is a little more 
than 12 hours and on June 30, 2009, high tide occurred at  
6:45 am. This helps explain the following model for the water 
depth D (in meters) as a function of the time t (in hours after 
midnight) on that day:

Dstd − 7 1 5 cosf0.503st 2 6.75dg

   How fast was the tide rising (or falling) at the following times?
 (a) 3:00 am (b) 6:00 am
 (c) 9:00 am (d) Noon

 23.  Boyle’s Law states that when a sample of gas is compressed at  
a constant temperature, the product of the pressure and the 
volume remains constant: PV − C.

 (a)  Find the rate of change of volume with respect to pressure.
 (b)  A sample of gas is in a container at low pressure and is 

steadily compressed at constant temperature for 10 min-
utes. Is the volume decreasing more rapidly at the begin-
ning or the end of the 10 minutes? Explain.

 (c)  Prove that the isothermal compressibility (see  
Example 5) is given by � − 1yP.

 12. (a)  Sodium chlorate crystals are easy to grow in the shape of 
cubes by allowing a solution of water and sodium chlorate 
to evaporate slowly. If V is the volume of such a cube with 
side length x, calculate dVydx when x − 3 mm and explain 
its meaning.

 (b)  Show that the rate of change of the volume of a cube with 
respect to its edge length is equal to half the surface area of 
the cube. Explain geometrically why this result is true by 
arguing by analogy with Exercise 11(b).

 13. (a)  Find the average rate of change of the area of a circle with 
respect to its radius r as r changes from

 (i) 2 to 3 (ii) 2 to 2.5 (iii) 2 to 2.1
 (b) Find the instantaneous rate of change when r − 2.
 (c)  Show that the rate of change of the area of a circle with 

respect to its radius (at any r) is equal to the circumference 
of the circle. Try to explain geometrically why this is true 
by drawing a circle whose radius is increased by an amount 
Dr. How can you approximate the resulting change in area 
DA if Dr is small?

 14.  A stone is dropped into a lake, creating a circular ripple that 
travels outward at a speed of 60 cmys. Find the rate at which 
the area within the circle is increasing after (a) 1 s, (b) 3 s,  
and (c) 5 s. What can you conclude?

 15.  A spherical balloon is being inflated. Find the rate of increase 
of the surface area sS − 4�r 2 d with respect to the radius r 
when r is (a) 1 ft, (b) 2 ft, and (c) 3 ft. What conclusion can you 
make?

 16. (a)  The volume of a growing spherical cell is V − 4
3 �r 3, where 

the radius r is measured in micrometers (1 μm − 1026 m). 
Find the average rate of change of V with respect to r when 
r changes from

 (i) 5 to 8 μm (ii) 5 to 6 μm (iii) 5 to 5.1 μm
 (b)  Find the instantaneous rate of change of V with respect to r 

when r − 5 μm.
 (c)  Show that the rate of change of the volume of a sphere with 

respect to its radius is equal to its surface area. Explain 
geometrically why this result is true. Argue by analogy 
with Exercise 13(c).

 17�.  The mass of the part of a metal rod that lies between its left  
end and a point x meters to the right is 3x 2 kg. Find the linear 
density (see Example 2) when x is (a) 1 m, (b) 2 m, and  
(c) 3 m. Where is the density the highest? The lowest?

 18�.  If a tank holds 5000 gallons of water, which drains from the 
bottom of the tank in 40 minutes, then Torricelli’s Law gives 
the volume V of water remaining in the tank after t minutes as

V − 5000s1 2 1
40 td2

    0 < t < 40

   Find the rate at which water is draining from the tank after  
(a) 5 min, (b) 10 min, (c) 20 min, and (d) 40 min. At what time 
is the water flowing out the fastest? The slowest? Summarize 
your findings.
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 (e)  In Section 1.1 we modeled Pstd with the exponential  
function

f std − s1.43653 3 10 9d ? s1.01395d t

   Use this model to find a model for the rate of population 
growth.

 (f)  Use your model in part (e) to estimate the rate of growth 
in 1920 and 1980. Compare with your estimates in parts 
(a) and (d).

 (g) Estimate the rate of growth in 1985.

 28�.  The table shows how the average age of first marriage of  
Japanese women has varied since 1950.

t Astd t Astd

1950 23.0 1985 25.5
1955 23.8 1990 25.9
1960 24.4 1995 26.3
1965 24.5 2000 27.0
1970 24.2 2005 28.0
1975 24.7 2010 28.8
1980 25.2

 (a)  Use a graphing calculator or computer to model these 
data with a fourth-degree polynomial.

 (b)  Use part (a) to find a model for A9std.
 (c)  Estimate the rate of change of marriage age for women  

in 1990.
 (d)  Graph the data points and the models for A and A9.

 29.  Refer to the law of laminar flow given in Example 7. 
Consider a blood vessel with radius 0.01 cm, length  
3 cm, pressure difference 3000 dynesycm2, and viscosity 
� − 0.027.

 (a)  Find the velocity of the blood along the center-
line r − 0, at radius r − 0.005 cm, and at the wall 
r − R − 0.01 cm.

 (b)  Find the velocity gradient at r − 0, r − 0.005, and 
r − 0.01.

 (c)  Where is the velocity the greatest? Where is the velocity 
changing most?

 30.  The frequency of vibrations of a vibrating violin string is 
given by

f −
1

2L
 ÎT

�
 

   where L is the length of the string, T is its tension, and � is  
its linear density. [See Chapter 11 in D. E. Hall, Musical  
Acoustics, 3rd ed. (Pacific Grove, CA: Brooks/Cole, 2002).]

 (a) Find the rate of change of the frequency with respect to
 (i) the length (when T and � are constant),
 (ii) the tension (when L and � are constant), and
 (iii) the linear density (when L and T are constant).
 (b)  The pitch of a note (how high or low the note sounds) 

is determined by the frequency f . (The higher the fre- 
quency, the higher the pitch.) Use the signs of the  

;

 24.  If, in Example 4, one molecule of the product C is formed  
from one molecule of the reactant A and one molecule of the 
reactant B, and the initial concentrations of A and B have a 
common value fAg − fBg − a molesyL, then

fCg − a 2ktysakt 1 1d

  where k is a constant.
 (a) Find the rate of reaction at time t.
 (b) Show that if x − fCg, then

dx

dt
− ksa 2 xd2

 (c) What happens to the concentration as t l `?
 (d) What happens to the rate of reaction as t l `?
 (e)  What do the results of parts (c) and (d) mean in practical 

terms?

 25.  In Example 6 we considered a bacteria population that  
doubles every hour. Suppose that another population of 
bacteria triples every hour and starts with 400 bacteria. Find 
an expression for the number n of bacteria after t hours and 
use it to estimate the rate of growth of the bacteria popula-
tion after 2.5 hours.

 26.  The number of yeast cells in a laboratory culture increases  
rapidly initially but levels off eventually. The population is 
modeled by the function

n − f std −
a

1 1 be20.7t

   where t is measured in hours. At time t − 0 the population is 
20 cells and is increasing at a rate of 12 cellsyhour. Find the 
values of a and b. According to this model, what happens to 
the yeast population in the long run?

 27�.  The table gives the population of the world Pstd, in millions, 
where t is measured in years and t − 0 corresponds to the 
year 1900.

t
Population 
(millions) t

Population 
(millions)

 0  1650  60  3040
10  1750  70  3710
20  1860  80  4450
30  2070  90  5280
40  2300  100  6080
50  2560  110  6870

 (a)  Estimate the rate of population growth in 1920 and in 
1980 by averaging the slopes of two secant lines.

 (b)  Use a graphing device to find a cubic function (a third-
degree polynomial) that models the data.

 (c)  Use your model in part (b) to find a model for the rate of 
population growth.

 (d)  Use part (c) to estimate the rates of growth in 1920 and 
1980. Compare with your estimates in part (a).

;
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    given by the equation

t − lnS 3c 1 s9c 2 2 8c 

2 D
   Calculate the derivative of t with respect to c and interpret it.

 36.  Invasive species often display a wave of advance as 
they colonize new areas. Mathematical models based on 
random dispersal and reproduction have demonstrated that 
the speed with which such waves move is given by the 
function f srd − 2sDr , where r is the reproductive rate 
of individuals and D is a parameter quantifying dispersal. 
Calculate the derivative of the wave speed with respect to 
the reproductive rate r and explain its meaning.

 37�.  The gas law for an ideal gas at absolute temperature T (in 
kelvins), pressure  P (in atmospheres), and volume V (in 
liters) is PV − nRT, where n is the number of moles of the 
gas and R − 0.0821 is the gas constant. Suppose that, at a 
certain instant, P − 8.0 atm and is increasing at a rate of  
0.10 atmymin and V − 10 L and is decreasing at a rate of  
0.15 Lymin. Find the rate of change of T with respect to 
time at that instant if n − 10 mol.

 38�.  In a fish farm, a population of fish is introduced into a pond 
and harvested regularly. A model for the rate of change of 
the fish population is given by the equation

dP

dt
− r0S1 2

Pstd
Pc
DPstd 2 �Pstd

   where r0 is the birth rate of the fish, Pc is the maximum 
population that the pond can sustain (called the carrying 
capacity), and � is the percentage of the population that is 
harvested.

 (a)  What value of dPydt corresponds to a stable population?
 (b)  If the pond can sustain 10,000 fish, the birth rate is 5%, 

and the harvesting rate is 4%, find the stable population 
level.

 (c) What happens if � is raised to 5%?

 39.  In the study of ecosystems, predator-prey models are often 
used to study the interaction between species. Consider 
populations of tundra wolves, given by Wstd, and caribou, 
given by Cstd, in northern Canada. The interaction has been 
modeled by the equations

dC

dt
− aC 2 bCW      

dW

dt
− 2cW 1 dCW

 (a)  What values of dCydt and dWydt correspond to stable  
populations?

 (b)  How would the statement “The caribou go extinct” be  
represented mathematically?

 (c)  Suppose that a − 0.05, b − 0.001, c − 0.05, and  
d − 0.0001. Find all population pairs sC, W d that lead 
to stable populations. According to this model, is it pos-
sible for the two species to live in balance or will one or 
both species become extinct?

derivatives in part (a) to determine what happens to the 
pitch of a note

 (i)  when the effective length of a string is decreased by 
placing a finger on the string so a shorter portion of 
the string vibrates,

 (ii)  when the tension is increased by turning a tuning 
peg,

 (iii)  when the linear density is increased by switching to 
another string.

 31.  Suppose that the cost (in dollars) for a company to produce  
x pairs of a new line of jeans is

Csxd − 2000 1 3x 1 0.01x 2 1 0.0002x 3

 (a)  Find the marginal cost function.
 (b)  Find C9s100d and explain its meaning. What does it  

predict?
 (c)  Compare C9s100d with the cost of manufacturing the 

101st pair of jeans.

 32.  The cost function for a certain commodity is

Csqd − 84 1 0.16q 2 0.0006q 2 1 0.000003q 3

 (a) Find and interpret C9s100d.
 (b)  Compare C9s100d with the cost of producing the 101st 

item.

 33.  If psxd is the total value of the production when there are  
x workers in a plant, then the average productivity of the 
workforce at the plant is

Asxd −
 psxd

x

 (a)  Find A9sxd. Why does the company want to hire more  
workers if A9sxd . 0?

 (b)  Show that A9sxd . 0 if p9sxd is greater than the average  
productivity.

 34.  If R denotes the reaction of the body to some stimulus of 
strength x, the sensitivity S is defined to be the rate of change 
of the reaction with respect to x. A particular example is 
that when the brightness x of a light source is increased, 
the eye reacts by decreasing the area R of the pupil. The 
experimental formula

R −
40 1 24x 0.4

1 1 4x 0.4

   has been used to model the dependence of R on x when 
R is measured in square millimeters and x is measured in 
appropriate units of brightness.

 (a) Find the sensitivity.
 (b)  Illustrate part (a) by graphing both R and S as functions  

of x. Comment on the values of R and S at low levels of 
brightness. Is this what you would expect?

 35.   Patients undergo dialysis treatment to remove urea from their 
blood when their kidneys are not functioning properly. Blood 
is diverted from the patient through a machine that filters 
out urea. Under certain conditions, the duration of dialysis 
required, given that the initial urea concentration is c . 1, is 

;
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In many natural phenomena, quantities grow or decay at a rate proportional to their size. 
For instance, if y − f std is the number of individuals in a population of animals or bac-
teria at time t, then it seems reasonable to expect that the rate of growth f 9std is propor-
tional to the population f std; that is, f 9std − kf std for some constant k. Indeed, under 
ideal conditions (unlimited environment, adequate nutrition, immunity to disease) the 
mathematical model given by the equation f 9std − kf std predicts what actually happens 
fairly accurately. Another example occurs in nuclear physics where the mass of a radio-
active substance decays at a rate proportional to the mass. In chemistry, the rate of a 
unimolecular first-order reaction is proportional to the concentration of the substance. In 
finance, the value of a savings account with continuously compounded interest increases 
at a rate proportional to that value.

In general, if ystd is the value of a quantity y at time t and if the rate of change of y 
with respect to t is proportional to its size ystd at any time, then

1   
dy

dt
− ky

where k is a constant. Equation 1 is sometimes called the law of natural growth (if 
k . 0d or the law of natural decay (if k , 0). It is called a differential equation 
because it involves an unknown function y and its derivative dyydt.

It’s not hard to think of a solution of Equation 1. This equation asks us to find a func-
tion whose derivative is a constant multiple of itself. We have met such functions in  
this chapter. Any exponential function of the form ystd − Cekt, where C is a constant, 
satisfies

y9std − Cskektd − ksCektd − kystd

We will see in Section 9.4 that any function that satisfies dyydt − ky must be of the form 
y − Cekt. To see the significance of the constant C, we observe that

ys0d − Cek?0 − C

Therefore C is the initial value of the function.

2   Theorem The only solutions of the differential equation dyydt − ky are the 
exponential functions

ystd − ys0dekt

population Growth
What is the significance of the proportionality constant k? In the context of population 
growth, where Pstd is the size of a population at time t, we can write

3   
dP

dt
− kP    or    

1

P
 
dP

dt
− k

The quantity
1

P
 
dP

dt

is the growth rate divided by the population size; it is called the relative growth rate.  
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According to (3), instead of saying “the growth rate is proportional to population size”  
we could say “the relative growth rate is constant.” Then (2) says that a population with  
constant relative growth rate must grow exponentially. Notice that the relative growth 
rate k appears as the coefficient of t in the exponential function Cekt. For instance, if

dP

dt
− 0.02P

and t is measured in years, then the relative growth rate is k − 0.02 and the population  
grows at a relative rate of 2% per year. If the population at time 0 is P0, then the expres-
sion for the population is

Pstd − P0e 0.02 t

ExamplE 1 Use the fact that the world population was 2560 million in 1950 and  
3040 million in 1960 to model the population of the world in the second half of the 20th 
century. (Assume that the growth rate is proportional to the population size.) What is 
the relative growth rate? Use the model to estimate the world population in 1993 and to 
predict the population in the year 2020.

SoLUtion We measure the time t in years and let t − 0 in the year 1950. We measure 
the population Pstd in millions of people. Then Ps0d − 2560 and Ps10d − 3040. Since 
we are assuming that dPydt − kP, Theorem 2 gives

Pstd − Ps0dekt − 2560ekt

 Ps10d − 2560e 10k − 3040

 k −
1

10
 ln 

3040

2560
< 0.017185

The relative growth rate is about 1.7% per year and the model is

Pstd − 2560e 0.017185 t

We estimate that the world population in 1993 was

Ps43d − 2560e 0.017185s43d < 5360 million

The model predicts that the population in 2020 will be

Ps70d − 2560e 0.017185s70d < 8524 million

The graph in Figure 1 shows that the model is fairly accurate to the end of the 20th cen-
tury (the dots represent the actual population), so the estimate for 1993 is quite reliable. 
But the prediction for 2020 is riskier.

 

6000

P

t200 40
Years since 1950

Population
(in millions)

P=2560e0.017185t

 ■

FIGURE 1  
A model for world population growth 
in the second half of the 20th century
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radioactive Decay
Radioactive substances decay by spontaneously emitting radiation. If mstd is the mass  
remaining from an initial mass m0 of the substance after time t, then the relative decay 
rate

2
1

m
 
dm

dt

has been found experimentally to be constant. (Since dmydt is negative, the relative 
decay rate is positive.) It follows that

dm

dt
− km

where k is a negative constant. In other words, radioactive substances decay at a rate 
proportional to the remaining mass. This means that we can use (2) to show that the mass  
decays exponentially:

mstd − m0ekt

Physicists express the rate of decay in terms of half-life, the time required for half of 
any given quantity to decay.

ExamplE 2 The half-life of radium-226 is 1590 years.
(a) A sample of radium-226 has a mass of 100 mg. Find a formula for the mass of the 
sample that remains after t years.
(b) Find the mass after 1000 years correct to the nearest milligram.
(c) When will the mass be reduced to 30 mg?

SoLUtion
(a) Let mstd be the mass of radium-226 (in milligrams) that remains after t years. Then 
dmydt − km and ms0d − 100, so (2) gives

mstd − ms0dekt − 100ekt

In order to determine the value of k, we use the fact that ms1590d − 1
2 s100d. Thus

100e 1590k − 50    so    e 1590k − 1
2

and  1590k − ln 12 − 2ln 2

 k − 2
ln 2

1590

Therefore mstd − 100e2sln 2dty1590

We could use the fact that e ln 2 − 2 to write the expression for mstd in the alternative 
form

mstd − 100 3 22ty1590

(b) The mass after 1000 years is 

ms1000d − 100e2sln 2d1000y1590 < 65 mg

(c) We want to find the value of t such that mstd − 30, that is,

100e2sln 2dty1590 − 30    or    e2sln 2dty1590 − 0.3
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We solve this equation for t by taking the natural logarithm of both sides:

 2
ln 2

1590
 t − ln 0.3

Thus  t − 21590 
ln 0.3

ln 2
< 2762 years ■

As a check on our work in Example 2, we use a graphing device to draw the graph of  
mstd in Figure 2 together with the horizontal line m − 30. These curves intersect when 
t < 2800, and this agrees with the answer to part (c).

Newton’s Law of Cooling
Newton’s Law of Cooling states that the rate of cooling of an object is proportional to the 
temperature difference between the object and its surroundings, provided that this dif-
ference is not too large. (This law also applies to warming.) If we let Tstd be the temper-
ature of the object at time t and Ts be the temperature of the surroundings, then we can 
formulate Newton’s Law of Cooling as a differential equation:

dT

dt
− ksT 2 Tsd

where k is a constant. This equation is not quite the same as Equation 1, so we make the 
change of variable ystd − Tstd 2 Ts. Because Ts is constant, we have y9std − T 9std and 
so the equation becomes

dy

dt
− ky

We can then use (2) to find an expression for y, from which we can find T.

ExamplE 3� A bottle of soda pop at room temperature (72°F) is placed in a refrigera-
tor where the temperature is 44°F. After half an hour the soda pop has cooled to 61°F.
(a) What is the temperature of the soda pop after another half hour?
(b) How long does it take for the soda pop to cool to 50°F?

SOlUTION
(a) Let Tstd be the temperature of the soda after t minutes. The surrounding tempera-
ture is Ts − 448 F, so Newton’s Law of Cooling states that

dT

dt
− ksT 2 44d

If we let y − T 2 44, then ys0d − Ts0d 2 44 − 72 2 44 − 28, so y satisfies

dy

dt
− ky    ys0d − 28

and by (2) we have

ystd − ys0dekt − 28ekt

We are given that Ts30d − 61, so ys30d − 61 2 44 − 17 and

28e30k − 17    e30k − 17
28

m=30

0 4000

150

m=100e_(ln 2)t/1590

FIGURE 2
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Taking logarithms, we have

k −
lns17

28 d
30

< 20.01663

Thus
  ystd − 28e20.01663 t

  Tstd − 44 1 28e20.01663 t

Ts60d − 44 1 28e20.01663s60d < 54.3

So after another half hour the pop has cooled to about 54°F.

(b) We have Tstd − 50 when

 44 1 28e20.01663t − 50

e20.01663 t − 6
28

  t −
lns 6

28d
20.01663

< 92.6

The pop cools to 50°F after about 1 hour 33 minutes. ■

Notice that in Example 3, we have 

lim
t l `

 Tstd − lim
t l `

 s44 1 28e20.01663 td − 44 1 28 ? 0 − 44

which is to be expected. The graph of the temperature function is shown in Figure 3.

Continuously Compounded interest

ExamplE 4� If $1000 is invested at 6% interest, compounded annually, then after  
1 year the investment is worth $1000s1.06d − $1060, after 2 years it’s worth 
$f1000s1.06dg1.06 − $1123.60, and after t years it’s worth $1000s1.06dt. In general,  
if an amount A0 is invested at an interest rate r sr − 0.06 in this example), then after  
t years it’s worth A0s1 1 rd t. Usually, however, interest is compounded more fre-
quently, say, n times a year. Then in each compounding period the interest rate is ryn 
and there are nt compounding periods in t years, so the value of the investment is

A0S1 1
r

nDnt

For instance, after 3 years at 6% interest a $1000 investment will be worth

 $1000s1.06d3 − $1191.02 with annual compounding

 $1000s1.03d6 − $1194.05 with semiannual compounding

 $1000s1.015d12 − $1195.62 with quarterly compounding

 $1000s1.005d36 − $1196.68 with monthly compounding

 $1000S1 1
0.06

365 D365 ? 3

− $1197.20 with daily compounding

72
T

t600 30 90

44

FIGURE 3

41550_ch03_ptg1_hr_240-249.indd   241 10/16/14   11:08 AM



242 Chapter 3  Differentiation Rules

You can see that the interest paid increases as the number of compounding periods snd 
increases. If we let n l `, then we will be compounding the interest continuously and 
the value of the investment will be

  Astd − lim
n l `

 A0S1 1
r

nDnt

  − lim
n l `

 A0FS1 1
r

nDnyrGrt

  − A0F lim
n l `

 S1 1
r

nDnyrGrt

 − A0F lim
ml `

 S1 1
1

mDmGrt

    (where m − nyr)

But the limit in this expression is equal to the number e (see Equation 3.6.6). So with 
continuous compounding of interest at interest rate r, the amount after t years is

Astd − A0ert

If we differentiate this equation, we get

 
dA

dt
− rA0ert − rAstd

which says that, with continuous compounding of interest, the rate of increase of an 
investment is proportional to its size.

Returning to the example of $1000 invested for 3 years at 6% interest, we see that 
with continuous compounding of interest the value of the investment will be

 As3d − $1000e s0.06d3 − $1197.22

Notice how close this is to the amount we calculated for daily compounding, $1197.20. 
But the amount is easier to compute if we use continuous compounding. ■

3�.8 exerCiSeS

 1.  A population of protozoa develops with a constant relative 
growth rate of 0.7944 per member per day. On day zero the 
population consists of two members. Find the population size 
after six days.

 2.  A common inhabitant of human intestines is the bacterium 
Escherichia coli, named after the German pediatrician Theodor 
Escherich, who identified it in 1885. A cell of this bacterium  
in a nutrient-broth medium divides into two cells every 
20 minutes. The initial population of a culture is 50 cells.

 (a) Find the relative growth rate.
 (b) Find an expression for the number of cells after t hours.

 (c) Find the number of cells after 6 hours.
 (d) Find the rate of growth after 6 hours.
 (e) When will the population reach a million cells?

 3�.  A bacteria culture initially contains 100 cells and grows at a 
rate proportional to its size. After an hour the population has 
increased to 420.

 (a)  Find an expression for the number of bacteria after t hours.
 (b) Find the number of bacteria after 3 hours.
 (c) Find the rate of growth after 3 hours.
 (d) When will the population reach 10,000?
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 7. Experiments show that if the chemical reaction 

N2O5 l 2NO2 1 1
2 O2

   takes place at 458C, the rate of reaction of dinitrogen pent-
oxide is proportional to its concentration as follows:

2
dfN2O5g

dt
− 0.0005fN2O5g

  (See Example 3.7.4.)
 (a)  Find an expression for the concentration fN2O5g after  

t seconds if the initial concentration is C.
 (b)  How long will the reaction take to reduce the concentra-

tion of N2O5 to 90% of its original value?

 8. Strontium-90 has a half-life of 28 days. 
 (a)  A sample has a mass of 50 mg initially. Find a formula for 

the mass remaining after t days.
 (b) Find the mass remaining after 40 days.
 (c)  How long does it take the sample to decay to a mass  

of 2 mg?
 (d) Sketch the graph of the mass function.

 9.  The half-life of cesium-137 is 30 years. Suppose we have a 
100-mg sample.

 (a)  Find the mass that remains after t years.
 (b) How much of the sample remains after 100 years?
 (c)  After how long will only 1 mg remain?

 10.  A sample of tritium-3 decayed to 94.5% of its original amount 
after a year.

 (a) What is the half-life of tritium-3?
 (b)  How long would it take the sample to decay to 20% of its 

original amount?

 11.  Scientists can determine the age of ancient objects by the 
method of radiocarbon dating. The bombardment of the upper 
atmosphere by cosmic rays converts nitrogen to a radioactive 
isotope of carbon, 14C, with a half-life of about 5730 years. 
Vegetation absorbs carbon dioxide through the atmosphere and 
animal life assimilates 14C through food chains. When a plant 
or animal dies, it stops replacing its carbon and the amount of 
14C begins to decrease through radioactive decay. Therefore 
the level of radioactivity must also decay exponentially.

 A discovery revealed a parchment fragment that had about 
74% as much 14C radioactivity as does plant material on the 
earth today. Estimate the age of the parchment.

 12.  Dinosaur fossils are too old to be reliably dated using 
carbon-14. (See Exercise 11.) Suppose we had a 68-million-
year-old dinosaur fossil. What fraction of the living dino-
saur’s 14C would be remaining today? Suppose the minimum 
detectable amount is 0.1%. What is the maximum age of a 
fossil that we could date using 14C?

 13.  Dinosaur fossils are often dated by using an element other 
than carbon, such as potassium-40, that has a longer half-life 
(in this case, approximately 1.25 billion years). Suppose the 
minimum detectable amount is 0.1% and a dinosaur is dated 

 4.  A bacteria culture grows with constant relative growth rate. 
The bacteria count was 400 after 2 hours and 25,600 after  
6 hours.

 (a)  What is the relative growth rate? Express your answer  
as a percentage.

 (b) What was the initial size of the culture?
 (c)  Find an expression for the number of bacteria after  

t hours.
 (d) Find the number of cells after 4.5 hours.
 (e) Find the rate of growth after 4.5 hours.
 (f) When will the population reach 50,000?

 5.  The table gives estimates of the world population, in millions, 
from 1750 to 2000.

Year Population Year Population

1750  790 1900 1650
1800  980 1950 2560
1850  1260 2000 6080

 (a)  Use the exponential model and the population figures for 
1750 and 1800 to predict the world population in 1900 
and 1950. Compare with the actual figures.

 (b)  Use the exponential model and the population figures for 
1850 and 1900 to predict the world population in 1950. 
Compare with the actual population.

 (c)  Use the exponential model and the population figures for 
1900 and 1950 to predict the world population in 2000. 
Compare with the actual population and try to explain the 
discrepancy.

 6.  The table gives the population of Indonesia, in millions, for 
the second half of the 20th century.

Year Population

1950  83
1960 100
1970 122
1980 150
1990 182
2000 214

 (a)  Assuming the population grows at a rate proportional 
to its size, use the census figures for 1950 and 1960 to 
predict the population in 1980. Compare with the actual 
figure.

 (b)  Use the census figures for 1960 and 1980 to predict the 
population in 2000. Compare with the actual population.

 (c)  Use the census figures for 1980 and 2000 to predict the 
population in 2010 and compare with the actual popula-
tion of 243 million.

 (d)  Use the model in part (c) to predict the population in 
2020. Do you think the prediction will be too high or too 
low? Why?
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A typical volume of blood in the human body is about 5 L. A certain percentage of that volume 
(called the hematocrit) consists of red blood cells (RBCs); typically the hematocrit is about 
45% in males. Suppose that a surgery takes four hours and a male patient bleeds 2.5 L of blood. 
During surgery the patient’s blood volume is maintained at 5 L by injection of saline solu-
tion, which mixes quickly with the blood but dilutes it so that the hematocrit decreases as time 
passes.

1.  Assuming that the rate of RBC loss is proportional to the volume of RBCs, determine the 
patient’s volume of RBCs by the end of the operation.

2.  A procedure called acute normovolemic hemodilution (ANH) has been developed to 
minimize RBC loss during surgery. In this procedure blood is extracted from the patient 
before the operation and replaced with saline solution. This dilutes the patient’s blood, 
resulting in fewer RBCs being lost during the bleeding. The extracted blood is then returned 
to the patient after surgery. Only a certain amount of blood can be extracted, however, 
because the RBC concentration can never be allowed to drop below 25% during surgery. 
What is the maximum amount of blood that can be extracted in the ANH procedure for the 
surgery described in this project?

3.  What is the RBC loss without the ANH procedure? What is the loss if the procedure is 
carried out with the volume calculated in Problem 2?

APPLIED ProjEct controLLIng rED BLooD cELL Loss DurIng surgEry

with 40 K to be 68 million years old. Is such a dating 
possible? In other words, what is the maximum age of a 
fossil that we could date using 40 K?

 14.  A curve passes through the point s0, 5d and has the property 
that the slope of the curve at every point P is twice the  
y-coordinate of P. What is the equation of the curve?

 15.  A roast turkey is taken from an oven when its temperature 
has reached 185°F and is placed on a table in a room where 
the temperature is 75°F.

 (a)  If the temperature of the turkey is 1508F after half an 
hour, what is the temperature after 45 minutes?

 (b) When will the turkey have cooled to 1008F?

 16.  In a murder investigation, the temperature of the corpse was 
32.5°C at 1:30 pm and 30.3°C an hour later. Normal body 
temperature is 37.0°C and the temperature of the 
surroundings was 20.0°C. When did the murder take place?

 17.  When a cold drink is taken from a refrigerator, its 
temperature is 5°C. After 25 minutes in a 20°C room its 
temperature has increased to 10°C.

 (a) What is the temperature of the drink after 50 minutes?
 (b) When will its temperature be 15°C?

 18.  A freshly brewed cup of coffee has temperature 958C in a  
20°C room. When its temperature is 70°C, it is cooling at a 
rate of 1°C per minute. When does this occur?

 19.  The rate of change of atmospheric pressure P with respect to 
altitude h is proportional to P, provided that the temperature 
is constant. At 15°C the pressure is 101.3 kPa at sea level 
and 87.14 kPa at h − 1000 m.

 (a) What is the pressure at an altitude of 3000 m?
 (b)  What is the pressure at the top of Mount McKinley, at an 

altitude of 6187 m?

 20. (a)  If $1000 is borrowed at 8% interest, find the amounts  
due at the end of 3 years if the interest is compounded  
(i) annually, (ii) quarterly, (iii) monthly, (iv) weekly,  
(v) daily, (vi) hourly, and (vii) continuously.

 (b)  Suppose $1000 is borrowed and the interest is com-
pounded continuously. If Astd is the amount due after t 
years, where 0 < t < 3, graph Astd for each of the inter-
est rates 6%, 8%, and 10% on a common screen.

 21. (a)  If $3000 is invested at 5% interest, find the value of the 
investment at the end of 5 years if the interest is com-
pounded (i) annually, (ii) semiannually, (iii) monthly,  
(iv) weekly, (v) daily, and (vi) continuously.

 (b)  If Astd is the amount of the investment at time t for the 
case of continuous compounding, write a differential 
equation and an initial condition satisfied by Astd.

 22. (a)  How long will it take an investment to double in value if 
the interest rate is 6% compounded continuously?

 (b) What is the equivalent annual interest rate?

;
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If we are pumping air into a balloon, both the volume and the radius of the balloon are  
increasing and their rates of increase are related to each other. But it is much easier to 
measure directly the rate of increase of the volume than the rate of increase of the radius.

In a related rates problem the idea is to compute the rate of change of one quantity in 
terms of the rate of change of another quantity (which may be more easily measured). 
The procedure is to find an equation that relates the two quantities and then use the Chain 
Rule to differentiate both sides with respect to time.

ExamplE 1 Air is being pumped into a spherical balloon so that its volume increases 
at a rate of 100 cm3ys. How fast is the radius of the balloon increasing when the diam-
eter is 50 cm?

SoLUtioN We start by identifying two things:

 the given information:

the rate of increase of the volume of air is 100 cm3ys

 and the unknown:

the rate of increase of the radius when the diameter is 50 cm

In order to express these quantities mathematically, we introduce some suggestive 
notation:

Let V  be the volume of the balloon and let r be its radius.

The key thing to remember is that rates of change are derivatives. In this problem, the 
volume and the radius are both functions of the time t. The rate of increase of the vol-
ume with respect to time is the derivative dVydt, and the rate of increase of the radius is 
drydt. We can therefore restate the given and the unknown as follows:

 Given: 
dV

dt
− 100 cm3ys

 Unknown: 
dr

dt
when r − 25 cm

In order to connect dVydt and drydt, we first relate V  and r by the formula for the 
volume of a sphere:

V − 4
3 �r 3

In order to use the given information, we differentiate each side of this equation with 
respect to t. To differentiate the right side, we need to use the Chain Rule:

dV

dt
−

dV

dr
 
dr

dt
− 4�r 2 

dr

dt

Now we solve for the unknown quantity:

dr

dt
−

1

4�r 2  
dV

dt

PS  According to the Principles of Prob-
lem Solving discussed on page 71, the 
first step is to understand the problem. 
This includes reading the problem 
carefully, identifying the given and the 
unknown, and introducing suitable 
notation.

PS  The second stage of problem solv-
ing is to think of a plan for connecting 
the given and the unknown.

Notice that, although dVydt is constant,  
drydt is not constant.
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246 Chapter 3  Differentiation Rules

If we put r − 25 and dVydt − 100 in this equation, we obtain

dr

dt
−

1

4�s25d2 100 −
1

25�

The radius of the balloon is increasing at the rate of 1ys25�d < 0.0127 cmys. ■

ExamplE 2 A ladder 10 ft long rests against a vertical wall. If the bottom of the lad-
der slides away from the wall at a rate of 1 ftys, how fast is the top of the ladder sliding 
down the wall when the bottom of the ladder is 6 ft from the wall? 

SoLUtioN We first draw a diagram and label it as in Figure 1. Let x feet be the dis-
tance from the bottom of the ladder to the wall and y feet the distance from the top of 
the ladder to the ground. Note that x and y are both functions of t (time, measured in 
seconds).

We are given that dxydt − 1 ftys and we are asked to find dyydt when x − 6 ft (see 
Figure 2). In this problem, the relationship between x and y is given by the Pythagorean 
Theorem:

x 2 1 y 2 − 100

Differentiating each side with respect to t using the Chain Rule, we have

2x 
dx

dt
1 2y 

dy

dt
− 0

and solving this equation for the desired rate, we obtain

dy

dt
− 2

x

y
 
dx

dt

When x − 6, the Pythagorean Theorem gives y − 8 and so, substituting these values  
and dxydt − 1, we have

dy

dt
− 2

6

8
s1d − 2

3

4
 ftys

The fact that dyydt is negative means that the distance from the top of the ladder to 
the ground is decreasing at a rate of 34 ftys. In other words, the top of the ladder is sliding 
down the wall at a rate of 3

4 ftys. ■

ExamplE 3� A water tank has the shape of an inverted circular cone with base radius 
2 m and height 4 m. If water is being pumped into the tank at a rate of 2 m3ymin, find 
the rate at which the water level is rising when the water is 3 m deep.

SoLUtioN We first sketch the cone and label it as in Figure 3. Let V , r, and h be the 
volume of the water, the radius of the surface, and the height of the water at time t, 
where t is measured in minutes.

We are given that dVydt − 2 m3ymin and we are asked to find dhydt when h is 3 m. 
The quantities V  and h are related by the equation

V − 1
3 �r 2h

but it is very useful to express V  as a function of h alone. In order to eliminate r, we use 

ground

wall

10
y

x

y

x

dy
dt =?

dx
dt

=1

FIGURE 1

FIGURE 2

2

r

h

4

FIGURE 3
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the similar triangles in Figure 3 to write

r

h
−

2

4
      r −

h

2

and the expression for V  becomes

V −
1

3
�S h

2D2

h −
�

12
h 3

Now we can differentiate each side with respect to t:

 
dV

dt
−

�

4
 h 2 

dh

dt

so  
dh

dt
−

4

�h 2  
dV

dt

Substituting h − 3 m and dVydt − 2 m3ymin, we have

dh

dt
−

4

�s3d2 ? 2 −
8

9�

The water level is rising at a rate of 8ys9�d < 0.28 mymin. ■

Problem solving strategy It is useful to recall some of the problem-solving  
principles from page 71 and adapt them to related rates in light of our experience in  
Examples 1–3:

1. Read the problem carefully.

2. Draw a diagram if possible.

3. Introduce notation. Assign symbols to all quantities that are functions of time.

4. Express the given information and the required rate in terms of derivatives.

5.  Write an equation that relates the various quantities of the problem. If necessary, 
use the geometry of the situation to eliminate one of the variables by substitution 
(as in Example 3).

6. Use the Chain Rule to differentiate both sides of the equation with respect to t.

7.  Substitute the given information into the resulting equation and solve for the  
unknown rate.

The following examples are further illustrations of the strategy.

ExamplE 4� Car A is traveling west at 50 miyh and car B is traveling north at  
60 miyh. Both are headed for the intersection of the two roads. At what rate are  
the cars approaching each other when car A is 0.3 mi and car B is 0.4 mi from the  
intersection?

SoLUtioN We draw Figure 4, where C is the intersection of the roads. At a given time 
t, let x be the distance from car A to C, let y be the distance from car B to C, and let z 
be the distance between the cars, where x, y, and z are measured in miles.

We are given that dxydt − 250 miyh and dyydt − 260 miyh. (The derivatives are 
negative because x and y are decreasing.) We are asked to find dzydt. The equation that 

C

z
y

x

B

A

FIGURE 4

PS  Look back: What have we learned 
from Examples 1–3 that will help us 
solve future problems?

 WARNING A common error is  
to substitute the given numerical 
information (for quantities that vary 
with time) too early. This should be 
done only after the differentiation. 
(Step 7 follows Step 6.) For instance, 
in Example 3 we dealt with general 
values of h until we finally substituted 
h − 3 at the last stage. (If we had put 
h − 3 earlier, we would have gotten 
dVydt − 0, which is clearly wrong.)
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248 Chapter 3  Differentiation Rules

relates x, y, and z is given by the Pythagorean Theorem:

z2 − x 2 1 y 2

Differentiating each side with respect to t, we have

 2z 
dz

dt
− 2x 

dx

dt
1 2y 

dy

dt

 
dz

dt
−

1

z
 Sx 

dx

dt
1 y 

dy

dt D
When x − 0.3 mi and y − 0.4 mi, the Pythagorean Theorem gives z − 0.5 mi, so

 
dz

dt
−

1

0.5
 f0.3s250d 1 0.4s260dg

 − 278 miyh

The cars are approaching each other at a rate of 78 miyh. ■

ExamplE 5 A man walks along a straight path at a speed of 4 ftys. A searchlight is 
located on the ground 20 ft from the path and is kept focused on the man. At what rate 
is the searchlight rotating when the man is 15 ft from the point on the path closest to 
the searchlight?

SoLUtioN We draw Figure 5 and let x be the distance from the man to the point on the 
path closest to the searchlight. We let � be the angle between the beam of the search-
light and the perpendicular to the path.

We are given that dxydt − 4 ftys and are asked to find d�ydt when x − 15. The 
equation that relates x and � can be written from Figure 5:

x

20
− tan �      x − 20 tan �

Differentiating each side with respect to t, we get

dx

dt
− 20 sec2� 

d�

dt

so 
d�

dt
−

1

20
 cos2� 

dx

dt

 −
1

20
 cos2� s4d −

1

5
 cos2�

When x − 15, the length of the beam is 25, so cos � − 4
5 and

d�

dt
−

1

5
 S 4

5D2

−
16

125
− 0.128 

The searchlight is rotating at a rate of 0.128 radys. ■

x

20

¨

FIGURE 5
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3 cmys. How fast is the x-coordinate of the point changing at 
that instant?

13–16
(a) What quantities are given in the problem?
(b) What is the unknown?
(c) Draw a picture of the situation for any time t.
(d) Write an equation that relates the quantities.
(e) Finish solving the problem.

 13.  A plane flying horizontally at an altitude of 1 mi and a speed of  
500 miyh passes directly over a radar station. Find the rate at 
which the distance from the plane to the station is increasing 
when it is 2 mi away from the station.

 14.    If a snowball melts so that its surface area decreases at a rate of 
1 cm2ymin, find the rate at which the diameter decreases when 
the diameter is 10 cm.

 15.  A street light is mounted at the top of a 15-ft-tall pole. A man  
6 ft tall walks away from the pole with a speed of 5 ftys along a 
straight path. How fast is the tip of his shadow moving when he 
is 40 ft from the pole?

 16.   At noon, ship A is 150 km west of ship B. Ship A is sailing east 
at 35 kmyh and ship B is sailing north at 25 kmyh. How fast is 
the distance between the ships changing at 4:00 pm?

 17.  Two cars start moving from the same point. One travels south 
at 60 miyh and the other travels west at 25 miyh. At what rate 
is the distance between the cars increasing two hours later?

 18.  A spotlight on the ground shines on a wall 12 m away. If a man 
2 m tall walks from the spotlight toward the building at a speed 
of 1.6 mys, how fast is the length of his shadow on the build-
ing decreasing when he is 4 m from the building?

 19.  A man starts walking north at 4 ftys from a point P. Five min-
utes later a woman starts walking south at 5 ftys from a point 
500 ft due east of P. At what rate are the people moving apart 
15 min after the woman starts walking?

 20.  A baseball diamond is a square with side 90 ft. A batter hits the 
ball and runs toward first base with a speed of 24 ftys.

 (a)  At what rate is his distance from second base decreasing 
when he is halfway to first base?

 (b)  At what rate is his distance from third base increasing at 
the same moment?

90 ft

3.9 exerciSeS

 1.  If V is the volume of a cube with edge length x and the cube 
expands as time passes, find dVydt in terms of dxydt.

 2. (a)  If A is the area of a circle with radius r and the circle 
expands as time passes, find dAydt in terms of drydt.

 (b)  Suppose oil spills from a ruptured tanker and spreads in 
a circular pattern. If the radius of the oil spill increases at 
a constant rate of 1 mys, how fast is the area of the spill 
increasing when the radius is 30 m?

 3.  Each side of a square is increasing at a rate of 6 cmys. At what 
rate is the area of the square increasing when the area of the 
square is 16 cm2?

 4.  The length of a rectangle is increasing at a rate of 8 cmys and 
its width is increasing at a rate of 3 cmys. When the length is 
20 cm and the width is 10 cm, how fast is the area of the 
rectangle increasing?

 5.  A cylindrical tank with radius 5 m is being filled with water  
at a rate of 3 m3ymin. How fast is the height of the water 
increasing?

 6.  The radius of a sphere is increasing at a rate of 4 mmys. How 
fast is the volume increasing when the diameter is 80 mm?

 7.  The radius of a spherical ball is increasing at a rate of 
2 cmymin. At what rate is the surface area of the ball 
increasing when the radius is 8 cm?

 8.  The area of a triangle with sides of lengths a and b and 
contained angle � is

A − 1
2 ab sin �

 (a)  If a − 2 cm, b − 3 cm, and � increases at a rate of 
0.2 radymin, how fast is the area increasing when  
� − �y3?

 (b)  If a − 2 cm, b increases at a rate of 1.5 cmymin, and � 
increases at a rate of 0.2 radymin, how fast is the area 
increasing when b − 3 cm and � − �y3?

 (c)  If a increases at a rate of 2.5 cmymin, b increases at a rate 
of 1.5 cmymin, and � increases at a rate of 0.2 radymin, 
how fast is the area increasing when a − 2 cm, b − 3 cm, 
and � − �y3?

 9.  Suppose y − s2x 1 1 , where x and y are functions of t.
 (a)  If dxydt − 3, find dyydt when x − 4.
 (b)  If dyydt − 5, find dxydt when x − 12.

 10.  Suppose 4x 2 1 9y 2 − 36, where x and y are functions of t.
 (a)  If dyydt − 1

3, find dxydt when x − 2 and y − 2
3 s5 .

 (b)  If dxydt − 3, find dyydt when x − 22 and y − 2
3 s5 .

 11.  If x 2 1 y 2 1 z 2 − 9, dxydt − 5, and dyydt − 4, find dzydt 
when sx, y, zd − s2, 2, 1d.

 12.  A particle is moving along a hyperbola xy − 8. As it reaches 
the point s4, 2d, the y-coordinate is decreasing at a rate of 
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250 Chapter 3  Differentiation Rules

the shape of a cone whose base diameter and height are 
always equal. How fast is the height of the pile increasing 
when the pile is 10 ft high?

 30.  A kite 100 ft above the ground moves horizontally at a speed 
of 8 ftys. At what rate is the angle between the string and the 
horizontal decreasing when 200 ft of string has been let out?

 31.  The sides of an equilateral triangle are increasing at a rate of 
10 cmymin. At what rate is the area of the triangle increasing 
when the sides are 30 cm long?

 32.  How fast is the angle between the ladder and the ground  
changing in Example 2 when the bottom of the ladder is 6 ft 
from the wall?

 33.  The top of a ladder slides down a vertical wall at a rate of 
0.15 mys. At the moment when the bottom of the ladder is  
3 m from the wall, it slides away from the wall at a rate of 
0.2 mys. How long is the ladder?

 34.  According to the model we used to solve Example 2, what 
happens as the top of the ladder approaches the ground? Is 
the model appropriate for small values of y?

 35.  If the minute hand of a clock has length r (in centimeters), 
find the rate at which it sweeps out area as a function of r.

 36.  A faucet is filling a hemispherical basin of diameter 60 cm  
with water at a rate of 2 Lymin. Find the rate at which the 
water is rising in the basin when it is half full. [Use the 
following facts: 1 L is 1000 cm3. The volume of the portion 
of a sphere with radius r from the bottom to a height h is 
V − � (rh 2 2 1

3 h 3), as we will show in Chapter 6.]

 37.  Boyle’s Law states that when a sample of gas is compressed 
at a constant temperature, the pressure P and volume V 
satisfy the equation PV − C, where C is a constant. Suppose 
that at a certain instant the volume is 600 cm3, the pressure  
is 150 kPa, and the pressure is increasing at a rate of 
20 kPaymin. At what rate is the volume decreasing at this 
instant?

 38.  When air expands adiabatically (without gaining or losing 
heat), its pressure P and volume V are related by the 
equation PV 1.4 − C, where C is a constant. Suppose that at  
a certain instant the volume is 400 cm3 and the pressure is 
80 kPa and is decreasing at a rate of 10 kPaymin. At what 
rate is the volume increasing at this instant?

;

 21.  The altitude of a triangle is increasing at a rate of 1 cmymin 
while the area of the triangle is increasing at a rate of  
2 cm2ymin. At what rate is the base of the triangle changing 
when the altitude is 10 cm and the area is 100 cm2?

 22.  A boat is pulled into a dock by a rope attached to the bow of 
the boat and passing through a pulley on the dock that is 1 m 
higher than the bow of the boat. If the rope is pulled in at a 
rate of 1 mys, how fast is the boat approaching the dock 
when it is 8 m from the dock?

 23.  At noon, ship A is 100 km west of ship B. Ship A is sailing 
south at 35 kmyh and ship B is sailing north at 25 kmyh. 
How fast is the distance between the ships changing at  
4:00 pm?

 24.  A particle moves along the curve y − 2 sins�xy2d. As the 
particle passes through the point (1

3, 1), its x-coordinate 
increases at a rate of s10  cmys. How fast is the distance 
from the particle to the origin changing at this instant?

 25.  Water is leaking out of an inverted conical tank at a rate of 
10,000 cm3ymin at the same time that water is being pumped 
into the tank at a constant rate. The tank has height 6 m and 
the diameter at the top is 4 m. If the water level is rising at a 
rate of 20 cmymin when the height of the water is 2 m, find 
the rate at which water is being pumped into the tank.

 26.  A trough is 10 ft long and its ends have the shape of isos- 
celes triangles that are 3 ft across at the top and have a height 
of 1 ft. If the trough is being filled with water at a rate of 
12 ft 3ymin, how fast is the water level rising when the water 
is 6 inches deep?

 27.  A water trough is 10 m long and a cross-section has the 
shape of an isosceles trapezoid that is 30 cm wide at the 
bottom, 80 cm wide at the top, and has height 50 cm. If the 
trough is being filled with water at the rate of 0.2 m3ymin, 
how fast is the water level rising when the water is 30 cm 
deep?

 28.  A swimming pool is 20 ft wide, 40 ft long, 3 ft deep at the 
shallow end, and 9 ft deep at its deepest point. A cross-
section is shown in the figure. If the pool is being filled at a 
rate of 0.8 ft 3ymin, how fast is the water level rising when 
the depth at the deepest point is 5 ft?

3
6

12 6166

 29.  Gravel is being dumped from a conveyor belt at a rate of  
30 ft 3ymin, and its coarseness is such that it forms a pile in 
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 43.  A television camera is positioned 4000 ft from the base of a 
rocket launching pad. The angle of elevation of the camera has 
to change at the correct rate in order to keep the rocket in 
sight. Also, the mechanism for focusing the camera has to take 
into account the increasing distance from the camera to the 
rising rocket. Let’s assume the rocket rises vertically and its 
speed is 600 ftys when it has risen 3000 ft.

 (a)  How fast is the distance from the television camera to the 
rocket changing at that moment?

 (b)  If the television camera is always kept aimed at the rocket, 
how fast is the camera’s angle of elevation changing at 
that same moment?

 44.  A lighthouse is located on a small island 3 km away from the 
nearest point P on a straight shoreline and its light makes four 
revolutions per minute. How fast is the beam of light moving 
along the shoreline when it is 1 km from P?

 45.  A plane flies horizontally at an altitude of 5 km and passes 
directly over a tracking telescope on the ground. When the 
angle of elevation is �y3, this angle is decreasing at a rate of 
�y6 radymin. How fast is the plane traveling at that time?

 46.  A Ferris wheel with a radius of 10 m is rotating at a rate of one 
revolution every 2 minutes. How fast is a rider rising when his 
seat is 16 m above ground level?

 47.  A plane flying with a constant speed of 300 kmyh passes over  
a ground radar station at an altitude of 1 km and climbs at an 
angle of 308. At what rate is the distance from the plane to the 
radar station increasing a minute later?

 48.  Two people start from the same point. One walks east at  
3 miyh and the other walks northeast at 2 miyh. How fast is 
the distance between the people changing after 15 minutes?

 49.  A runner sprints around a circular track of radius 100 m at  
a constant speed of 7 mys. The runner’s friend is standing  
at a distance 200 m from the center of the track. How fast is  
the distance between the friends changing when the distance 
between them is 200 m?

 50.  The minute hand on a watch is 8 mm long and the hour hand  
is 4 mm long. How fast is the distance between the tips of the 
hands changing at one o’clock?

 39.  If two resistors with resistances R1 and R2 are connected in  
parallel, as in the figure, then the total resistance R, measured 
in ohms (V), is given by

1

R
−

1

R1
1

1

R2

   If R1 and R2 are increasing at rates of 0.3 Vys and 0.2 Vys,  
respectively, how fast is R changing when R1 − 80 V and 
R2 − 100 V?

R¡ R™

 40.  Brain weight B as a function of body weight W in fish has  
been modeled by the power function B − 0.007W 2y3, where  
B and W are measured in grams. A model for body weight  
as a function of body length L (measured in centimeters) is 
W − 0.12L2.53. If, over 10 million years, the average length of  
a certain species of fish evolved from 15 cm to 20 cm at a 
constant rate, how fast was this species’ brain growing when 
the average length was 18 cm?

 41.  Two sides of a triangle have lengths 12 m and 15 m. The angle 
between them is increasing at a rate of 2 8ymin. How fast is the 
length of the third side increasing when the angle between the 
sides of fixed length is 60°?

 42.  Two carts, A and B, are connected by a rope 39 ft long that 
passes over a pulley P (see the figure). The point Q is on the 
floor 12 ft directly beneath P and between the carts. Cart A  
is being pulled away from Q at a speed of 2 ftys. How fast is  
cart B moving toward Q at the instant when cart A is 5 ft  
from Q?

A B

Q

P

12  ft

We have seen that a curve lies very close to its tangent line near the point of tangency. In 
fact, by zooming in toward a point on the graph of a differentiable function, we noticed 
that the graph looks more and more like its tangent line. (See Figure 2.7.2.) This observa-
tion is the basis for a method of finding approximate values of functions.

The idea is that it might be easy to calculate a value f sad of a function, but difficult 
(or even impossible) to compute nearby values of f . So we settle for the easily computed 
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values of the linear function L whose graph is the tangent line of f  at sa, f sadd. (See 
Figure 1.)

In other words, we use the tangent line at sa, f sadd as an approximation to the curve 
y − f sxd when x is near a. An equation of this tangent line is 

y − f sad 1 f 9sadsx 2 ad

and the approximation

1   f sxd < f sad 1 f 9sadsx 2 ad

is called the linear approximation or tangent line approximation of f  at a. The linear 
function whose graph is this tangent line, that is,

2   Lsxd − f sad 1 f 9sadsx 2 ad

is called the linearization of f  at a.

ExamplE 1� Find the linearization of the function f sxd − sx 1 3  at a − 1 and use it 
to approximate the numbers s3.98  and s4.05 . Are these approximations over- 
estimates or underestimates?

SOLUtION The derivative of f sxd − sx 1 3d1y2 is

f 9sxd − 1
2 sx 1 3d21y2 −

1

2sx 1 3 

and so we have f s1d − 2 and f 9s1d − 1
4. Putting these values into Equation 2, we see  

that the linearization is

Lsxd − f s1d 1 f 9s1dsx 2 1d − 2 1 1
4 sx 2 1d −

7

4
1

x

4

The corresponding linear approximation (1) is

sx 1 3 <
7

4
1

x

4
    (when x is near 1)

In particular, we have

s3.98 < 7
4 1 0.98

4 − 1.995    and    s4.05 < 7
4 1 1.05

4 − 2.0125

The linear approximation is illustrated in Figure 2. We see that, indeed, the tangent line 
approximation is a good approximation to the given function when x is near l. We also 
see that our approximations are overestimates because the tangent line lies above the 
curve.

Of course, a calculator could give us approximations for s3.98  and s4.05 , but the 
linear approximation gives an approximation over an entire interval. ■

x0

y

{a, f(a)}

y=ƒ

y=L(x)

FIGURE 1

_3 0 x

y

1

(1, 2)

y=   + x
4

7
4

y=   x+3œ„„„„

FIGURE 2
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In the following table we compare the estimates from the linear approximation in  
Example 1 with the true values. Notice from this table, and also from Figure 2, that the tan- 
gent line approximation gives good estimates when x is close to 1 but the accuracy of the 
approximation deteriorates when x is farther away from 1.

x From Lsxd Actual value

s3.9 0.9 1.975  1.97484176. . .

s3.98 0.98 1.995  1.99499373. . .

s4 1 2  2.00000000. . .

s4.05 1.05 2.0125  2.01246117. . .

s4.1 1.1 2.025  2.02484567. . .

s5 2 2.25  2.23606797. . .

s6 3 2.5  2.44948974. . .

How good is the approximation that we obtained in Example 1? The next example 
shows that by using a graphing calculator or computer we can determine an interval 
throughout which a linear approximation provides a specified accuracy.

ExamplE 2 For what values of x is the linear approximation

sx 1 3 <
7

4
1

x

4

accurate to within 0.5? What about accuracy to within 0.1?

SoLUtion Accuracy to within 0.5 means that the functions should differ by less  
than 0.5: 

Z sx 1 3 2 S 7

4
1

x

4D Z , 0.5

Equivalently, we could write

sx 1 3 2 0.5 ,
7

4
1

x

4
, sx 1 3 1 0.5

This says that the linear approximation should lie between the curves obtained by shift-
ing the curve y − sx 1 3  upward and downward by an amount 0.5. Figure 3 shows  
the tangent line y − s7 1 xdy4 intersecting the upper curve y − sx 1 3 1 0.5 at P  
and Q. Zooming in and using the cursor, we estimate that the x-coordinate of P is about  
22.66 and the x-coordinate of Q is about 8.66. Thus we see from the graph that the 
approximation

sx 1 3 <
7

4
1

x

4

is accurate to within 0.5 when 22.6 , x , 8.6. (We have rounded to be safe.)
Similarly, from Figure 4 we see that the approximation is accurate to within 0.1 

when 21.1 , x , 3.9. ■

applications to physics
Linear approximations are often used in physics. In analyzing the consequences of an 
equation, a physicist sometimes needs to simplify a function by replacing it with its linear  
approximation. For instance, in deriving a formula for the period of a pendulum, phys-

4.3

_1

_4 10

y=   x+3-0.5œ„„„„

Q

P
L(x)

y=   x+3+0.5œ„„„„

FIGURE 3

3

1
_2

y=   x+3-0.1œ„„„„

Q

P

5

y=   x+3+0.1œ„„„„

FIGURE 4
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254 Chapter 3  Differentiation Rules

ics textbooks obtain the expression aT − 2t sin �  for tangential acceleration and then 
replace sin �  by �  with the remark that sin �  is very close to �  if �  is not too large. [See, 
for exam ple, Physics: Calculus, 2d ed., by Eugene Hecht (Pacific Grove, CA: Brooks/
Cole, 2000), p. 431.] You can verify that the linearization of the function f sxd − sin x at 
a − 0 is Lsxd − x and so the lin ear approximation at 0 is

sin x < x

(see Exercise 42). So, in effect, the derivation of the formula for the period of a pendulum 
uses the tangent line approximation for the sine function.

Another example occurs in the theory of optics, where light rays that arrive at shallow 
angles relative to the optical axis are called paraxial rays. In paraxial (or Gaussian) optics,  
both sin � and cos � are replaced by their linearizations. In other words, the linear  
approximations

sin � < �    and    cos � < 1

are used because � is close to 0. The results of calculations made with these approxima-
tions became the basic theoretical tool used to design lenses. [See Optics, 4th ed., by 
Eugene Hecht (San Francisco, 2002), p. 154.]

In Section 11.11 we will present several other applications of the idea of linear approxi-
mations to physics and engineering.

Differentials
The ideas behind linear approximations are sometimes formulated in the terminology and 
notation of differentials. If y − f sxd, where f  is a differentiable function, then the differ-
ential dx is an independent variable; that is, dx can be given the value of any real number. 
The differential dy is then defined in terms of dx by the equation

3   dy − f 9sxd dx

So dy is a dependent variable; it depends on the values of x and dx. If dx is given a spe-
cific value and x is taken to be some specific number in the domain of f , then the numer-
ical value of dy is determined.

The geometric meaning of differentials is shown in Figure 5. Let Psx, f sxdd and 
Qsx 1 Dx, f sx 1 Dxdd be points on the graph of f  and let dx − Dx. The corresponding 
change in y is

Dy − f sx 1 Dxd 2 f sxd

The slope of the tangent line PR is the derivative f 9sxd. Thus the directed distance from 
S to R is f 9sxd dx − dy. Therefore dy represents the amount that the tangent line rises or 
falls (the change in the linearization), whereas Dy represents the amount that the curve 
y − f sxd rises or falls when x changes by an amount dx.

ExamplE 3 Compare the values of Dy and dy if y − f sxd − x 3 1 x 2 2 2x 1 1 and  
x changes (a) from 2 to 2.05 and (b) from 2 to 2.01.

SoLUtion 
(a) We have

 f s2d − 23 1 22 2 2s2d 1 1 − 9

  f s2.05d − s2.05d3 1 s2.05d2 2 2s2.05d 1 1 − 9.717625

 Dy − f s2.05d 2 f s2d − 0.717625

If dx ± 0, we can divide both sides of  
Equation 3 by dx to obtain

dy

dx
− f 9sxd

We have seen similar equations before, 
but now the left side can genuinely be 
interpreted as a ratio of differentials.

R

0 x

y

Îy

x

P

Q

dx=Îx

x+Îx

y=ƒ

S

dy

FIGURE 5
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In general, dy − f 9sxd dx − s3x 2 1 2x 2 2d dx

When x − 2 and dx − Dx − 0.05, this becomes

dy − f3s2d2 1 2s2d 2 2g0.05 − 0.7

(b)   f s2.01d − s2.01d3 1 s2.01d2 2 2s2.01d 1 1 − 9.140701

 Dy − f s2.01d 2 f s2d − 0.140701

When dx − Dx − 0.01,

 dy − f3s2d2 1 2s2d 2 2g0.01 − 0.14 ■

Notice that the approximation Dy < dy becomes better as Dx becomes smaller in  
Example 3. Notice also that dy was easier to compute than Dy. For more complicated 
functions it may be impossible to compute Dy exactly. In such cases the approximation 
by differentials is especially useful.

In the notation of differentials, the linear approximation (1) can be written as

f sa 1 dxd < f sad 1 dy

For instance, for the function f sxd − sx 1 3  in Example 1, we have

dy − f 9sxd dx −
dx

2sx 1 3 

If a − 1 and dx − Dx − 0.05, then

dy −
0.05

2s1 1 3 
− 0.0125

and s4.05 − f s1.05d < f s1d 1 dy − 2.0125

just as we found in Example 1.
Our final example illustrates the use of differentials in estimating the errors that occur  

because of approximate measurements.

ExamplE 4 The radius of a sphere was measured and found to be 21 cm with a pos-
sible error in measurement of at most 0.05 cm. What is the maximum error in using this 
value of the radius to compute the volume of the sphere?

SoLUtion If the radius of the sphere is r, then its volume is V − 4
3 �r 3. If the error 

in the measured value of r is denoted by dr − Dr, then the corresponding error in the 
calculated value of V  is DV , which can be approximated by the differential

dV − 4�r 2 dr

When r − 21 and dr − 0.05, this becomes

dV − 4�s21d20.05 < 277

The maximum error in the calculated volume is about 277 cm3. ■

Figure 6 shows the function in Exam- 
ple 3 and a comparison of dy and Dy 
when a − 2. The viewing rectangle is 
f1.8, 2.5g by f6, 18g.

y=˛+≈-2x+1

(2, 9)

dy Îy

FIGURE 6
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256 Chapter 3  Differentiation Rules

NOTE Although the possible error in Example 4 may appear to be rather large, a 
better picture of the error is given by the relative error, which is computed by dividing 
the error by the total volume:

DV

V
<

dV

V
−

4�r 2 dr
4
3 �r 3 − 3 

dr

r

Thus the relative error in the volume is about three times the relative error in the radius.  
In Example 4 the relative error in the radius is approximately dryr − 0.05y21 < 0.0024 
and it produces a relative error of about 0.007 in the volume. The errors could also be  
expressed as percentage errors of 0.24% in the radius and 0.7% in the volume.

1–4 Find the linearization Lsxd of the function at a.

 1. f sxd − x 3 2 x 2 1 3, a − 22

 2. f sxd − sin x, a − �y6

 3. f sxd − sx , a − 4

 4. f sxd − 2 x, a − 0

 5.  Find the linear approximation of the function 
f sxd − s1 2 x  at a − 0 and use it to approximate the 
numbers s0.9  and s0.99 . Illustrate by graphing f  and the 
tangent line.

 6.  Find the linear approximation of the function 
tsxd − s3 1 1 x  at a − 0 and use it to approximate the 
numbers s3 0.95  and s3 1.1 . Illustrate by graphing t and the 
tangent line.

7–10 Verify the given linear approximation at a − 0. Then 
determine the values of x for which the linear approximation is 
accurate to within 0.1.

 7. lns1 1 xd < x 8. s1 1 xd23 < 1 2 3x

 9. s4 1 1 2x < 1 1 1
2 x 10. e x cos x < 1 1 x

11–14 Find the differential of each function.

 11. (a) y − xe24x (b) y − s1 2 t 4 

 12. (a) y −
1 1 2u

1 1 3u
 (b) y − � 2 sin 2�

 13. (a) y − tan st   (b) y −
1 2 v 2

1 1 v 2

 14. (a) y − lnssin �d (b) y −
e x

1 2 e x

;

;

;

15–18 (a) Find the differential dy and (b) evaluate dy for the 
given values of x and dx.

 15. y − e x y10,  x − 0,  dx − 0.1

 16. y − cos �x,  x − 1
3,  dx − 20.02

 17. y − s3 1 x 2 ,  x − 1,  dx − 20.1

 18. y −
x 1 1

x 2 1
,  x − 2,  dx − 0.05

19–22 Compute Dy and dy for the given values of x and 
dx − Dx. Then sketch a diagram like Figure 5 showing the line 
segments with lengths dx, dy, and Dy.

 19. y − x 2 2 4x, x − 3, Dx − 0.5

 20. y − x 2 x 3, x − 0, Dx − 20.3

 21. y − sx 2 2 , x − 3, Dx − 0.8

 22. y − e x, x − 0, Dx − 0.5

23–28 Use a linear approximation (or differentials) to estimate 
the given number.

 23. s1.999d4 24. 1y4.002

 25. s3 1001  26. s100.5 

 27. e 0.1 28. cos  29°

29–31 Explain, in terms of linear approximations or differen-
tials, why the approximation is reasonable.

 29. sec 0.08 < 1 30. s4.02 < 2.005

 31. 
1

9.98
< 0.1002

3.10 exerCiSeS
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    (This is known as Poiseuille’s Law; we will show why it  
is true in Section 8.4.) A partially clogged artery can be 
expanded by an operation called angioplasty, in which a  
balloon-tipped catheter is inflated inside the artery in order  
to widen it and restore the normal blood flow.

     Show that the relative change in F is about four times the 
relative change in R. How will a 5% increase in the radius 
affect the flow of blood?

 41.  Establish the following rules for working with differentials 
(where c denotes a constant and u and v are functions of x).

 (a) dc − 0 (b) dscud − c du
 (c) dsu 1 vd − du 1 dv (d) dsuvd − u dv 1 v du

 (e) dS u

vD −
v du 2 u dv

v2  (f) dsx n d − nx n21 dx

 42.  On page 431 of Physics: Calculus, 2d ed., by Eugene Hecht 
(Pacific Grove, CA: Brooks/Cole, 2000), in the course of 
deriving the formula T − 2�sLyt  for the period of a 
pendulum of length L, the author obtains the equation 
aT − 2t sin � for the tangential acceleration of the bob of 
the pendulum. He then says, “for small angles, the value of 
� in radians is very nearly the value of sin �; they differ by 
less than 2% out to about 20°.”

 (a)  Verify the linear approximation at 0 for the sine 
function:

sin x < x

 (b)  Use a graphing device to determine the values of x for 
which sin x and x differ by less than 2%. Then verify 
Hecht’s statement by converting from radians to  
degrees.

 43.  Suppose that the only information we have about a function 
f  is that f s1d − 5 and the graph of its derivative is as 
shown.

 (a)  Use a linear approximation to estimate f s0.9d and 
f s1.1d.

 (b)  Are your estimates in part (a) too large or too small? 
Explain.

y

x0 1

y=fª(x)

1

 44.  Suppose that we don’t have a formula for tsxd but we know 
that ts2d − 24 and t9sxd − sx 2 1 5  for all x.

 (a)  Use a linear approximation to estimate ts1.95d  
and ts2.05d.

 (b)  Are your estimates in part (a) too large or too small? 
Explain.

;

 32.  Let f sxd − sx 2 1d2      tsxd − e22x

  and hsxd − 1 1 lns1 2 2xd

 (a)  Find the linearizations of f , t, and h at a − 0. What do 
you notice? How do you explain what happened?

 (b)  Graph f , t, and h and their linear approximations. For 
which function is the linear approximation best? For 
which is it worst? Explain.

 33.  The edge of a cube was found to be 30 cm with a possible 
error in measurement of 0.1 cm. Use differentials to esti- 
mate the maximum possible error, relative error, and per- 
centage error in computing (a) the volume of the cube and 
(b) the sur face area of the cube.

 34.  The radius of a circular disk is given as 24 cm with a 
maxi mum error in measurement of 0.2 cm.

 (a)  Use differentials to estimate the maximum error in the 
calculated area of the disk.

 (b) What is the relative error? What is the percentage error?

 35.  The circumference of a sphere was measured to be 84 cm 
with a possible error of 0.5 cm.

 (a)  Use differentials to estimate the maximum error in the  
calculated surface area. What is the relative error?

 (b)  Use differentials to estimate the maximum error in the  
calculated volume. What is the relative error?

 36.  Use differentials to estimate the amount of paint needed to 
apply a coat of paint 0.05 cm thick to a hemispherical dome 
with diameter 50 m.

 37. (a)  Use differentials to find a formula for the approximate 
volume of a thin cylindrical shell with height h, inner 
radius r, and thickness Dr.

 (b)  What is the error involved in using the formula from  
part (a)?

 38.  One side of a right triangle is known to be 20 cm long and 
the opposite angle is measured as 30°, with a possible error  
of 61°.

 (a)  Use differentials to estimate the error in computing the 
length of the hypotenuse.

 (b)  What is the percentage error?

 39.  If a current I passes through a resistor with resistance R, 
Ohm’s Law states that the voltage drop is V − RI. If V is 
constant and R is measured with a certain error, use 
differentials to show that the relative error in calculating  
I is approximately the same (in magnitude) as the relative 
error in R.

 40.  When blood flows along a blood vessel, the flux F (the 
volume of blood per unit time that flows past a given point) 
is proportional to the fourth power of the radius R of the 
blood vessel:

F − kR 4

;

41550_ch03_ptg1_hr_250-259.indd   257 10/16/14   11:23 AM



258 Chapter 3  Differentiation Rules

laboratory Project ;  taylor Polynomials

The tangent line approximation Lsxd is the best first-degree (linear) approximation to f sxd 
near x − a because f sxd and Lsxd have the same rate of change (derivative) at a. For a better 
approximation than a linear one, let’s try a second-degree (quadratic) approximation Psxd. In 
other words, we approximate a curve by a parabola instead of by a straight line. To make sure 
that the approximation is a good one, we stipulate the following:

 (i) Psad − f sad (P and f  should have the same value at a.)

 (ii) P9sad − f 9sad (P and f  should have the same rate of change at a.)

 (iii) P99sad − f 99sad (The slopes of P and f  should change at the same rate at a.)

1.  Find the quadratic approximation Psxd − A 1 Bx 1 Cx 2 to the function f sxd − cos x that 
satisfies conditions (i), (ii), and (iii) with a − 0. Graph P, f , and the linear approximation 
Lsxd − 1 on a common screen. Comment on how well the functions P and L approximate f .

2.  Determine the values of x for which the quadratic approximation f sxd < Psxd in Problem 1 
is accurate to within 0.1. [Hint: Graph y − Psxd, y − cos x 2 0.1,  and y − cos x 1 0.1 on 
a common screen.]

3.  To approximate a function f  by a quadratic function P near a number a, it is best to write P 
in the form

Psxd − A 1 Bsx 2 ad 1 Csx 2 ad2

 Show that the quadratic function that satisfies conditions (i), (ii), and (iii) is

Psxd − f sad 1 f 9sadsx 2 ad 1 1
2 f 99sadsx 2 ad2

4.  Find the quadratic approximation to f sxd − sx 1 3  near a − 1. Graph f , the quadratic 
approximation, and the linear approximation from Example 3.10.2 on a common screen. 
What do you conclude?

5.  Instead of being satisfied with a linear or quadratic approximation to f sxd near x − a,  
let’s try to find better approximations with higher-degree polynomials. We look for an  
nth-degree polynomial

Tnsxd − c0 1 c1sx 2 ad 1 c2sx 2 ad2 1 c3sx 2 ad3 1 ∙ ∙ ∙ 1 cnsx 2 adn

  such that Tn and its first n derivatives have the same values at x − a as f  and its first n  
derivatives. By differentiating repeatedly and setting x − a, show that these conditions are 
satisfied if c0 − f sad, c1 − f 9sad, c2 − 1

2 f 99 sad, and in general

ck −
 f skdsad

k!

 where k! − 1 ? 2 ? 3 ? 4 ? ∙ ∙ ∙ ? k. The resulting polynomial

Tnsxd − f sad 1 f 9sadsx 2 ad 1
 f 99sad

2!
sx 2 ad2 1 ∙ ∙ ∙ 1

 f sndsad
n!

sx 2 adn

 is called the nth-degree Taylor polynomial of f  centered at a.

6.  Find the 8th-degree Taylor polynomial centered at a − 0 for the function f sxd − cos x. 
Graph f  together with the Taylor polynomials T2, T4, T6, T8 in the viewing rectangle  
f25, 5g by f21.4, 1.4g and comment on how well they approximate f .
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Certain even and odd combinations of the exponential functions ex and e2x arise so fre-
quently in mathematics and its applications that they deserve to be given special names.  
In many ways they are analogous to the trigonometric functions, and they have the same  
relationship to the hyperbola that the trigonometric functions have to the circle. For this 
reason they are collectively called hyperbolic functions and individually called hyper-
bolic sine, hyperbolic cosine, and so on.

Definition of the Hyperbolic Functions

 sinh x −
ex 2 e2x

2
 csch x −

1

sinh x

 cosh x −
ex 1 e2x

2
 sech x −

1

cosh x

 tanh x −
sinh x

cosh x
 coth x −

cosh x

sinh x

The graphs of hyperbolic sine and cosine can be sketched using graphical addition as 
in Figures 1 and 2.

y

0 x

y=_1

y=11
2y=    ́

y=_     e–®1
2

y=sinh x

0

y

x
y=    e–®1

2
1
2y=    ́

y=cosh x

1

0

y

x

FIGURE 1 
y − sinh x − 1

2e x 2 1
2e2x

FIGURE 2 
y − cosh x − 1

2e x 1 1
2e2x

FIGURE 3 
y − tanh x

Note that sinh has domain R and range R, while cosh has domain R and range f1, `d.  
The graph of tanh is shown in Figure 3. It has the horizontal asymptotes y − 61. (See  
Exercise 23.)

Some of the mathematical uses of hyperbolic functions will be seen in Chapter 7. 
Applications to science and engineering occur whenever an entity such as light, velocity, 
electricity, or radioactivity is gradually absorbed or extinguished, for the decay can be 
represented by hyperbolic functions. The most famous application is the use of hyper-
bolic cosine to describe the shape of a hanging wire. It can be proved that if a heavy 
flexible cable (such as a telephone or power line) is suspended between two points at the 
same height, then it takes the shape of a curve with equation y − c 1 a coshsxyad called 
a catenary (see Figure 4). (The Latin word catena means “chain.”)

y

0 x

FIGURE 4�  
A catenary y − c 1 a coshsxyad
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260 Chapter 3  Differentiation Rules

Another application of hyperbolic functions occurs in the description of ocean waves: 
The velocity of a water wave with length L moving across a body of water with depth d 
is modeled by the function

v − Î tL

2�
 tanhS 2�d

L D
where t is the acceleration due to gravity. (See Figure 5 and Exercise 49.)

The hyperbolic functions satisfy a number of identities that are similar to well-known 
trigonometric identities. We list some of them here and leave most of the proofs to the  
exercises.

Hyperbolic Identities 

 sinhs2xd − 2sinh x coshs2xd − cosh x

 cosh2x 2 sinh2x − 1 1 2 tanh2x − sech2x

 sinhsx 1 yd − sinh x cosh y 1 cosh x sinh y

 coshsx 1 yd − cosh x cosh y 1 sinh x sinh y

ExamplE 1� Prove (a) cosh2x 2 sinh2x − 1 and (b) 1 2 tanh2x − sech2x.

SOLUtION

(a)  cosh2x 2 sinh2x − S ex 1 e2x

2 D2

2 S ex 2 e2x

2 D2

 −
e 2x 1 2 1 e22x

4
2

e 2x 2 2 1 e22x

4

 −
4

4
− 1

(b) We start with the identity proved in part (a):

cosh2x 2 sinh2x − 1

If we divide both sides by cosh2x, we get

 1 2
sinh2x

cosh2x
−

1

cosh2x

or  1 2 tanh2x − sech2x  ■

The identity proved in Example 1(a) gives a clue to the reason for the name “hyper-
bolic” functions:

If t is any real number, then the point Pscos t, sin td lies on the unit circle x 2 1 y 2 − 1  
because cos2t 1 sin2t − 1. In fact, t can be interpreted as the radian measure of /POQ  
in Figure 6. For this reason the trigonometric functions are sometimes called circular  
functions.

L
d

FIGURE 5  
Idealized ocean wave
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The Gateway Arch in St. Louis was 
designed using a hyperbolic cosine 
function (see Exercise 48).
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Likewise, if t is any real number, then the point Pscosh t, sinh td lies on the right branch 
of the hyperbola x 2 2 y 2 − 1 because cosh2t 2 sinh2t − 1 and cosh t > 1. This time, t 
does not represent the measure of an angle. However, it turns out that t represents twice 
the area of the shaded hyperbolic sector in Figure 7, just as in the trigonometric case t 
represents twice the area of the shaded circular sector in Figure 6.

The derivatives of the hyperbolic functions are easily computed. For example,

d

dx
 ssinh xd −

d

dx
 S ex 2 e2x

2 D −
ex 1 e2x

2
− cosh x

We list the differentiation formulas for the hyperbolic functions as Table 1. The remain-
ing proofs are left as exercises. Note the analogy with the differentiation formulas for 
trigonometric functions, but beware that the signs are different in some cases.

1  Derivatives of Hyperbolic Functions

 
d

dx
 ssinh xd − cosh x    

d

dx
 scsch xd − 2csch x coth x

 
d

dx
 scosh xd − sinh x    

d

dx
 ssech xd − 2sech x tanh x

 
d

dx
 stanh xd − sech2x     

d

dx
 scoth xd − 2csch2x

ExamplE 2� Any of these differentiation rules can be combined with the Chain Rule. 
For instance,

d

dx
 scosh sx d − sinh sx ?

d

dx
 sx −

sinh sx 

2sx ■

Inverse hyperbolic Functions
You can see from Figures 1 and 3 that sinh and tanh are one-to-one functions and so they 
have inverse functions denoted by sinh21 and tanh21. Figure 2 shows that cosh is not one- 
to-one, but when restricted to the domain f0, `d it becomes one-to-one. The inverse 
hyperbolic cosine function is defined as the inverse of this restricted function.

2   y − sinh21x  &? sinh y − x

 y − cosh21x &?  cosh y − x and y > 0

 y − tanh21x  &?  tanh y − x

The remaining inverse hyperbolic functions are defined similarly (see Exercise 28).

FIGURE 7

0
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x
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O
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x

P(cos t, sin t)

≈+¥=1
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262 Chapter 3  Differentiation Rules

We can sketch the graphs of sinh21, cosh21, and tanh21 in Figures 8, 9, and 10 by using 
Figures 1, 2, and 3.

0

y

x

0

y

x1

0

y

x1_1

FIGURE 8 y − sinh21 x 
domain − R range − R

FIGURE 9 y − cosh21 x 
domain − f1, `d range − f0, `d

FIGURE 10 y − tanh21 x 
domain − s21, 1d range − R

Since the hyperbolic functions are defined in terms of exponential functions, it’s not  
surprising to learn that the inverse hyperbolic functions can be expressed in terms of 
logarithms. In particular, we have:

3    sinh21x − lnsx 1 sx 2 1 1d x [ R

4    cosh21x − lnsx 1 sx 2 2 1d x > 1

5    tanh21x − 1
2 lnS 1 1 x

1 2 xD  21 , x , 1

ExamplE 3� Show that sinh21x − lnsx 1 sx 2 1 1d.
SOLUtION Let y − sinh21x. Then

x − sinh y −
ey 2 e2y

2

so ey 2 2x 2 e2y − 0

or, multiplying by ey,
e 2y 2 2xey 2 1 − 0

This is really a quadratic equation in ey:

sey d2 2 2xsey d 2 1 − 0

Solving by the quadratic formula, we get

ey −
2x 6 s4x 2 1 4 

2
− x 6 sx 2 1 1

Note that ey . 0, but x 2 sx 2 1 1 , 0 (because x , sx 2 1 1). Thus the minus sign 
is inadmissible and we have

ey − x 1 sx 2 1 1

Formula 3 is proved in Example 3.  
The proofs of Formulas 4 and 5 are 
requested in Exercises 26 and 27.
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Therefore y − lnsey d − lnsx 1 sx 2 1 1d
This shows that  sinh21x − lnsx 1 sx 2 1 1d

(See Exercise 25 for another method.) ■

6  Derivatives of Inverse Hyperbolic Functions 

 
d

dx
 ssinh21xd −

1

s1 1 x 2 
     

d

dx
 scsch21xd − 2

1

| x |sx 2 1 1

 
d

dx
 scosh21xd −

1

sx 2 2 1
     

d

dx
 ssech21xd − 2

1

xs1 2 x 2 

 
d

dx
 stanh21xd −

1

1 2 x 2      
d

dx
 scoth21xd −

1

1 2 x 2

Notice that the formulas for the 
derivatives of tanh21x and coth21x 
appear to be identical. But the domains 
of these functions have no numbers in 
common: tanh21x is defined for | x | , 1, 
whereas coth21x is defined for | x | . 1.

The inverse hyperbolic functions are all differentiable because the hyperbolic func-
tions are differentiable. The formulas in Table 6 can be proved either by the method for 
inverse functions or by differentiating Formulas 3, 4, and 5.

ExamplE 4� Prove that 
d

dx
 ssinh21xd −

1

s1 1 x 2 
.

SOLUtION 1 Let y − sinh21x. Then sinh y − x. If we differentiate this equation implic-
itly with respect to x, we get

cosh y 
dy

dx
− 1

Since cosh2 y 2 sinh2 y − 1 and cosh y > 0, we have cosh y − s1 1 sinh2 y , so

dy

dx
−

1

cosh y
−

1

s1 1 sinh2 y 
−

1

s1 1 x 2 

SOLUtION 2 From Equation 3 (proved in Example 3), we have

 
d

dx
 ssinh21xd −

d

dx
 lnsx 1 sx 2 1 1d

 −
1

x 1 sx 2 1 1
 

d

dx
 sx 1 sx 2 1 1d

 −
1

x 1 sx 2 1 1
 S1 1

x

sx 2 1 1
D

 −
sx 2 1 1 1 x

(x 1 sx 2 1 1)sx 2 1 1

 −
1

sx 2 1 1
■
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 2�1�.  If cosh x − 5
3 and x . 0, find the values of the other hyper- 

bolic functions at x.

 2�2�. (a)  Use the graphs of sinh, cosh, and tanh in Figures 1–3 to 
draw the graphs of csch, sech, and coth.

 (b)  Check the graphs that you sketched in part (a) by using a 
graphing device to produce them.

 2�3�.  Use the definitions of the hyperbolic functions to find each 
of the following limits.

 (a) lim
x l `

 tanh x (b) lim
x l2`

 tanh x

 (c) lim
x l `

 sinh x (d) lim
x l2`

 sinh x

 (e) lim
x l `

 sech x (f) lim
x l `

 coth x

 (g) lim
x l

 

01
 coth x (h) lim

x l
 

02
 coth x

 (i) lim
x l2`

 csch x ( j) lim
xl`

 
sinh x

e x

 2�4�.  Prove the formulas given in Table 1 for the derivatives of the 
functions (a) cosh, (b) tanh, (c) csch, (d) sech, and (e) coth.

 2�5.  Give an alternative solution to Example 3 by letting 
y − sinh21x and then using Exercise 9 and Example 1(a)  
with x replaced by y.

 2�6. Prove Equation 4.

 2�7.  Prove Equation 5 using (a) the method of Example 3 and  
(b) Exercise 18 with x replaced by y.

 2�8.  For each of the following functions (i) give a definition like 
those in (2), (ii) sketch the graph, and (iii) find a formula 
similar to Equation 3.

 (a) csch21      (b) sech21      (c) coth21

 2�9.  Prove the formulas given in Table 6 for the derivatives of the 
following functions.

 (a) cosh21      (b) tanh21      (c) csch21

 (d) sech21      (e) coth21

3�0–4�5 Find the derivative. Simplify where possible.

 3�0. f sxd − e x cosh x

 3�1�. f sxd − tanh sx  3�2�. tsxd − sinh2 x

;

3�.1�1� exerCISeS

1�–6 Find the numerical value of each expression.

 1�. (a) sinh 0 (b) cosh 0

 2�. (a) tanh 0 (b) tanh 1

 3�. (a) coshsln 5d (b) cosh 5

 4�. (a) sinh 4 (b) sinhsln 4d

 5. (a) sech 0 (b) cosh21 1

 6. (a) sinh 1 (b) sinh21 1

7–1�9 Prove the identity.

 7. sinhs2xd − 2sinh x
  (This shows that sinh is an odd function.)

 8. coshs2xd − cosh x
  (This shows that cosh is an even function.)

 9. cosh x 1 sinh x − e x

 1�0. cosh x 2 sinh x − e2x

 1�1�. sinhsx 1 yd − sinh x cosh y 1 cosh x sinh y

 1�2�. coshsx 1 yd − cosh x cosh y 1 sinh x sinh y

 1�3�. coth2x 2 1 − csch2x

 1�4�. tanhsx 1 yd −
tanh x 1 tanh y

1 1 tanh x tanh y

 1�5. sinh 2x − 2 sinh x cosh x

 1�6. cosh 2x − cosh2x 1 sinh2x

 1�7. tanhsln xd −
x 2 2 1

x 2 1 1

 1�8. 
1 1 tanh x

1 2 tanh x
− e 2x

 1�9. scosh x 1 sinh xdn − cosh nx 1 sinh nx
  (n any real number)

 2�0.  If tanh x − 12
13, find the values of the other hyperbolic func- 

tions at x.

ExamplE 5 Find 
d

dx
 ftanh21ssin xdg.

SOLUtION Using Table 6 and the Chain Rule, we have

 
d

dx
 ftanh21ssin xdg −

1

1 2 ssin xd2  
d

dx
 ssin xd

 −
1

1 2 sin2x
 cos x −

cos x

cos2x
− sec x ■
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y

0 x_7 7

5
¨

 52�.  Using principles from physics it can be shown that when a 
cable is hung between two poles, it takes the shape of a curve 
y − f sxd that satisfies the differential equation 

d 2 y

dx 2 −
�t
T
Î1 1 S dy

dxD2 

   where � is the linear density of the cable, t is the acceleration  
due to gravity, T is the tension in the cable at its lowest point,  
and the coordinate system is chosen appropriately. Verify that 
the function

y − f sxd −
T

�t
 coshS �tx

T D
  is a solution of this differential equation.

 53�.  A cable with linear density � − 2 kgym is strung from the 
tops of two poles that are 200 m apart.

 (a)  Use Exercise 52 to find the tension T so that the cable is  
60 m above the ground at its lowest point. How tall are  
the poles?

 (b)  If the tension is doubled, what is the new low point of the 
cable? How tall are the poles now?

 54�.  A model for the velocity of a falling object after time t is

vstd − Îmt
k

  tanhStÎ tk

m
 D

   where m is the mass of the object, t − 9.8 mys2 is the 
acceleration due to gravity, k is a constant, t is measured in 
seconds, and v in mys.

 (a)  Calculate the terminal velocity of the object, that is, 
lim tl` vstd.

 (b)  If a person falls from a building, the value of the constant 
k depends on his or her position. For a “belly-to-earth” 
position, k − 0.515 kgys, but for a “feet-first” position, 
k − 0.067 kgys. If a 60-kg person falls in belly-to-earth 
position, what is the terminal velocity? What about feet-
first? 

Source: L. Long et al., “How Terminal Is Terminal Velocity?” American Math-
ematical Monthly 113 (2006): 752–55.

 55. (a)  Show that any function of the form

y − A sinh mx 1 B cosh mx

   satisfies the differential equation y99 − m 2 y.
 (b)  Find y − ysxd such that y99 − 9y, ys0d − 24,  

and y9s0d − 6.

 56.  If x − lnssec � 1 tan �d, show that sec � − cosh x.

 3�3�. hsxd − sinhsx 2d 3�4�. Fstd − lnssinh td

 3�5. Gstd − sinhsln td 

 3�6. y − sech x s1 1 ln sech xd

 3�7. y − e cosh 3x 3�8. f std −
1 1 sinh t

1 2 sinh t

 3�9. tstd − t coth st 2 1 1  4�0. y − sinh21stan xd

 4�1�. y − cosh21sx 

 4�2�. y − x tanh21x 1 ln s1 2 x 2 

 4�3�. y − x sinh21sxy3d 2 s9 1 x 2 

 4�4�. y − sech21se2xd

 4�5. y − coth21ssec xd

 4�6.  Show that 
d

dx
Î4 1 1 tanh x

1 2 tanh x
  − 1

2 exy2.

 4�7. Show that 
d

dx
 arctanstanh xd − sech 2x.

 4�8.  The Gateway Arch in St. Louis was designed by Eero  
Saarinen and was constructed using the equation

y − 211.49 2 20.96 cosh 0.03291765x

   for the central curve of the arch, where x and y are measured 
in meters and | x | < 91.20.

 (a)  Graph the central curve.
 (b)  What is the height of the arch at its center?
 (c)  At what points is the height 100 m?
 (d)  What is the slope of the arch at the points in part (c)?

 4�9.  If a water wave with length L moves with velocity v in a 
body of water with depth d, then

v − Î tL

2�
 tanhS2�d

L D
   where t is the acceleration due to gravity. (See Figure 5.) 

Explain why the approximation

v < Î tL

2�
 

  is appropriate in deep water.

 50.  A flexible cable always hangs in the shape of a catenary 
y − c 1 a coshsxyad, where c and a are constants and a . 0 
(see Figure 4 and Exercise 52). Graph several members of 
the family of functions y − a coshsxyad. How does the graph 
change as a varies?

 51�.  A telephone line hangs between two poles 14 m apart in the 
shape of the catenary y − 20 coshsxy20d 2 15, where x and 
y are measured in meters.

 (a)  Find the slope of this curve where it meets the right pole.
 (b) Find the angle � between the line and the pole.

;

;
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 59.  Show that if a ± 0 and b ± 0, then there exist numbers �  
and � such that ae x 1 be2x equals either 

� sinhsx 1 �d  or  � coshsx 1 �d

In other words, almost every function of the form 
f sxd − ae x 1 be2x is a shifted and stretched hyperbolic sine 
or cosine function.

 57.  At what point of the curve y − cosh x does the tangent have 
slope 1?

 58.  Investigate the family of functions

fnsxd − tanhsn sin xd

   where n is a positive integer. Describe what happens to the 
graph of fn when n becomes large.

;

 (d)  Why is the natural logarithmic function y − ln x used more  
often in calculus than the other logarithmic functions 
y − log b x?

 4�. (a)  Explain how implicit differentiation works.
 (b)  Explain how logarithmic differentiation works.

 5.  Give several examples of how the derivative can be interpreted 
as a rate of change in physics, chemistry, biology, economics, 
or other sciences.

 6. (a)  Write a differential equation that expresses the law of 
natural growth.

 (b)  Under what circumstances is this an appropriate model for 
population growth?

 (c) What are the solutions of this equation?

 7. (a)  Write an expression for the linearization of f  at a.
 (b)  If y − f sxd, write an expression for the differential dy.
 (c)  If dx − Dx, draw a picture showing the geometric mean-

ings of Dy and dy.

CONCEPT CHECK Answers to the Concept Check can be found on the back endpapers.

 1�.  State each differentiation rule both in symbols and in words.
 (a) The Power Rule (b) The Constant Multiple Rule
 (c) The Sum Rule (d) The Difference Rule
 (e) The Product Rule (f) The Quotient Rule
 (g) The Chain Rule

 2�.  State the derivative of each function.
 (a) y − x n (b) y − e x (c) y − b x

 (d) y − ln x (e) y − logb x (f) y − sin x
 (g) y − cos x (h) y − tan x (i) y − csc x
 ( j) y − sec x (k) y − cot x (l) y − sin21x
 (m) y − cos21x (n) y − tan21x (o) y − sinh x
 (p) y − cosh x (q) y − tanh x (r) y − sinh21x
 (s) y − cosh21x (t) y − tanh21x

 3�. (a) How is the number e defined?
 (b) Express e as a limit.
 (c)  Why is the natural exponential function y − e x used more 

often in calculus than the other exponential functions 
y − b x?

3 REvIEw

TRUE-FALSE QUIz

 4�. If f  is differentiable, then 
d

dx
 sf sxd −

f 9sxd
2sf sxd 

.

 5. If f  is differentiable, then 
d

dx
 f ssx d −

 f 9sxd
2sx 

.

 6. If y − e2, then y9 − 2e.

 7. 
d

dx
 s10 x d − x10 x21 8. 

d

dx
 sln 10d −

1

10

 9. 
d

dx
 stan2xd −

d

dx
 ssec2xd

 1�0. 
d

dx
 | x 2 1 x | − | 2x 1 1 |

Determine whether the statement is true or false. If it is true, explain 
why. If it is false, explain why or give an example that disproves the 
statement.

 1�. If f  and t are differentiable, then
d

dx
 f f sxd 1 tsxdg − f 9sxd 1 t9sxd

 2�. If f  and t are differentiable, then
d

dx
 f f sxdtsxdg − f 9sxdt9sxd

 3�. If f  and t are differentiable, then
d

dx
 f f stsxddg − f 9stsxddt9sxd
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 1�4�.  An equation of the tangent line to the parabola y − x 2  
at s22, 4d is y 2 4 − 2xsx 1 2d.

 1�5. If tsxd − x 5, then lim
x l 2

 
tsxd 2 ts2d

x 2 2
− 80

 1�1�.  The derivative of a polynomial is a polynomial.

 1�2�.  If f sxd − sx 6 2 x 4d5, then f s31dsxd − 0.

 1�3�.  The derivative of a rational function is a rational function.

EXERCISES

 4�5. y − lnscosh 3xd 4�6. y − ln Z x 2 2 4

2x 1 5 Z
 4�7. y − cosh21ssinh xd 4�8. y − x tanh21sx 

 4�9. y − cossestan 3x d 50. y − sin2scosssin �x d

 51�. If f std − s4t 1 1, find f 99s2d.

 52�. If ts�d − � sin �, find t99s�y6d.

 53�.  Find y99 if x 6 1 y 6 − 1.

 54�. Find f sndsxd if f sxd − 1ys2 2 xd.

 55.  Use mathematical induction (page 72) to show that if 
f sxd − xe x, then f sndsxd − sx 1 nde x.

 56. Evaluate lim
tl 0

 
t 3

tan3 s2td
.

57–59 Find an equation of the tangent to the curve at the given 
point.

 57. y − 4 sin2x,  s�y6, 1d 58. y −
x2 2 1

x2 1 1
,  s0, 21d

 59. y − s1 1 4 sin x ,  s0, 1d

 60–61� Find equations of the tangent line and normal line to the 
curve at the given point.

 60. x2 1 4xy 1 y2 − 13,  s2, 1d

 61�. y − s2 1 xde2x,  s0, 2d

 62�.  If f sxd − xesin x, find f 9sxd. Graph f  and f 9 on the same 
screen and comment.

 63�. (a) If f sxd − xs5 2 x , find f 9sxd.
 (b)  Find equations of the tangent lines to the curve 

y − xs5 2 x  at the points s1, 2d and s4, 4d.
 (c)  Illustrate part (b) by graphing the curve and tangent lines 

on the same screen.
 (d)  Check to see that your answer to part (a) is reasonable by 

comparing the graphs of f  and f 9.

 64�. (a)  If f sxd − 4x 2 tan x, 2�y2 , x , �y2, find f 9 and f 99.
 (b)  Check to see that your answers to part (a) are reasonable 

by comparing the graphs of f , f 9, and f 99.

;

;

;

;

1�–50 Calculate y9.

 1�. y − sx 2 1 x 3d4 2�. y −
1

sx 
2

1

s5 x3
 

 3�. y −
x 2 2 x 1 2

sx 
 4�. y −

tan x

1 1 cos x

 5. y − x 2 sin �x 6. y − x cos21x

 7. y −
t 4 2 1

t 4 1 1
 8. xe y − y sin x

 9. y − lnsx ln xd 1�0. y − emx cos nx

 1�1�. y − sx  cos sx  1�2�. y − sarcsin 2xd2

 1�3�. y −
e1yx

x 2  1�4�. y − ln sec x

 1�5. y 1 x cos y − x 2y 1�6. y − S u 2 1

u 2 1 u 1 1D
4

 1�7. y − sarctan x  1�8. y − cotscsc xd

 1�9. y − tanS t

1 1 t 2D 2�0. y − e x sec x

 2�1�. y − 3 x ln x 2�2�. y − secs1 1 x 2 d

 2�3�. y − s1 2 x 21 d21 2�4�. y − 1ys3 x 1 sx  

 2�5. sinsxyd − x2 2 y 2�6. y − ssin sx 

 2�7. y − log 5s1 1 2xd 2�8. y − scos xdx

 2�9. y − ln sin x 2 1
2 sin2x 3�0. y −

sx 2 1 1d4

s2x 1 1d3s3x 2 1d5

 3�1�. y − x tan21s4xd 3�2�. y − e cos x 1 cosse x d

 3�3�. y − ln | sec 5x 1 tan 5x | 3�4�. y − 10tan ��

 3�5. y − cots3x 2 1 5d 3�6. y − st lnst 4d 

 3�7. y − sinstan s1 1 x 3 d 3�8. y − arctansarcsin sx d
 3�9. y − tan2ssin �d 4�0. xe y − y 2 1

 4�1�. y −
sx 1 1 s2 2 xd5

sx 1 3d7  4�2�. y −
sx 1 �d4

x 4 1 �4

 4�3�. y − x sinhsx 2 d 4�4�. y −
sin mx

x
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 82. (a)  Graph the function f sxd − x 2 2 sin x in the viewing  
rectangle f0, 8g by f22, 8g.

 (b)  On which interval is the average rate of change larger: 
f1, 2g or f2, 3g?

 (c)  At which value of x is the instantaneous rate of change 
larger: x − 2 or x − 5?

 (d)  Check your visual estimates in part (c) by computing 
f 9sxd and comparing the numerical values of f 9s2d  
and f 9s5d.

 83.  At what point on the curve y − flnsx 1 4dg2 is the tangent  
horizontal?

 84. (a)  Find an equation of the tangent to the curve y − e x that 
is parallel to the line x 2 4y − 1.

 (b)  Find an equation of the tangent to the curve y − e x that 
passes through the origin.

 85.  Find a parabola y − ax 2 1 bx 1 c that passes through the 
point s1, 4d and whose tangent lines at x − 21 and x − 5 
have slopes 6 and 22, respectively.

 86.  The function Cstd − Kse2at 2 e2bt d, where a, b, and K are 
positive constants and b . a, is used to model the concen-
tration at time t of a drug injected into the bloodstream.

 (a) Show that lim t l ` Cstd − 0.
 (b)  Find C9std, the rate of change of drug concentration in 

the blood.
 (c) When is this rate equal to 0?

 87.  An equation of motion of the form s − Ae2ct coss�t 1 �d 
represents damped oscillation of an object. Find the velocity 
and acceleration of the object.

 88.  A particle moves along a horizontal line so that its coor-
dinate at time t is x − sb 2 1 c 2t 2 , t > 0, where b and c  
are positive constants.

 (a) Find the velocity and acceleration functions.
 (b)  Show that the particle always moves in the positive  

direction.

 89.  A particle moves on a vertical line so that its coordinate at 
time t is y − t 3 2 12t 1 3, t > 0.

 (a) Find the velocity and acceleration functions.
 (b)  When is the particle moving upward and when is it  

moving downward?
 (c)  Find the distance that the particle travels in the time  

interval 0 < t < 3.
 (d)  Graph the position, velocity, and acceleration functions 

for 0 < t < 3.
 (e)  When is the particle speeding up? When is it slowing 

down?

 90.  The volume of a right circular cone is V − 1
3�r 2h, where  

r is the radius of the base and h is the height.
 (a)  Find the rate of change of the volume with respect to 

the height if the radius is constant.

;

;

 65.  At what points on the curve y − sin x 1 cos x,  
0 < x < 2�, is the tangent line horizontal?

 66.  Find the points on the ellipse x 2 1 2y 2 − 1 where the  
tangent line has slope 1.

 67. If f sxd − sx 2 adsx 2 bdsx 2 cd, show that

 f 9sxd
f sxd

−
1

x 2 a
1

1

x 2 b
1

1

x 2 c

 68. (a) By differentiating the double-angle formula

cos 2x − cos2x 2 sin2x

   obtain the double-angle formula for the sine function.
 (b) By differentiating the addition formula

sinsx 1 ad − sin x cos a 1 cos x sin a

   obtain the addition formula for the cosine function.

 69.  Suppose that

f s1d − 2 f 9s1d − 3 f s2d − 1 f 9s2d − 2

ts1d − 3 t9s1d − 1 ts2d − 1 t9s2d − 4

 (a) If Ssxd − f sxd 1 tsxd, find S9s1d.
 (b) If Psxd − f sxdtsxd, find P9s2d.
 (c) If Qsxd − f sxdytsxd, find Q9s1d.
 (d) If Csxd − f stsxdd, find C9s2d.

 70.  If f  and t are the functions whose graphs are shown, let 
Psxd − f sxdtsxd, Qsxd − f sxdytsxd, and Csxd − f stsxdd.  
Find (a) P9s2d, (b) Q9s2d, and (c) C9s2d.

0

g

f

y

x1

1

71–78 Find f 9 in terms of t9.

 71. f sxd − x 2tsxd 72. f sxd − tsx 2 d

 73. f sxd − ftsxdg2 74. f sxd − tstsxdd

 75. f sxd − tse x d 76. f sxd − e tsxd 

 77. f sxd − ln | tsxd | 78. f sxd − tsln xd

79–81 Find h9 in terms of f 9 and t9.

 79. hsxd −
 f sxdtsxd

f sxd 1 tsxd
 80. hsxd − Î  f sxd

tsxd

 81. hsxd − f stssin 4xdd
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100.  A waterskier skis over the ramp shown in the figure at a 
speed of 30 ftys. How fast is she rising as she leaves the 
ramp?

4 ft

15 ft

 101.  The angle of elevation of the sun is decreasing at a rate of 
0.25 radyh. How fast is the shadow cast by a 400-ft-tall  
building increasing when the angle of elevation of the sun  
is �y6?

 102. (a)  Find the linear approximation to f sxd − s25 2 x 2   
near 3.

 (b)  Illustrate part (a) by graphing f  and the linear  
approximation.

 (c)  For what values of x is the linear approximation accurate 
to within 0.1?

 103. (a)  Find the linearization of f sxd − s3 1 1 3x  at a − 0. 
State the corresponding linear approximation and use it 
to give an approximate value for s3 1.03 .

 (b)  Determine the values of x for which the linear approxi-
mation given in part (a) is accurate to within 0.1.

 104. Evaluate dy if y − x 3 2 2x 2 1 1, x − 2, and dx − 0.2.

 105.  A window has the shape of a square surmounted by a semi - 
circle. The base of the window is measured as having width 
60 cm with a possible error in measurement of 0.1 cm. Use 
differentials to estimate the maximum error possible in 
computing the area of the window.

106–108 Express the limit as a derivative and evaluate.

 106. lim
x l1

 
x 17 2 1

x 2 1
 107. lim

h l 0
 
s4 16 1 h 2 2

h

 108. lim
� l �y3

 
cos � 2 0.5

� 2 �y3

 109. Evaluate lim
x l 0

 
s1 1 tan x 2 s1 1 sin x 

x 3 .

 110.  Suppose f  is a differentiable function such that f stsxdd − x 
and f 9sxd − 1 1 f f sxdg2. Show that t9sxd − 1ys1 1 x 2 d.

 111. Find f 9sxd if it is known that

d

dx
 f f s2xdg − x 2

 112.  Show that the length of the portion of any tangent line to the 
astroid x 2y3 1 y 2y3 − a 2y3 cut off by the coordinate axes is 
constant.

;

;

 (b)  Find the rate of change of the volume with respect to the 
radius if the height is constant.

 91.  The mass of part of a wire is xs1 1 sx d kilograms, where  
x is measured in meters from one end of the wire. Find the 
linear density of the wire when x − 4 m.

 92.  The cost, in dollars, of producing x units of a certain com- 
modity is

Csxd − 920 1 2x 2 0.02x 2 1 0.00007x 3

 (a) Find the marginal cost function.
 (b) Find C9s100d and explain its meaning.
 (c)  Compare C9s100d with the cost of producing the  

101st item.

 93.  A bacteria culture contains 200 cells initially and grows at a 
rate proportional to its size. After half an hour the population 
has increased to 360 cells.

 (a)  Find the number of bacteria after t hours.
 (b)  Find the number of bacteria after 4 hours.
 (c) Find the rate of growth after 4 hours.
 (d) When will the population reach 10,000?

 94.  Cobalt-60 has a half-life of 5.24 years.
 (a)  Find the mass that remains from a 100-mg sample after  

20 years.
 (b)  How long would it take for the mass to decay to 1 mg?

 95.  Let Cstd be the concentration of a drug in the bloodstream. As  
the body eliminates the drug, Cstd decreases at a rate that is 
proportional to the amount of the drug that is present at the 
time. Thus C9std − 2kCstd, where k is a positive number 
called the elimination constant of the drug.

 (a)  If C0 is the concentration at time t − 0, find the concen-
tration at time t.

 (b)  If the body eliminates half the drug in 30 hours, how long 
does it take to eliminate 90% of the drug?

 96.  A cup of hot chocolate has temperature 80°C in a room kept  
at 20°C. After half an hour the hot chocolate cools to 60°C.

 (a)  What is the temperature of the chocolate after another 
half hour?

 (b)  When will the chocolate have cooled to 40°C?

 97.  The volume of a cube is increasing at a rate of 10 cm3ymin. 
How fast is the surface area increasing when the length of an 
edge is 30 cm?

 98.  A paper cup has the shape of a cone with height 10 cm and 
radius 3 cm (at the top). If water is poured into the cup at a 
rate of 2 cm3ys, how fast is the water level rising when the 
water is 5 cm deep?

 99.  A balloon is rising at a constant speed of 5 ftys. A boy is 
cycling along a straight road at a speed of 15 ftys. When he 
passes under the balloon, it is 45 ft above him. How fast is the 
distance between the boy and the balloon increasing 3 s later?
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Problems Plus Before you look at the examples, cover up the solutions and try them yourself first.

ExamPlE 1� How many lines are tangent to both of the parabolas y − 21 2 x 2 and 
y − 1 1 x 2? Find the coordinates of the points at which these tangents touch the  
parabolas.

SOLUTION To gain insight into this problem, it is essential to draw a diagram. So we 
sketch the parabolas y − 1 1 x 2 (which is the standard parabola y − x 2 shifted 1 unit 
upward) and y − 21 2 x 2 (which is obtained by reflecting the first parabola about the  
x-axis). If we try to draw a line tangent to both parabolas, we soon discover that there 
are only two possibilities, as illustrated in Figure 1.

Let P be a point at which one of these tangents touches the upper parabola and let a 
be its x-coordinate. (The choice of notation for the unknown is important. Of course we  
could have used b or c or x0 or x1 instead of a. However, it’s not advisable to use x in 
place of a because that x could be confused with the variable x in the equation of the 
parabola.) Then, since P lies on the parabola y − 1 1 x 2, its y-coordinate must be 
1 1 a 2. Because of the symmetry shown in Figure 1, the coordinates of the point Q 
where the tangent touches the lower parabola must be s2a, 2s1 1 a 2 dd.

To use the given information that the line is a tangent, we equate the slope of the 
line PQ to the slope of the tangent line at P. We have

mPQ −
1 1 a 2 2 s21 2 a 2 d

a 2 s2ad
−

1 1 a 2

a

If f sxd − 1 1 x 2, then the slope of the tangent line at P is f 9sad − 2a. Thus the condi-
tion that we need to use is that

1 1 a 2

a
− 2a

Solving this equation, we get 1 1 a 2 − 2a 2, so a 2 − 1 and a − 61. Therefore the 
points are (1, 2) and s21, 22d. By symmetry, the two remaining points are s21, 2d and 
s1, 22d. ■

ExamPlE 2� For what values of c does the equation ln x − cx 2 have exactly one  
solution?

SOLUTION One of the most important principles of problem solving is to draw a dia- 
gram, even if the problem as stated doesn’t explicitly mention a geometric situation. 
Our present problem can be reformulated geometrically as follows: For what values of 
c does the curve y − ln x intersect the curve y − cx 2 in exactly one point?

Let’s start by graphing y − ln x and y − cx 2 for various values of c. We know that, 
for c ± 0, y − cx 2 is a parabola that opens upward if c . 0 and downward if c , 0. 
Figure 2 shows the parabolas y − cx 2 for several positive values of c. Most of them 
don’t intersect y − ln x at all and one intersects twice. We have the feeling that there 
must be a value of c (somewhere between 0.1 and 0.3) for which the curves intersect 
exactly once, as in Figure 3.

To find that particular value of c, we let a be the x-coordinate of the single point of 
intersection. In other words, ln a − ca 2, so a is the unique solution of the given equa-
tion. We see from Figure 3 that the curves just touch, so they have a common tangent 
line when x − a. That means the curves y − ln x and y − cx 2 have the same slope 
when x − a. Therefore

1

a
− 2ca

x

y

P

Q

1

_1

FIGURE 1

0

3≈ ≈
0.3≈

0.1≈

≈1
2

x

y

y=ln x

FIGURE 2

y=c≈
c=?

y

x0 a

y=ln x

FIGURE 3
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Solving the equations ln a − ca 2 and 1ya − 2ca, we get

ln a − ca 2 − c ?
1

2c
−

1

2

Thus a − e 1y2 and

c −
ln a

a 2 −
ln e 1y2

e
−

1

2e

For negative values of c we have the situation illustrated in Figure 4: All parabolas 
y − cx 2 with negative values of c intersect y − ln x exactly once. And let’s not forget 
about c − 0: The curve y − 0x 2 − 0 is just the x-axis, which intersects y − ln x 
exactly once.

To summarize, the required values of c are c − 1ys2ed and c < 0. ■

 1.  Find points P and Q on the parabola y − 1 2 x 2 so that the triangle ABC formed by the  
x-axis and the tangent lines at P and Q is an equilateral triangle. (See the figure.)

x

y

P Q

A

0B C

 2.  Find the point where the curves y − x 3 2 3x 1 4 and y − 3sx 2 2 xd are tangent to each 
other, that is, have a common tangent line. Illustrate by sketching both curves and the  
common tangent.

 3.  Show that the tangent lines to the parabola y − ax 2 1 bx 1 c at any two points with  
x-coordinates p and q must intersect at a point whose x-coordinate is halfway between p  
and q.

 4.  Show that

d

dx S sin2x

1 1 cot x
1

cos2x

1 1 tan xD − 2cos 2x

 5.  If f sxd − lim
t l x

 
sec t 2 sec x

t 2 x
, find the value of f 9s�y4d.

 6. Find the values of the constants a and b such that

lim
x l 0

 
 s3 ax 1 b 2 2

x
−

5

12

 7. Show that sin21stanh xd − tan21ssinh xd.

 8.  A car is traveling at night along a highway shaped like a parabola with its vertex at the 
origin (see the figure). The car starts at a point 100 m west and 100 m north of the origin 
and travels in an easterly direction. There is a statue located 100 m east and 50 m north of 
the origin. At what point on the highway will the car’s headlights illuminate the statue?

 9. Prove that 
d n

dx n  ssin4x 1 cos4xd − 4n21  coss4x 1 n�y2d.

y

x
0

y=ln x

FIGURE 4

Problems

;

x

y

FIGURE FOR PROBLEM 8
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 10. If f  is differentiable at a, where a . 0, evaluate the following limit in terms of f 9sad:

lim
x l a

 
 f sxd 2 f sad
sx  2 sa  

 11.  The figure shows a circle with radius 1 inscribed in the parabola y − x 2. Find the center of 
the circle.

x0

y

11

y=≈

 12.  Find all values of c such that the parabolas y − 4x 2 and x − c 1 2y 2 intersect each other 
at right angles.

 13.  How many lines are tangent to both of the circles x 2 1 y 2 − 4 and x 2 1 sy 2 3d2 − 1?  
At what points do these tangent lines touch the circles?

 14.  If f sxd −
x 46 1 x 45 1 2

1 1 x
, calculate f s46ds3d. Express your answer using factorial notation:

  n! − 1 ? 2 ? 3 ? ∙ ∙ ∙ ? sn 2 1d ? n.

 15.  The figure shows a rotating wheel with radius 40 cm and a connecting rod AP with length  
1.2 m. The pin P slides back and forth along the x-axis as the wheel rotates counter-
clockwise at a rate of 360 revolutions per minute.

 (a)  Find the angular velocity of the connecting rod, d�ydt, in radians per second,  
when � − �y3.

 (b) Express the distance x − | OP | in terms of �.
 (c) Find an expression for the velocity of the pin P in terms of �.

A

P(x, 0)
¨ å

x

y

O

 16.  Tangent lines T1 and T2 are drawn at two points P1 and P2 on the parabola y − x 2 and they 
intersect at a point P. Another tangent line T is drawn at a point between P1 and P2; it 
intersects T1 at Q1 and T2 at Q2. Show that

| PQ1 |
| PP1 | 1

| PQ2 |
| PP2 | − 1

 17. Show that

d n

dx n  se ax sin bxd − r ne ax sinsbx 1 n�d

  where a and b are positive numbers, r 2 − a 2 1 b 2, and � − tan21sbyad.
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 18. Evaluate lim
x l �

 
e sin x 2 1

x 2 �
.

 19.  Let T and N be the tangent and normal lines to the ellipse x 2y9 1 y 2y4 − 1 at any point 
P on the ellipse in the first quadrant. Let xT and yT be the x- and y-intercepts of T and xN 
and yN be the intercepts of N. As P moves along the ellipse in the first quadrant (but not 
on the axes), what values can xT, yT, xN, and yN take on? First try to guess the answers just 
by looking at the figure. Then use calculus to solve the problem and see how good your 
intuition is.

xN xT

yT

yN

3

2

T

N

P

x

y

0

 20. Evaluate lim
x l 0

 
sins3 1 xd2 2 sin 9

x
.

 21. (a)  Use the identity for tansx 2 yd (see Equation 14b in Appendix D) to show that if two 
lines L1 and L 2 intersect at an angle �, then

tan � −
m2 2 m1

1 1 m1m2

   where m1 and m2 are the slopes of L1 and L 2, respectively.
  (b)  The angle between the curves C1 and C2 at a point of intersection P is defined to be  

the angle between the tangent lines to C1 and C2 at P (if these tangent lines exist). Use 
part (a) to find, correct to the nearest degree, the angle between each pair of curves at 
each point of intersection.

   (i) y − x 2  and  y − sx 2 2d2

   (ii) x 2 2 y 2 − 3  and  x 2 2 4x 1 y 2 1 3 − 0

 22.  Let Psx1, y1d be a point on the parabola y 2 − 4px with focus Fsp, 0d. Let � be the angle 
between the parabola and the line segment FP, and let � be the angle between the 
horizontal line y − y1 and the parabola as in the figure. Prove that � − �. (Thus, by a 
prin ciple of geometrical optics, light from a source placed at F will be reflected along a 
line parallel to the x-axis. This explains why paraboloids, the surfaces obtained by rotating 
parabolas about their axes, are used as the shape of some automobile headlights and 
mirrors for telescopes.)

0 x

y

F(p, 0)

P(⁄, ›)

¥=4px

y=›

å

∫
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 23.  Suppose that we replace the parabolic mirror of Problem 22 by a spherical mirror. 
Although the mirror has no focus, we can show the existence of an approximate focus. 
In the figure, C is a semicircle with center O. A ray of light coming in toward the mirror 
parallel to the axis along the line PQ will be reflected to the point R on the axis so that 
/PQO − /OQR (the angle of incidence is equal to the angle of reflection). What happens 
to the point R as P is taken closer and closer to the axis?

 24. If f  and t are differentiable functions with f s0d − ts0d − 0 and t9s0d ± 0, show that

lim
x l 0

 
 f sxd
tsxd

−
 f 9s0d
t9s0d

 25. Evaluate lim
x l 0

 
sinsa 1 2xd 2 2 sinsa 1 xd 1 sin a

x 2 .

 26. (a)  The cubic function f sxd − xsx 2 2dsx 2 6d has three distinct zeros: 0, 2, and 6. Graph  
f  and its tangent lines at the average of each pair of zeros. What do you notice?

  (b)  Suppose the cubic function f sxd − sx 2 adsx 2 bdsx 2 cd has three distinct zeros:  
a, b, and c. Prove, with the help of a computer algebra system, that a tangent line 
drawn at the average of the zeros a and b intersects the graph of f  at the third zero.

 27.  For what value of k does the equation e2x − ksx  have exactly one solution?

 28. For which positive numbers a is it true that a x > 1 1 x for all x?

 29. If

y −
x

sa 2 2 1
2

2

sa 2 2 1
 arctan 

sin x

a 1 sa 2 2 1 1 cos x

  show that y9 −
1

a 1 cos x
.

 30.  Given an ellipse x 2ya 2 1 y 2yb 2 − 1, where a ± b, find the equation of the set of all points 
from which there are two tangents to the curve whose slopes are (a) reciprocals and  
(b) negative reciprocals.

 31.  Find the two points on the curve y − x 4 2 2x 2 2 x that have a common tangent line.

 32.  Suppose that three points on the parabola y − x 2 have the property that their normal lines 
intersect at a common point. Show that the sum of their x-coordinates is 0.

 33.  A lattice point in the plane is a point with integer coordinates. Suppose that circles with 
radius r are drawn using all lattice points as centers. Find the smallest value of r such that 
any line with slope 25 intersects some of these circles.

 34.  A cone of radius r centimeters and height h centimeters is lowered point first at a rate of 
1 cmys into a tall cylinder of radius R centimeters that is partially filled with water. How 
fast is the water level rising at the instant the cone is completely submerged?

 35.  A container in the shape of an inverted cone has height 16 cm and radius 5 cm at the top. It  
is partially filled with a liquid that oozes through the sides at a rate proportional to the area  
of the container that is in contact with the liquid. (The surface area of a cone is �rl, where 
r is the radius and l is the slant height.) If we pour the liquid into the container at a rate of 
2 cm3ymin, then the height of the liquid decreases at a rate of 0.3 cmymin when the height  
is 10 cm. If our goal is to keep the liquid at a constant height of 10 cm, at what rate should 
we pour the liquid into the container?

OR

P
Q

¨
¨

C

A

FIGURE FOR PROBLEM 23
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