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When we view the world 
around us, the light entering 

the eye near the center of the 
pupil is perceived brighter 

than light entering closer to 
the edges of the pupil. This 

phenomenon, known as 
the Stiles–Crawford effect, is 

explored as the pupil changes 
in radius in Exercise 80  

on page 313. 

Applications of Differentiation4

© Tatiana Makotra / Shutterstock.com

WE HAVE ALREADY INVESTIGATED SOME of the applications of derivatives, but now that we 
know the differentiation rules we are in a better position to pursue the applications of differentia-
tion in greater depth. Here we learn how derivatives affect the shape of a graph of a function and, 
in particular, how they help us locate maximum and minimum values of functions. Many practi-
cal problems require us to minimize a cost or maximize an area or somehow find the best possible 
outcome of a situation. In particular, we will be able to investigate the optimal shape of a can and 
to explain the location of rainbows in the sky.
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276	 CHAPTER 4    Applications of Differentiation

Some of the most important applications of differential calculus are optimization prob-
lems, in which we are required to find the optimal (best) way of doing something. Here 
are examples of such problems that we will solve in this chapter:

•	 �What is the shape of a can that minimizes manufacturing costs?

•	 �What is the maximum acceleration of a space shuttle? (This is an important 
question to the astronauts who have to withstand the effects of acceleration.)

•	 �What is the radius of a contracted windpipe that expels air most rapidly during 
a cough?

•	 �At what angle should blood vessels branch so as to minimize the energy  
expended by the heart in pumping blood?

These problems can be reduced to finding the maximum or minimum values of a func-
tion. Let’s first explain exactly what we mean by maximum and minimum values.

We see that the highest point on the graph of the function f  shown in Figure 1 is the 
point s3, 5d. In other words, the largest value of f  is f s3d − 5. Likewise, the smallest 
value is f s6d − 2. We say that f s3d − 5 is the absolute maximum of f  and f s6d − 2 is 
the absolute minimum. In general, we use the following definition.

1 �  Definition � Let c be a number in the domain D of a function f. Then f scd is 
the

•	 �absolute maximum value of f  on D if f scd > f sxd for all x in D.

•	 �absolute minimum value of f  on D if f scd < f sxd for all x in D.

An absolute maximum or minimum is sometimes called a global maximum or mini-
mum. The maximum and minimum values of f  are called extreme values of f .

Figure 2 shows the graph of a function f  with absolute maximum at d and absolute 
minimum at a. Note that sd, f sddd is the highest point on the graph and sa, f sadd is the 
lowest point. In Figure 2, if we consider only values of x near b [for instance, if we 
restrict our attention to the interval sa, cd], then f sbd is the largest of those values of f sxd 
and is called a local maximum value of f . Likewise, f scd is called a local minimum value 
of f  because f scd < f sxd for x near c [in the interval sb, dd, for instance]. The function f  
also has a local minimum at e. In general, we have the following definition.

2 �  Definition � The number f scd is a

•	 �local maximum value of f  if f scd > f sxd when x is near c.

•	 �local minimum value of f  if f scd < f sxd when x is near c.

In Definition 2 (and elsewhere), if we say that something is true near c, we mean that it 
is true on some open interval containing c. For instance, in Figure 3 we see that f s4d − 5 
is a local minimum because it’s the smallest value of f  on the interval I. It’s not the abso-
lute minimum because f sxd takes smaller values when x is near 12 (in the interval K,  
for instance). In fact f s12d − 3 is both a local minimum and the absolute minimum. 
Similarly, f s8d − 7 is a local maximum, but not the absolute maximum because f  takes 
larger values near 1.

FIGURE 1
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	 SECTION  4.1    Maximum and Minimum Values	 277

EXAMPLE �1�  The function f sxd − cos x takes on its (local and absolute) maxi-
mum value of 1 infinitely many times, since cos 2n� − 1 for any integer n and 
21 < cos x < 1 for all x. (See Figure 4.) Likewise, coss2n 1 1d� − 21 is its mini-
mum value, where n is any integer.

	

0

y

x

Local and absolute maximum

Local and absolute minimum

π 2π 3π

�	 n

EXAMPLE �2�  If f sxd − x 2, then f sxd > f s0d because x 2 > 0 for all x. Therefore 
f s0d − 0 is the absolute (and local) minimum value of f. This corresponds to the fact 
that the origin is the lowest point on the parabola y − x 2. (See Figure 5.) However, 
there is no highest point on the parabola and so this function has no maximum value.  n

EXAMPLE �3�  From the graph of the function f sxd − x 3, shown in Figure 6, we see that 
this function has neither an absolute maximum value nor an absolute minimum value. 
In fact, it has no local extreme values either.	 n

EXAMPLE �4�  The graph of the function 

f sxd − 3x 4 2 16x 3 1 18x 2        21 < x < 4 

is shown in Figure 7. You can see that f s1d − 5 is a local maximum, whereas the 
absolute maximum is f s21d − 37. (This absolute maximum is not a local maximum 
because it occurs at an endpoint.) Also, f s0d − 0 is a local minimum and f s3d − 227 
is both a local and an absolute minimum. Note that f  has neither a local nor an absolute 
maximum at x − 4.

	

(_1, 37)

_1 1 2 3 4 5

(3, _27)

(1, 5)

y

x

y=3x$-16˛+18≈

	 n

We have seen that some functions have extreme values, whereas others do not. The 
following theorem gives conditions under which a function is guaranteed to possess 
extreme values.

x

y

0

y=≈

FIGURE 5 �  
Mimimum value 0, no maximum

FIGURE 6 �  
No mimimum, no maximum

x

y

0

y=˛

FIGURE 7 �

FIGURE 4
y − cosx
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278	 CHAPTER 4    Applications of Differentiation

3 �  The Extreme Value Theorem � If f  is continuous on a closed interval fa, bg, 
then f  attains an absolute maximum value f scd and an absolute minimum value 
f sdd at some numbers c and d in fa, bg.

The Extreme Value Theorem is illustrated in Figure 8. Note that an extreme value can 
be taken on more than once. Although the Extreme Value Theorem is intuitively very 
plausible, it is difficult to prove and so we omit the proof.

x

y

0 ba c d x

y

0 ba c¡ d c™x

y

0 d=ba c

FIGURE 8  �Functions continuous on a closed interval always attain extreme values.

Figures 9 and 10 show that a function need not possess extreme values if either 
hypothesis (continuity or closed interval) is omitted from the Extreme Value Theorem.

1

x

y

0

FIGURE 10
This continuous function g has
no maximum or minimum.

2

1

x

y

0

FIGURE 9
This function has minimum value
f(2)=0, but no maximum value.

2

3

The function f  whose graph is shown in Figure 9 is defined on the closed interval 
[0, 2] but has no maximum value. (Notice that the range of f  is [0, 3). The function 
takes on values arbitrarily close to 3, but never actually attains the value 3.) This does 
not contradict the Extreme Value Theorem because f  is not continuous. [Nonetheless, a 
discontinuous function could have maximum and minimum values. See Exercise 13(b).]

The function t shown in Figure 10 is continuous on the open interval (0, 2) but has 
neither a maximum nor a minimum value. [The range of t is s1, `d. The function takes 
on arbitrarily large values.] This does not contradict the Extreme Value Theorem because 
the interval (0, 2) is not closed.

The Extreme Value Theorem says that a continuous function on a closed interval has a 
maximum value and a minimum value, but it does not tell us how to find these extreme 
values. Notice in Figure 8 that the absolute maximum and minimum values that are 
between a and b occur at local maximum or minimum values, so we start by looking for 
local extreme values.

Figure 11 shows the graph of a function f  with a local maximum at c and a local  
minimum at d. It appears that at the maximum and minimum points the tangent lines are 
horizontal and therefore each has slope 0. We know that the derivative is the slope of the 

0 xc d

y
{c, f (c)}

{d, f (d)}

FIGURE 11 
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	 SECTION  4.1    Maximum and Minimum Values	 279

tangent line, so it appears that f 9scd − 0 and f 9sdd − 0. The following theorem says that 
this is always true for differentiable functions.

4 �  Fermat’s Theorem � If f  has a local maximum or minimum at c, and if f 9scd 
exists, then f 9scd − 0.

PROOF  Suppose, for the sake of definiteness, that f  has a local maximum at c. Then, 
according to Definition 2, f scd > f sxd if x is sufficiently close to c. This implies that if h 
is sufficiently close to 0, with h being positive or negative, then

f scd > f sc 1 hd

and therefore

5 	 f sc 1 hd 2 f scd < 0

We can divide both sides of an inequality by a positive number. Thus, if h . 0 and h is 
sufficiently small, we have

 f sc 1 hd 2 f scd
h

< 0

Taking the right-hand limit of both sides of this inequality (using Theorem 2.3.2), we get

lim
hl

 

01
 
 f sc 1 hd 2 f scd

h
< lim

h l
 

01 
0 − 0

But since f 9scd exists, we have

f 9scd − lim
h l 0

 
 f sc 1 hd 2 f scd

h
− lim

h l
 

01
 
 f sc 1 hd 2 f scd

h

and so we have shown that f 9scd < 0.
If h , 0, then the direction of the inequality (5) is reversed when we divide by h:

 f sc 1 hd 2 f scd
h

> 0        h , 0

So, taking the left-hand limit, we have

f 9scd − lim
h l 0

 
 f sc 1 hd 2 f scd

h
− lim

h l
 

02
 
 f sc 1 hd 2 f scd

h
> 0

We have shown that f 9scd > 0 and also that f 9scd < 0. Since both of these inequalities 
must be true, the only possibility is that f 9scd − 0.

We have proved Fermat’s Theorem for the case of a local maximum. The case of 
a local minimum can be proved in a similar manner, or we could use Exercise 78 to 
deduce it from the case we have just proved (see Exercise 79).	 n

The following examples caution us against reading too much into Fermat’s Theorem: 
We can’t expect to locate extreme values simply by setting f 9sxd − 0 and solving for x.

Fermat
Fermat’s Theorem is named after 
Pierre Fermat (1601–1665), a French 
lawyer who took up mathematics as 
a hobby. Despite his amateur status, 
Fermat was one of the two inventors 
of analytic geometry (Descartes was 
the other). His methods for finding 
tangents to curves and maximum and 
minimum values (before the invention 
of limits and derivatives) made him a 
forerunner of Newton in the creation 
of differential calculus.
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280	 CHAPTER 4    Applications of Differentiation

EXAMPLE �5�  If f sxd − x 3, then f 9sxd − 3x 2, so f 9s0d − 0. But f  has no maximum 
or minimum at 0, as you can see from its graph in Figure 12. (Or observe that x 3 . 0 
for x . 0 but x 3 , 0 for x , 0.) The fact that f 9s0d − 0 simply means that the curve 
y − x 3 has a horizontal tangent at s0, 0d. Instead of having a maximum or minimum at 
s0, 0d, the curve crosses its horizontal tangent there.	 n

EXAMPLE �6�  The function f sxd − | x | has its (local and absolute) minimum value at 
0, but that value can’t be found by setting f 9sxd − 0 because, as was shown in Example 
2.8.5, f 9s0d does not exist. (See Figure 13.)	 n

WARNING  �Examples 5 and 6 show that we must be careful when using Fermat’s Theo-
rem. Example 5 demonstrates that even when f 9scd − 0 there need not be a maximum 
or minimum at c. (In other words, the converse of Fermat’s Theorem is false in gen-
eral.) Furthermore, there may be an extreme value even when f 9scd does not exist (as in 
Example 6).

Fermat’s Theorem does suggest that we should at least start looking for extreme val-
ues of f  at the numbers c where f 9scd − 0 or where f 9scd does not exist. Such numbers 
are given a special name.

6 �  Definition � A critical number of a function f  is a number c in the domain of 
f  such that either f 9scd − 0 or f 9scd does not exist.

EXAMPLE �7�  Find the critical numbers of f sxd − x 3y5s4 2 xd.

SOLUTION � The Product Rule gives

  f 9sxd − x 3y5s21d 1 s4 2 xd(3
5 x22y5) − 2x 3y5 1

3s4 2 xd
5x 2 y5

 −
25x 1 3s4 2 xd

5x 2y5 −
12 2 8x

5x 2y5

[The same result could be obtained by first writing f sxd − 4x 3y5 2 x 8y5.] Therefore 
f 9sxd − 0 if 12 2 8x − 0, that is, x − 3

2, and f 9sxd does not exist when x − 0. Thus the 
critical numbers are 32 and 0.	 n

In terms of critical numbers, Fermat’s Theorem can be rephrased as follows (compare 
Definition 6 with Theorem 4):

7 � � If f  has a local maximum or minimum at c, then c is a critical number of f.

To find an absolute maximum or minimum of a continuous function on a closed 
interval, we note that either it is local [in which case it occurs at a critical number by (7)] 
or it occurs at an endpoint of the interval, as we see from the examples in Figure 8. Thus 
the following three-step procedure always works.

Figure 14 shows a graph of the function 
f  in Example 7. It supports our answer 
because there is a horizontal tangent 
when x − 1.5 fwhere f 9sxd − 0g and  
a vertical tangent when x − 0 fwhere 
f 9sxd is undefinedg.

3.5

_2

_0.5 5

FIGURE 14

FIGURE 12� 
If f sxd − x 3, then  f 9s0d − 0,  
but f  has no maximum  
or minimum.

y=˛

x

y

0

FIGURE 13� 
If f sxd − | x |, then  f s0d − 0 is  
a minimum value, but f 9s0d does  
not exist.

x0

y=|x|

y
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	 SECTION  4.1    Maximum and Minimum Values	 281

The Closed Interval Method � To find the absolute maximum and minimum values 
of a continuous function f  on a closed interval fa, bg:
1. � Find the values of f  at the critical numbers of f  in sa, bd.
2. �� �Find the values of f  at the endpoints of the interval.

3. � �The largest of the values from Steps 1 and 2 is the absolute maximum value;  
the smallest of these values is the absolute minimum value.

EXAMPLE �8�  Find the absolute maximum and minimum values of the function

f sxd − x 3 2 3x 2 1 1        21
2 < x < 4

SOLUTION � Since f  is continuous on f21
2, 4g, we can use the Closed Interval Method:

 f sxd − x 3 2 3x 2 1 1

  f 9sxd − 3x 2 2 6x − 3xsx 2 2d

Since f 9sxd exists for all x, the only critical numbers of f  occur when f 9sxd − 0, that is, 
x − 0 or x − 2. Notice that each of these critical numbers lies in the interval s21

2, 4d. 
The values of f  at these critical numbers are

f s0d − 1            f s2d − 23

The values of f  at the endpoints of the interval are

f s21
2 d − 1

8            f s4d − 17

Comparing these four numbers, we see that the absolute maximum value is f s4d − 17 
and the absolute minimum value is f s2d − 23.

Note that in this example the absolute maximum occurs at an endpoint, whereas the 
absolute minimum occurs at a critical number. The graph of f  is sketched in Figure 15.

 n

If you have a graphing calculator or a computer with graphing software, it is possible 
to estimate maximum and minimum values very easily. But, as the next example shows, 
calculus is needed to find the exact values.

EXAMPLE �9� 
(a)  Use a graphing device to estimate the absolute minimum and maximum values of 
the function f sxd − x 2 2 sin x, 0 < x < 2�.
(b)  Use calculus to find the exact minimum and maximum values.

SOLUTION�  
(a)  Figure 16 shows a graph of f  in the viewing rectangle f0, 2�g by f21, 8g. By 
moving the cursor close to the maximum point, we see that the y-coordinates don’t 
change very much in the vicinity of the maximum. The absolute maximum value is 
about 6.97 and it occurs when x < 5.2. Similarly, by moving the cursor close to the 
minimum point, we see that the absolute minimum value is about 20.68 and it occurs 
when x < 1.0. It is possible to get more accurate estimates by zooming in toward the 

5

10

20

_5

15

1 2

3 4

(4, 17)

(2, _3)
_1

y=˛-3≈+1

x

y

0

FIGURE 15 �

0

8

_1

2π

FIGURE 16 � Not For Sale

©
 2

01
4 

C
en

ga
ge

 L
ea

rn
in

g.
 A

ll 
R

ig
ht

s R
es

er
ve

d.
 T

hi
s c

on
te

nt
 is

 n
ot

 y
et

 fi
na

l a
nd

 C
en

ga
ge

 L
ea

rn
in

g 
do

es
 n

ot
 g

ua
ra

nt
ee

 th
is

 p
ag

e 
w

ill
 c

on
ta

in
 c

ur
re

nt
 m

at
er

ia
l o

r m
at

ch
 th

e 
pu

bl
is

he
d 

pr
od

uc
t.



282	 CHAPTER 4    Applications of Differentiation

maximum and minimum points (or using a built-in maximum or minimum feature),  
but instead let’s use calculus.

(b)  The function f sxd − x 2 2 sin x is continuous on f0, 2�g. Since  
f 9sxd − 1 2 2 cos x, we have f 9sxd − 0 when cos x − 1

2 and this occurs when  
x − �y3 or 5�y3. The values of f  at these critical numbers are

	  f s�y3d −
�

3
2 2 sin 

�

3
−

�

3
2 s3 < 20.684853

and	   f s5�y3d −
5�

3
2 2 sin 

5�

3
−

5�

3
1 s3 < 6.968039

The values of f  at the endpoints are 

f s0d − 0        and        f s2�d − 2� < 6.28

Comparing these four numbers and using the Closed Interval Method, we see that the 
absolute minimum value is f s�y3d − �y3 2 s3  and the absolute maximum value is 
f s5�y3d − 5�y3 1 s3 . The values from part (a) serve as a check on our work.	 n

EXAMPLE �10�  The Hubble Space Telescope was deployed on April 24, 1990, by the 
space shuttle Discovery. A model for the velocity of the shuttle during this mission, 
from liftoff at t − 0 until the solid rocket boosters were jettisoned at t − 126 seconds, 
is given by

vstd − 0.001302t 3 2 0.09029t 2 1 23.61t 2 3.083

(in feet per second). Using this model, estimate the absolute maximum and minimum 
values of the acceleration of the shuttle between liftoff and the jettisoning of the 
boosters.

SOLUTION � We are asked for the extreme values not of the given velocity function, 
but rather of the acceleration function. So we first need to differentiate to find the 
acceleration:

 astd − v9std −
d

dt
 s0.001302t 3 2 0.09029t 2 1 23.61t 2 3.083d

 − 0.003906t 2 2 0.18058t 1 23.61

We now apply the Closed Interval Method to the continuous function a on the interval 
0 < t < 126. Its derivative is

a9std − 0.007812t 2 0.18058

The only critical number occurs when a9std − 0:

t1 −
0.18058

0.007812
< 23.12

Evaluating astd at the critical number and at the endpoints, we have

as0d − 23.61            ast1d < 21.52            as126d < 62.87

So the maximum acceleration is about 62.87 ftys2 and the minimum acceleration is  
about 21.52 ftys2.	 n

N
AS

A
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	 (c)	� Sketch the graph of a function that has a local maximum  
at 2 and is not continuous at 2.

	12.	� (a)	� Sketch the graph of a function on [21, 2] that has an  
absolute maximum but no local maximum.

	 (b)	� Sketch the graph of a function on [21, 2] that has a local 
maximum but no absolute maximum.

	13.	� (a)	� Sketch the graph of a function on [21, 2] that has an  
absolute maximum but no absolute minimum.

	 (b)	� Sketch the graph of a function on [21, 2] that is dis-
continuous but has both an absolute maximum and an 
absolute minimum.

	14.	� (a)	� Sketch the graph of a function that has two local max-
ima, one local minimum, and no absolute minimum.

	 (b)	� Sketch the graph of a function that has three local min-
ima, two local maxima, and seven critical numbers.

15–28 � Sketch the graph of f  by hand and use your sketch to  
find the absolute and local maximum and minimum values of f. 
(Use the graphs and transformations of Sections 1.2 and 1.3.)

	15.	� f sxd − 1
2s3x 2 1d, � �  x < 3

	16.	� f sxd − 2 2 1
3 x, � �  x > 22

	17.	� f sxd − 1yx, � �  x > 1

	18.	� f sxd − 1yx, � �  1 , x , 3

	19.	� f sxd − sin x, � �  0 < x , �y2

	20.	� f sxd − sin x, � �  0 , x < �y2

	21.	� f sxd − sin x, � �  2�y2 < x < �y2

	22.	� f std − cos t, � �  23�y2 < t < 3�y2

	23.	� f sxd − ln x, � �  0 , x < 2

	24.	� f sxd − | x |
	25.	� f sxd − 1 2 sx 

	26.	� f sxd − e x

	27.	 f sxd − Hx 2

2 2 3x

if 21 < x < 0

if 0 , x < 1

	28.	 f sxd − H2x 1 1

4 2 2x

if 0 < x , 1

if 1 < x < 3

29–44 � Find the critical numbers of the function.

	29.	 f sxd − 4 1 1
3 x 2 1

2x 2	30 .	 f sxd − x 3 1 6x 2 2 15x

	31.	 f sxd − 2x 3 2 3x 2 2 36x	3 2.	 f sxd − 2x 3 1 x 2 1 2x

	33.	 tstd − t 4 1 t 3 1 t 2 1 1	34 .	 tstd − | 3t 2 4 |
	35.	 tsyd −

y 2 1

y 2 2 y 1 1
	36 .	 hspd −

p 2 1

p2 1 4

	1 .	�� �Explain the difference between an absolute minimum and a 
local minimum.

	 2.	�� Suppose f  is a continuous function defined on a closed 
interval fa, bg.

	 (a)	� What theorem guarantees the existence of an absolute 
maximum value and an absolute minimum value for f ?

	 (b)	� What steps would you take to find those maximum and 
minimum values?

3–4 � For each of the numbers a, b, c, d, r, and s, state whether the 
function whose graph is shown has an absolute maximum or min-
imum, a local maximum or minimum, or neither a maximum  
nor a minimum.

3. 

x

y

0 a b c d r s

  4. 

x

y

0 a b c d r s

5–6 � Use the graph to state the absolute and local maximum and 
minimum values of the function.

5.  y

0 x

y=ƒ
1

1

  6.  y

0 x

y=©

1

1

7–10 � Sketch the graph of a function f  that is continuous on [1, 5] 
and has the given properties.

	 7.	�� Absolute maximum at 5, absolute minimum at 2,  
local maximum at 3, local minima at 2 and 4

	8 .	�� Absolute maximum at 4, absolute minimum at 5,  
local maximum at 2, local minimum at 3

	9 .	�� Absolute minimum at 3, absolute maximum at 4,  
local maximum at 2

	10.	�� Absolute maximum at 2, absolute minimum at 5, 4 is a 
critical number but there is no local maximum or minimum 
there.

	11.	� (a)	� Sketch the graph of a function that has a local maximum  
at 2 and is differentiable at 2.

	 (b)	� Sketch the graph of a function that has a local maximum  
at 2 and is continuous but not differentiable at 2.Not For Sale
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284	 CHAPTER 4    Applications of Differentiation

	67.	 f sxd − xsx 2 x 2 

	68.	 f sxd − x 2 2 cos x,  22 < x < 0

	69.	� �After the consumption of an alcoholic beverage, the concen-
tration of alcohol in the bloodstream (blood alcohol concentra-
tion, or BAC) surges as the alcohol is absorbed, followed by a 
gradual decline as the alcohol is metabolized. The function 

Cstd − 1.35te22.802 t

models the average BAC, measured in mgymL, of a group of 
eight male subjects t hours after rapid consumption of 15 mL 
of ethanol (corresponding to one alcoholic drink). What is the 
maximum average BAC during the first 3 hours? When does 
it occur?
Source: Adapted from P. Wilkinson et al., “Pharmacokinetics of Ethanol after 
Oral Administration in the Fasting State,” Journal of Pharmacokinetics and 
Biopharmaceutics 5 (1977): 207–24.

	70.	� �After an antibiotic tablet is taken, the concentration of the 
antibiotic in the bloodstream is modeled by the function

Cstd − 8se20.4 t 2 e20.6 t d

where the time t is measured in hours and C is measured in  
mgymL. What is the maximum concentration of the antibiotic 
during the first 12 hours?

	71.	�� Between 08C and 308C, the volume V (in cubic centimeters) 
of 1 kg of water at a temperature T is given approximately by 
the formula

V − 999.87 2 0.06426T 1 0.0085043T 2 2 0.0000679T 3

Find the temperature at which water has its maximum density.

	72.	�� An object with weight W is dragged along a horizontal plane 
by a force acting along a rope attached to the object. If the 
rope makes an angle � with the plane, then the magnitude of 
the force is

F −
�W

� sin � 1 cos �

where � is a positive constant called the coefficient of friction 
and where 0 < � < �y2. Show that F is minimized when 
tan � − �.

	73.	�� The water level, measured in feet above mean sea level, of 
Lake Lanier in Georgia, USA, during 2012 can be modeled 
by the function 

Lstd − 0.01441t 3 2 0.4177t 2 1 2.703t 1 1060.1

where t is measured in months since January 1, 2012. Esti-
mate when the water level was highest during 2012.

	74.	�� On May 7, 1992, the space shuttle Endeavour was launched  
on mission STS-49, the purpose of which was to install a new 
perigee kick motor in an Intelsat communications satellite. 
The table gives the velocity data for the shuttle between liftoff 
and the jettisoning of the solid rocket boosters.

	 (a)	� Use a graphing calculator or computer to find the cubic 
polynomial that best models the velocity of the shuttle for 

;

	37.	 hstd − t 3y4 2 2 t 1y4	38 .	 tsxd − s3 4 2 x 2 

	39.	 Fsxd − x 4y5sx 2 4d2 	40 .	 ts�d − 4� 2 tan �

	41.	 f s�d − 2 cos � 1 sin2�	4 2.	 hstd − 3t 2 arcsin t

	43.	 f sxd − x 2e23x	44 .	 f sxd − x 22 ln x

45–46 � A formula for the derivative of a function f  is given. 
How many critical numbers does f  have?

	45.	 f 9sxd − 5e20.1 | x | sinx 2 1	46 .	 f 9sxd −
100 cos2 x

10 1 x 2 2 1

47–62 � Find the absolute maximum and absolute minimum 
values of f  on the given interval.

	47.	� f sxd − 12 1 4x 2 x 2, � �  f0, 5g

	48.	� f sxd − 5 1 54x 2 2x 3, � �  f0, 4g

	49.	� f sxd − 2x 3 2 3x 2 2 12x 1 1, � �  f22, 3g

	50.	� f sxd − x 3 2 6x 2 1 5, � �  f23, 5g

	51.	� f sxd − 3x 4 2 4x 3 2 12x 2 1 1, � �  f22, 3g

	52.	� f std − st 2 2 4d3, � �  f22, 3g

	53.	� f sxd − x 1
1

x
, � �  f0.2, 4g

	54.	� f sxd −
x

x 2 2 x 1 1
, � �  f0, 3g

	55.	� f std − t 2 s3 t , � �  f21, 4g

	56.	� f std −
st 

1 1 t 2 , � �  f0, 2g

	57.	� f std − 2cos t 1 sin 2t, � �  f0, �y2g

	58.	� f std − t 1 cot sty2d, � �  f�y4, 7�y4g

	59.	� f sxd − x22 ln x ,  �  f1
2, 4g

	60.	� f sxd − xe xy2, �   f23, 1g

	61.	� f sxd − lnsx 2 1 x 1 1d, f21, 1g

	62.	� f sxd − x 2 2 tan21x, � �  f0, 4g

	63.	�� If a and b are positive numbers, find the maximum value  
of f sxd − x as1 2 xdb, 0 < x < 1.

	64.	�� Use a graph to estimate the critical numbers of 
f sxd − |1 1 5x 2 x 3 | correct to one decimal place.

	65–68
(a) �� Use a graph to estimate the absolute maximum and  

minimum values of the function to two decimal places.
(b) �� Use calculus to find the exact maximum and minimum 

values.

	65.	 f sxd − x 5 2 x 3 1 2,  21 < x < 1

	66.	 f sxd − e x 1 e22x,  0 < x < 1

;

;

;
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	 APPLIED PROJECT    The Calculus of Rainbows	 285

the time interval t [ f0, 125g. Then graph this polynomial.
	 (b)	� Find a model for the acceleration of the shuttle and use it 

to estimate the maximum and minimum values of the 
acceleration during the first 125 seconds.

Event Time (s) Velocity (ftys)

Launch     0       0
Begin roll maneuver   10   185
End roll maneuver   15   319
Throttle to 89%   20   447
Throttle to 67%   32   742
Throttle to 104%   59 1325
Maximum dynamic pressure   62 1445
Solid rocket booster separation 125 4151

	75.	�� When a foreign object lodged in the trachea (windpipe) forces 
a person to cough, the diaphragm thrusts upward causing an 
increase in pressure in the lungs. This is accompanied by a 
contraction of the trachea, making a narrower channel for 
the expelled air to flow through. For a given amount of air to 
escape in a fixed time, it must move faster through the narrower 
channel than the wider one. The greater the velocity of the air-
stream, the greater the force on the foreign object. X rays show 
that the radius of the circular tracheal tube contracts to about 
two-thirds of its normal radius during a cough. According to 
a mathematical model of coughing, the velocity v of the air-
stream is related to the radius r of the trachea by the equation

vsrd − ksr0 2 rdr 2 � � � �    1
2 r0 < r < r0

where k is a constant and r0 is the normal radius of the trachea. 

The restriction on r is due to the fact that the tracheal wall 
stiffens under pressure and a contraction greater than 12 r0 is 
prevented (otherwise the person would suffocate).

	 (a)	� Determine the value of r in the interval f 1
2 r0, r0g at 

which v has an absolute maximum. How does this 
compare with experimental evidence?

	 (b)	� What is the absolute maximum value of v on the  
interval?

	 (c)	 Sketch the graph of v on the interval f0, r0 g.

	76.	�� Show that 5 is a critical number of the function

tsxd − 2 1 sx 2 5d3

but t does not have a local extreme value at 5.

	77.	�� Prove that the function

f sxd − x 101 1 x 51 1 x 1 1

has neither a local maximum nor a local minimum.

	78.	�� If f  has a local minimum value at c, show that the function 
tsxd − 2f sxd has a local maximum value at c.

	79.	�� Prove Fermat’s Theorem for the case in which f  has a 
local minimum at c.

	80.	�� A cubic function is a polynomial of degree 3; that is, it has 
the form f sxd − ax 3 1 bx 2 1 cx 1 d, where a ± 0.

	 (a)	� Show that a cubic function can have two, one, or no 
critical number(s). Give examples and sketches to 
illustrate the three possibilities.

	 (b)	� How many local extreme values can a cubic function 
have?

APPLIED PROJECT	�

Rainbows are created when raindrops scatter sunlight. They have fascinated mankind since 
ancient times and have inspired attempts at scientific explanation since the time of Aristotle. In 
this project we use the ideas of Descartes and Newton to explain the shape, location, and colors 
of rainbows. 

	1.	�� The figure shows a ray of sunlight entering a spherical raindrop at A. Some of the 
light is reflected, but the line AB shows the path of the part that enters the drop. Notice 
that the light is refracted toward the normal line AO and in fact Snell’s Law says that 
sin � − k sin �, where � is the angle of incidence, � is the angle of refraction, and k < 4

3 
is the index of refraction for water. At B some of the light passes through the drop and is 
refracted into the air, but the line BC shows the part that is reflected. (The angle of inci-
dence equals the angle of reflection.) When the ray reaches C, part of it is reflected, but for 
the time being we are more interested in the part that leaves the raindrop at C. (Notice that 
it is refracted away from the normal line.) The angle of deviation Ds�d is the amount of 
clockwise rotation that the ray has undergone during this three-stage process. Thus

Ds�d − s� 2 �d 1 s� 2 2�d 1 s� 2 �d − � 1 2� 2 4�

�Show that the minimum value of the deviation is Ds�d < 1388 and occurs when � < 59.48 .

THE CALCULUS OF RAINBOWS
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LABORATORY PROJECT

Bimportant. Figure 1 displays data from an observational study that clearly depicts this trend.

	 1.	�� Draw the causal diagram that corresponds to the initial expectationt.

	 2.	�� Suppose.

	3 .	� �Suppose.

THE PARADOX

The significance of the minimum deviation is that when � < 59.48 we have D9s�d < 0, 
so DDyD� < 0. This means that many rays with � < 59.48 become deviated by approxi-
mately the same amount. It is the concentration of rays coming from near the direction of 
minimum deviation that creates the brightness of the primary rainbow. The figure at the left 
shows that the angle of elevation from the observer up to the highest point on the rainbow 
is 1808 2 1388 − 428 . (This angle is called the rainbow angle.)

	2.	�� Problem 1 explains the location of the primary rainbow, but how do we explain the colors? 
Sunlight comprises a range of wavelengths, from the red range through orange, yellow, 
green, blue, indigo, and violet. As Newton discovered in his prism experiments of 1666, the 
index of refraction is different for each color. (The effect is called dispersion.) For red light 
the refractive index is k < 1.3318, whereas for violet light it is k < 1.3435. By repeating 
the calculation of Problem 1 for these values of k, show that the rainbow angle is about 
42.38 for the red bow and 40.68 for the violet bow. So the rainbow really consists of seven 
individual bows corresponding to the seven colors.

	3.	�� Perhaps you have seen a fainter secondary rainbow above the primary bow. That results 
from the part of a ray that enters a raindrop and is refracted at A, reflected twice (at B and 
C), and refracted as it leaves the drop at D (see the figure at the left). This time the devia-
tion angle Ds�d is the total amount of counterclockwise rotation that the ray undergoes in 
this four-stage process. Show that

Ds�d − 2� 2 6� 1 2�

and Ds�d has a minimum value when

cos � − Î k 2 2 1

8
 

Taking k − 4
3, show that the minimum deviation is about 1298 and so the rainbow angle for 

the secondary rainbow is about 518 , as shown in the figure at the left.

	4.	�� Show that the colors in the secondary rainbow appear in the opposite order from those in 
the primary rainbow.
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We will see that many of the results of this chapter depend on one central fact, which is 
called the Mean Value Theorem. But to arrive at the Mean Value Theorem we first need 
the following result.

Rolle’s Theorem � Let f  be a function that satisfies the following three hypotheses:

1.	� f  is continuous on the closed interval fa, bg.
2.	� f  is differentiable on the open interval sa, bd.
3.	 f sad − f sbd

Then there is a number c in sa, bd such that f 9scd − 0.

Rolle
Rolle’s Theorem was first published 
in 1691 by the French mathematician 
Michel Rolle (1652–1719) in a book  
entitled Méthode pour resoudre les 
Egalitez. He was a vocal critic of the 
methods of his day and attacked calcu-
lus as being a “collection of ingenious 
fallacies.” Later, however, he became 
convinced of the essential correctness  
of the methods of calculus.

Before giving the proof let’s take a look at the graphs of some typical functions that  
satisfy the three hypotheses. Figure 1 shows the graphs of four such functions. In each 
case it appears that there is at least one point sc, f scdd on the graph where the tangent is 
horizontal and therefore f 9scd − 0. Thus Rolle’s Theorem is plausible.

(b)

a c b x

y

0

(c)

ba c¡ c™ x

y

0

(d)

ba c

y

x0

(a)

ba c¡ c™ x

y

0

PROOF  There are three cases:

CASE I�  f sxd − k, a constant 
Then f 9sxd − 0, so the number c can be taken to be any number in sa, bd.

CASE II � f sxd . f sad for some x in sa, bd  [as in Figure 1(b) or (c)]
�By the Extreme Value Theorem (which we can apply by hypothesis 1), f  has a maxi-
mum value somewhere in fa, bg. Since f sad − f sbd, it must attain this maximum value 
at a number c in the open interval sa, bd. Then f  has a local maximum at c and, by 
hypothesis 2, f  is differentiable at c. Therefore f 9scd − 0 by Fermat’s Theorem.

CASE III � f sxd , f sad for some x in sa, bd  [as in Figure 1(c) or (d)]
By the Extreme Value Theorem, f  has a minimum value in fa, bg and, since 
f sad − f sbd, it attains this minimum value at a number c in sa, bd. Again f 9scd − 0 by 
Fermat’s Theorem.	 n

EXAMPLE �1�  Let’s apply Rolle’s Theorem to the position function s − f std of a 
moving object. If the object is in the same place at two different instants t − a and 
t − b, then f sad − f sbd. Rolle’s Theorem says that there is some instant of time t − c 
between a and b when f 9scd − 0; that is, the velocity is 0. (In particular, you can see 
that this is true when a ball is thrown directly upward.)	 n

EXAMPLE �2�  Prove that the equation x 3 1 x 2 1 − 0 has exactly one real root.

SOLUTION � First we use the Intermediate Value Theorem (2.5.10) to show that a root 
exists. Let f sxd − x 3 1 x 2 1. Then f s0d − 21 , 0 and f s1d − 1 . 0. Since f  is a 

FIGURE 1 �

PS   Take cases
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288	 CHAPTER 4    Applications of Differentiation

polynomial, it is continuous, so the Intermediate Value Theorem states that there is a 
number c between 0 and 1 such that f scd − 0. Thus the given equation has a root.

To show that the equation has no other real root, we use Rolle’s Theorem and argue 
by contradiction. Suppose that it had two roots a and b. Then f sad − 0 − f sbd and, 
since f  is a polynomial, it is differentiable on sa, bd and continuous on fa, bg. Thus, by 
Rolle’s Theorem, there is a number c between a and b such that f 9scd − 0. But

f 9sxd − 3x 2 1 1 > 1        for all x

(since x 2 > 0) so f 9sxd can never be 0. This gives a contradiction. Therefore the equa-
tion can’t have two real roots.	 n

Our main use of Rolle’s Theorem is in proving the following important theorem, 
which was first stated by another French mathematician, Joseph-Louis Lagrange.

The Mean Value Theorem � Let f  be a function that satisfies the following 
hypotheses:

1.  f  is continuous on the closed interval fa, bg.
2.  f  is differentiable on the open interval sa, bd.
Then there is a number c in sa, bd such that

1 �	 f 9scd −
 f sbd 2 f sad

b 2 a
�or, equivalently,

2 �	 f sbd 2 f sad − f 9scdsb 2 ad

The Mean Value Theorem is an 
example of what is called an existence 
theorem. Like the Intermediate Value 
Theorem, the Extreme Value Theorem, 
and Rolle’s Theorem, it guarantees that 
there exists a number with a certain 
property, but it doesn’t tell us how to 
find the number.

Before proving this theorem, we can see that it is reasonable by interpreting it geomet
rically. Figures 3 and 4 show the points Asa, f sadd and Bsb, f sbdd on the graphs of two 
differentiable functions. The slope of the secant line AB is

3 �	 mAB −
 f sbd 2 f sad

b 2 a

which is the same expression as on the right side of Equation 1. Since f 9scd is the slope of 
the tangent line at the point sc, f scdd, the Mean Value Theorem, in the form given by Equa
tion 1, says that there is at least one point Psc, f scdd on the graph where the slope of the 
tangent line is the same as the slope of the secant line AB. In other words, there is a point 
P where the tangent line is parallel to the secant line AB. (Imagine a line far away that 
stays parallel to AB while moving toward AB until it touches the graph for the first time.)

0 x

y

a c b

B{b, f(b)}

P{c, f(c)}

A{a, f(a)}

0 x

y

c¡ c™

BP¡

A P™

ba

FIGURE 3 FIGURE 4

Figure 2 shows a graph of the func-
tion f sxd − x 3 1 x 2 1 discussed in 
Example 2. Rolle’s Theorem shows 
that, no matter how much we enlarge 
the viewing rectangle, we can never 
find a second x-intercept.

FIGURE 2

_2

3

_3

2

Not For Sale

©
 2

01
4 

C
en

ga
ge

 L
ea

rn
in

g.
 A

ll 
R

ig
ht

s R
es

er
ve

d.
 T

hi
s c

on
te

nt
 is

 n
ot

 y
et

 fi
na

l a
nd

 C
en

ga
ge

 L
ea

rn
in

g 
do

es
 n

ot
 g

ua
ra

nt
ee

 th
is

 p
ag

e 
w

ill
 c

on
ta

in
 c

ur
re

nt
 m

at
er

ia
l o

r m
at

ch
 th

e 
pu

bl
is

he
d 

pr
od

uc
t.



	 SECTION  4.2    The Mean Value Theorem	 289

PROOF � We apply Rolle’s Theorem to a new function h defined as the difference 
between f  and the function whose graph is the secant line AB. Using Equation 3  
and the point-slope equation of a line, we see that the equation of the line AB can  
be written as

y 2 f sad −
 f sbd 2 f sad

b 2 a
 sx 2 ad

or as	 y − f sad 1
 f sbd 2 f sad

b 2 a
 sx 2 ad

So, as shown in Figure 5,

4 �	 hsxd − f sxd 2 f sad 2
 f sbd 2 f sad

b 2 a
 sx 2 ad

First we must verify that h satisfies the three hypotheses of Rolle’s Theorem.

1.	� �The function h is continuous on fa, bg because it is the sum of f  and a first-degree 
polynomial, both of which are continuous.

2.	�� The function h is differentiable on sa, bd because both f  and the first-degree poly-
nomial are differentiable. In fact, we can compute h9 directly from Equation 4:

h9sxd − f 9sxd 2
 f sbd 2 f sad

b 2 a

(Note that f sad and f f sbd 2 f sadgysb 2 ad are constants.)

3.	  hsad − f sad 2 f sad 2
 f sbd 2 f sad

b 2 a
 sa 2 ad − 0

	  hsbd − f sbd 2 f sad 2
 f sbd 2 f sad

b 2 a
 sb 2 ad

	  − f sbd 2 f sad 2 f f sbd 2 f sadg − 0

Therefore hsad − hsbd.

Since h satisfies the hypotheses of Rolle’s Theorem, that theorem says there is a num-
ber c in sa, bd such that h9scd − 0. Therefore

0 − h9scd − f 9scd 2
 f sbd 2 f sad

b 2 a

and so	 f 9scd −
 f sbd 2 f sad

b 2 a
	 n

EXAMPLE �3�  To illustrate the Mean Value Theorem with a specific function, let’s 
consider f sxd − x 3 2 x, a − 0, b − 2. Since f  is a polynomial, it is continuous and 
differentiable for all x, so it is certainly continuous on f0, 2g and differentiable on s0, 2d. 
Therefore, by the Mean Value Theorem, there is a number c in s0, 2d such that

f s2d 2 f s0d − f 9scds2 2 0d

Now f s2d − 6, f s0d − 0, and f 9sxd − 3x 2 2 1, so this equation becomes

6 − s3c 2 2 1d2 − 6c 2 2 2

which gives c 2 − 4
3, that is, c − 62ys3 . But c must lie in s0, 2d, so c − 2ys3 .  

FIGURE 5

0 x

y

x

h(x)
y=ƒ

ƒ

A

B

f(a)+ (x-a)
f(b)-f(a)

b-a

a b

Lagrange and the  
Mean Value Theorem
The Mean Value Theorem was first 
formulated by Joseph-Louis Lagrange 
(1736–1813), born in Italy of a French 
father and an Italian mother. He was a 
child prodigy and became a professor in 
Turin at the tender age of 19. Lagrange 
made great contributions to number 
theory, theory of functions, theory of 
equations, and analytical and celestial 
mechanics. In particular, he applied 
calculus to the analysis of the stability 
of the solar system. At the invitation 
of Frederick the Great, he succeeded 
Euler at the Berlin Academy and, when 
Frederick died, Lagrange accepted King 
Louis XVI’s invitation to Paris, where he 
was given apartments in the Louvre 
and became a professor at the Ecole 
Polytechnique. Despite all the trappings 
of luxury and fame, he was a kind and 
quiet man, living only for science.
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290	 CHAPTER 4    Applications of Differentiation

Figure 6 illustrates this calculation: The tangent line at this value of c is parallel to the 
secant line OB. 	 n

EXAMPLE �4�  If an object moves in a straight line with position function s − f std, then 
the average velocity between t − a and t − b is

 f sbd 2 f sad
b 2 a

and the velocity at t − c is f 9scd. Thus the Mean Value Theorem (in the form of Equa-
tion 1) tells us that at some time t − c between a and b the instantaneous velocity f 9scd 
is equal to that average velocity. For instance, if a car traveled 180 km in 2 hours, then 
the speedometer must have read 90 kmyh at least once.

In general, the Mean Value Theorem can be interpreted as saying that there is a 
number at which the instantaneous rate of change is equal to the average rate of change 
over an interval.	 n

The main significance of the Mean Value Theorem is that it enables us to obtain infor- 
mation about a function from information about its derivative. The next example pro-
vides an instance of this principle.

EXAMPLE �5�  Suppose that f s0d − 23 and f 9sxd < 5 for all values of x. How large can 
f s2d possibly be?

SOLUTION � We are given that f  is differentiable (and therefore continuous) everywhere.  
In particular, we can apply the Mean Value Theorem on the interval f0, 2g. There exists 
a number c such that

f s2d 2 f s0d − f 9scds2 2 0d

so	 f s2d − f s0d 1 2 f 9scd − 23 1 2 f 9scd

We are given that f 9sxd < 5 for all x, so in particular we know that f 9scd < 5. Multiply-
ing both sides of this inequality by 2, we have 2 f 9scd < 10, so

f s2d − 23 1 2 f 9scd < 23 1 10 − 7

The largest possible value for f s2d is 7.	 n

The Mean Value Theorem can be used to establish some of the basic facts of differ-
ential calculus. One of these basic facts is the following theorem. Others will be found 
in the following sections.

5 �  Theorem � If f 9sxd − 0 for all x in an interval sa, bd, then f  is constant on sa, bd.

PROOF  Let x1 and x2 be any two numbers in sa, bd with x1 , x2. Since f  is differen-
tiable on sa, bd, it must be differentiable on sx1, x2 d and continuous on fx1, x2 g. By 
applying the Mean Value Theorem to f  on the interval fx1, x2 g, we get a number c such 
that x1 , c , x2 and

6 �	 f sx2d 2 f sx1d − f 9scdsx2 2 x1d

Since f 9sxd − 0 for all x, we have f 9scd − 0, and so Equation 6 becomes

f sx2 d 2 f sx1d − 0        or        f sx2 d − f sx1d

FIGURE 6 �
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	 SECTION  4.2    The Mean Value Theorem	 291

Therefore f  has the same value at any two numbers x1 and x2 in sa, bd. This means that 
f  is constant on sa, bd.	 n

7 �  Corollary � If f 9sxd − t9sxd for all x in an interval sa, bd, then f 2 t is constant 
on sa, bd; that is, f sxd − tsxd 1 c where c is a constant.

PROOF  Let Fsxd − f sxd 2 tsxd. Then

F9sxd − f 9sxd 2 t9sxd − 0

for all x in sa, bd. Thus, by Theorem 5, F is constant; that is, f 2 t is constant.	 n

NOTE  Care must be taken in applying Theorem 5. Let

f sxd −
x

| x | − H1

21

if x . 0

if x , 0

The domain of f  is D − hx | x ± 0j and f 9sxd − 0 for all x in D. But f  is obviously not 
a constant function. This does not contradict Theorem 5 because D is not an interval. 
Notice that f  is constant on the interval s0, `d and also on the interval s2`, 0d.

EXAMPLE �6�  Prove the identity tan21x 1 cot21x − �y2.

SOLUTION � Although calculus isn’t needed to prove this identity, the proof using calcu-
lus is quite simple. If f sxd − tan21x 1 cot21x, then

f 9sxd −
1

1 1 x 2 2
1

1 1 x 2 − 0

for all values of x. Therefore f sxd − C, a constant. To determine the value of C, we put 
x − 1 [because we can evaluate f s1d exactly]. Then

C − f s1d − tan21 1 1 cot21 1 −
�

4
1

�

4
−

�

2

Thus tan21x 1 cot21x − �y2.	 n

Corollary 7 says that if two functions 
have the same derivatives on an inter-
val, then their graphs must be vertical 
translations of each other there. In 
other words, the graphs have the same 
shape, but could be shifted up or down.

	1 .	�� The graph of a function f  is shown. Verify that f  satisfies the 
hypotheses of Rolle’s Theorem on the interval f0, 8g. Then 
estimate the value(s) of c that satisfy the conclusion of Rolle’s 
Theorem on that interval.

y=ƒy

x

1

10

	2 .	� �Draw the graph of a function defined on f0, 8g such that 
f s0d − f s8d − 3 and the function does not satisfy the 
conclusion of Rolle’s Theorem on f0, 8g.

	3 .	�� The graph of a function t is shown.

y=©

y

x

1

10

	 (a)	� Verify that t satisfies the hypotheses of the Mean Value 
Theorem on the interval f0, 8g.

	 (b)	� Estimate the value(s) of c that satisfy the conclusion of the 
Mean Value Theorem on the interval f0, 8g.

	 (c)	� Estimate the value(s) of c that satisfy the conclusion of the 
Mean Value Theorem on the interval f2, 6g.Not For Sale
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292	 CHAPTER 4    Applications of Differentiation

	4 .	� �Draw the graph of a function that is continuous on f0, 8g 
where f s0d − 1 and f s8d − 4 and that does not satisfy the 
conclusion of the Mean Value Theorem on f0, 8g.

5–8 � Verify that the function satisfies the three hypotheses of 
Rolle’s Theorem on the given interval. Then find all numbers c 
that satisfy the conclusion of Rolle’s Theorem.

	5 .	 f sxd − 2x2 2 4x 1 5,    f21, 3g

	6 .	 f sxd − x 3 2 2x 2 2 4x 1 2,    f22, 2g

	 7.	 f sxd − sinsxy2d,    f�y2, 3�y2g

	 8.	 f sxd − x 1 1yx,    f 1
2 , 2g

	 9.	�� Let f sxd − 1 2 x 2y3. Show that f s21d − f s1d but there is 
no number c in s21, 1d such that f 9scd − 0. Why does this 
not contradict Rolle’s Theorem?

	10.	�� Let f sxd − tan x. Show that f s0d − f s�d but there is no 
number c in s0, �d such that f 9scd − 0. Why does this not 
contradict Rolle’s Theorem?

11–14 � Verify that the function satisfies the hypotheses of the 
Mean Value Theorem on the given interval. Then find all num
bers c that satisfy the conclusion of the Mean Value Theorem.

	11.	� f sxd − 2x 2 2 3x 1 1,    f0, 2g

	12.	� f sxd − x 3 2 3x 1 2,    f22, 2g

	13.	 f sxd − ln x,    f1, 4g	14 .	� f sxd − 1yx,    f1, 3g

15–16 � Find the number c that satisfies the conclusion of the 
Mean Value Theorem on the given interval. Graph the func-
tion, the secant line through the endpoints, and the tangent line 
at sc, f scdd. Are the secant line and the tangent line parallel?

	15.	 f sxd − sx  ,    f0, 4g	16 .	� f sxd − e2x,    f0, 2g

	17.	�� Let f sxd − sx 2 3d22. Show that there is no value of c 
in s1, 4d such that f s4d 2 f s1d − f 9scds4 2 1d. Why does 
this not contradict the Mean Value Theorem?

	18.	�� Let f sxd − 2 2 | 2x 2 1|. Show that there is no value of 
c such that f s3d 2 f s0d − f 9scds3 2 0d. Why does this not 
contradict the Mean Value Theorem?

19–20 � Show that the equation has exactly one real root.

	19.	 2x 1 cos x − 0	2 0.	 x 3 1 e x − 0

	21.	�� Show that the equation x 3 2 15x 1 c − 0 has at most one 
root in the interval f22, 2g.

	22.	�� Show that the equation x 4 1 4x 1 c − 0 has at most two  
real roots.

	23.	� (a)	� Show that a polynomial of degree 3 has at most three 
real roots.

;

	 (b)	� Show that a polynomial of degree n has at most n real 
roots.

	24.	� (a)	� Suppose that f  is differentiable on R and has two roots. 
Show that f 9 has at least one root.

	 (b)	� Suppose f  is twice differentiable on R and has three 
roots. Show that f 0 has at least one real root.

	 (c)	 Can you generalize parts (a) and (b)?

	25.	�� If f s1d − 10 and f 9sxd > 2 for 1 < x < 4, how small can 
f s4d possibly be?

	26.	�� Suppose that 3 < f 9sxd < 5 for all values of x. Show that 
18 < f s8d 2 f s2d < 30.

	27.	�� Does there exist a function f  such that f s0d − 21, f s2d − 4, 
and f 9sxd < 2 for all x?

	28.	�� Suppose that f  and t are continuous on fa, bg and differ- 
entiable on sa, bd. Suppose also that f sad − tsad and 
f 9sxd , t9sxd for a , x , b. Prove that f sbd , tsbd.  [Hint: 
Apply the Mean Value Theorem to the function h − f 2 t.]

	29.	� Show that sin x , x  if  0 , x , 2�.

	30.	�� Suppose f  is an odd function and is differentiable every-
where. Prove that for every positive number b, there exists  
a number c in s2b, bd such that f 9scd − f sbdyb.

	31.	� Use the Mean Value Theorem to prove the inequality

| sin a 2 sin b | < | a 2 b |        for all a and b

	32.	�� If f 9sxd − c (c a constant) for all x, use Corollary 7 to show 
that f sxd − cx 1 d for some constant d.

	33.	� Let f sxd − 1yx and

tsxd −     

1
x if x . 0

1 1
1
x

if x , 0

�Show that f 9sxd − t9sxd for all x in their domains. Can we 
conclude from Corollary 7 that f 2 t is constant?

	34.	� Use the method of Example 6 to prove the identity 

2 sin21x − cos21s1 2 2x 2 d        x > 0

	35.	� Prove the identity arcsin 
x 2 1

x 1 1
− 2 arctan sx  2

�

2
.

	36.	�� At 2:00 pm a car’s speedometer reads 30 miyh. At 2:10 pm it 
reads 50 miyh. Show that at some time between 2:00 and 
2:10 the acceleration is exactly 120 miyh2.

	37.	�� Two runners start a race at the same time and finish in a tie. 
Prove that at some time during the race they have the same 
speed.  [Hint: Consider f std − tstd 2 hstd, where t and h are 
the position functions of the two runners.]

	38.	�� A number a is called a fixed point of a function f  if 
f sad − a. Prove that if f 9sxd ± 1 for all real numbers x, then 
f  has at most one fixed point. 
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Many of the applications of calculus depend on our ability to deduce facts about a func-
tion f  from information concerning its derivatives. Because f 9sxd represents the slope of 
the curve y − f sxd at the point sx, f sxdd, it tells us the direction in which the curve pro-
ceeds at each point. So it is reasonable to expect that information about f 9sxd will provide 
us with information about f sxd.

What Does  f 9 Say About f  ?
To see how the derivative of f  can tell us where a function is increasing or decreasing, 
look at Figure 1. (Increasing functions and decreasing functions were defined in Section 
1.1.) Between A and B and between C and D, the tangent lines have positive slope and 
so f 9sxd . 0. Between B and C,  the tangent lines have negative slope and so f 9sxd , 0. 
Thus it appears that f  increases when f 9sxd is positive and decreases when f 9sxd is nega-
tive. To prove that this is always the case, we use the Mean Value Theorem.

Increasing/Decreasing Test

(a)  If f 9sxd . 0 on an interval, then f  is increasing on that interval.

(b)  If f 9sxd , 0 on an interval, then f  is decreasing on that interval.

Let’s abbreviate the name of this test to  
the I/D Test.

PROOF
(a)  Let x1 and x2 be any two numbers in the interval with x1 , x2. According to the 
definition of an increasing function (page 19), we have to show that f sx1d , f sx2 d.

Because we are given that f 9sxd . 0, we know that f  is differentiable on fx1, x2 g. So, 
by the Mean Value Theorem, there is a number c between x1 and x2 such that

1 �	 f sx2 d 2 f sx1d − f 9scdsx2 2 x1d

Now f 9scd . 0 by assumption and x2 2 x1 . 0 because x1 , x2. Thus the right side of 
Equation 1 is positive, and so

f sx2 d 2 f sx1d . 0        or        f sx1d , f sx2 d

This shows that f  is increasing.
Part (b) is proved similarly.	 n

EXAMPLE �1�  Find where the function f sxd − 3x 4 2 4x 3 2 12x 2 1 5 is increasing 
and where it is decreasing.

SOLUTION �  We start by differentiating f :

f 9sxd − 12x 3 2 12x 2 2 24x − 12xsx 2 2dsx 1 1d

To use the IyD Test we have to know where f 9sxd . 0 and where f 9sxd , 0. To 
solve these inequalities we first find where f 9sxd − 0, namely at x − 0, 2, and 21. 
These are the critical numbers of f , and they divide the domain into four intervals 
(see the number line at the left). Within each interval, f 9sxd must be always posi-
tive or always negative. (See Examples 3 and 4 in Appendix A.) We can determine 
which is the case for each interval from the signs of the three factors of f 9sxd, namely, 
12x, x 2 2, and x 1 1, as shown in the following chart. A plus sign indicates that the 
given expression is positive, and a minus sign indicates that it is negative. The last col-

0_1 2 x

D

A

B

C

y

0 x

FIGURE 1� 
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umn of the chart gives the conclusion based on the IyD Test. For instance, f 9sxd , 0 for 
0 , x , 2, so f  is decreasing on (0, 2). (It would also be true to say that f  is decreas-
ing on the closed interval f0, 2g.)

Interval 12x x 2 2 x 1 1 f 9sxd f

 x , 21  2 2 2 2 decreasing on (2`, 21)

 21 , x , 0 2 2 1 1 increasing on (21, 0)

 0 , x , 2 1 2 1 2 decreasing on (0, 2)

 x . 2 1 1 1 1 increasing on (2, `)

The graph of f  shown in Figure 2 confirms the information in the chart.	 n

Local Extreme Values
Recall from Section 4.1 that if f  has a local maximum or minimum at c, then c must be 
a critical number of f  (by Fermat’s Theorem), but not every critical number gives rise to 
a maximum or a minimum. We therefore need a test that will tell us whether or not f  has 
a local maximum or minimum at a critical number.

You can see from Figure 2 that f s0d − 5 is a local maximum value of f  because f   
increases on s21, 0d and decreases on s0, 2d. Or, in terms of derivatives, f 9sxd . 0 for 
21 , x , 0 and f 9sxd , 0 for 0 , x , 2. In other words, the sign of f 9sxd changes 
from positive to negative at 0. This observation is the basis of the following test.

The First Derivative Test � �Suppose that c is a critical number of a continuous 
function f.

(a) � If f 9 changes from positive to negative at c, then f  has a local maximum at c.

(b) � If f 9 changes from negative to positive at c, then f  has a local minimum at c.

(c) � If f 9 is positive to the left and right of c, or negative to the left and right of c,  
then f  has no local maximum or minimum at c.

The First Derivative Test is a consequence of the IyD Test. In part (a), for instance, 
since the sign of f 9sxd changes from positive to negative at c, f  is increasing to the left of 
c and decreasing to the right of c. It follows that f  has a local maximum at c.

It is easy to remember the First Derivative Test by visualizing diagrams such as those 
in Figure 3.

0 x

y

c

fª(x)>0 fª(x)<0

(a) Local maximum

c0 x

y

fª(x)<0

fª(x)<0

(d) No maximum or minimum(c) No maximum or minimum

c0 x

y

fª(x)>0
fª(x)>0

c0 x

y

fª(x)<0 fª(x)>0

(b) Local minimum

EXAMPLE �2�  Find the local minimum and maximum values of the function f  in  
Example 1.

20

_30

_2 3

FIGURE 2 

FIGURE 3 
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SOLUTION � From the chart in the solution to Example 1 we see that f 9sxd changes from 
negative to positive at 21, so f s21d − 0 is a local minimum value by the First Deriva-
tive Test. Similarly, f 9 changes from negative to positive at 2, so f s2d − 227 is also a 
local minimum value. As noted previously, f s0d − 5 is a local maximum value because 
f 9sxd changes from positive to negative at 0.	 n

EXAMPLE �3�  Find the local maximum and minimum values of the function

tsxd − x 1 2 sin x        0 < x < 2�

SOLUTION � As in Example 1, we start by finding the critical numbers. The derivative is:

t9sxd − 1 1 2 cos x

so t9sxd − 0 when cos x − 21
2. The solutions of this equation are 2�y3 and 4�y3. 

Because t is differentiable everywhere, the only critical numbers are 2�y3 and 4�y3. 
We split the domain into intervals according to the critical numbers. Within each 
interval, t9sxd is either always positive or always negative and so we analyze t in the 
following chart.

Interval t9sxd − 1 1 2 cos x t

 0 , x , 2�y3 1 increasing on s0, 2�y3d
 2�y3 , x , 4�y3 2 decreasing on s2�y3, 4�y3d
 4�y3 , x , 2� 1 increasing on s4�y3, 2�d

Because t9sxd changes from positive to negative at 2�y3, the First Derivative Test tells 
us that there is a local maximum at 2�y3 and the local maximum value is

ts2�y3d −
2�

3
1 2 sin 

2�

3
−

2�

3
1 2Ss3 

2 D −
2�

3
1 s3 < 3.83

Likewise, t9sxd changes from negative to positive at 4�y3 and so

ts4�y3d −
4�

3
1 2 sin 

4�

3
−

4�

3
1 2S2

s3 

2 D −
4�

3
2 s3 < 2.46

is a local minimum value. The graph of t in Figure 4 supports our conclusion.	 n

What Does  f 99 Say About f  ?
Figure 5 shows the graphs of two increasing functions on sa, bd. Both graphs join point 
A to point B but they look different because they bend in different directions. How can 
we distinguish between these two types of behavior? 

a b

f

A

B

x

y

0 a

g

A

B

x

y

0

(a) (b)

b

The 1 signs in the chart come from the 
fact that t9sxd . 0 when cos x . 2 1

2. 
From the graph of y − cos x, this is  
true in the indicated intervals.

6

0 2π2π
3

4π
3

FIGURE 4 �  
tsxd − x 1 2 sin x

FIGURE 5 � Not For Sale
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296	 CHAPTER 4    Applications of Differentiation

In Figure 6 tangents to these curves have been drawn at several points. In (a) the curve 
lies above the tangents and f  is called concave upward on sa, bd. In (b) the curve lies 
below the tangents and t is called concave downward on sa, bd.

�Definition � If the graph of f  lies above all of its tangents on an interval I, then it is 
called concave upward on I. If the graph of f  lies below all of its tangents on I, it 
is called concave downward on I.

Figure 7 shows the graph of a function that is concave upward (abbreviated CU) on 
the intervals sb, cd, sd, ed, and se, pd and concave downward (CD) on the intervals sa, bd, 
sc, dd, and sp, qd.

a b c d e p q

B
C

D
P

x

y

0

CD CU CD CU CDCU

FIGURE 7 �

Let’s see how the second derivative helps determine the intervals of concavity. Look
ing at Figure 6(a), you can see that, going from left to right, the slope of the tangent 
increases. This means that the derivative f 9 is an increasing function and therefore its 
derivative f 0 is positive. Likewise, in Figure 6(b) the slope of the tangent decreases from 
left to right, so f 9 decreases and therefore f 0 is negative. This reasoning can be reversed 
and suggests that the following theorem is true. A proof is given in Appendix F with the 
help of the Mean Value Theorem.

Concavity Test

(a)  If f 0sxd . 0 for all x in I, then the graph of f  is concave upward on I.

(b)  If f 0sxd , 0 for all x in I, then the graph of f  is concave downward on I.

EXAMPLE �4�  Figure 8 shows a population graph for Cyprian honeybees raised in an  
apiary. How does the rate of population increase change over time? When is this rate 
highest? Over what intervals is P concave upward or concave downward?

t

P

3

20

0

Time (in weeks)

6 9 12 15

40

60

80

Number of bees
(in thousands)

18

g

A

B

x

y

0

f

A

B

x

y

0

(a) Concave upward

(b) Concave downward

FIGURE 6 �  

FIGURE 8 � 
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SOLUTION � By looking at the slope of the curve as t increases, we see that the rate 
of increase of the population is initially very small, then gets larger until it reaches a 
maximum at about t − 12 weeks, and decreases as the population begins to level off. 
As the population approaches its maximum value of about 75,000 (called the carrying 
capacity), the rate of increase, P9std, approaches 0. The curve appears to be concave 
upward on (0, 12) and concave downward on (12, 18).	 n

In Example 4, the population curve changed from concave upward to concave down-
ward at approximately the point (12, 38,000). This point is called an inflection point of 
the curve. The significance of this point is that the rate of population increase has its 
maximum value there. In general, an inflection point is a point where a curve changes its 
direction of concavity.

�Definition � A point P on a curve y − f sxd is called an inflection point if f  is con-
tinuous there and the curve changes from concave upward to concave downward or 
from concave downward to concave upward at P.

For instance, in Figure 7, B, C, D, and P are the points of inflection. Notice that if a 
curve has a tangent at a point of inflection, then the curve crosses its tangent there.

In view of the Concavity Test, there is a point of inflection at any point where the 
second derivative changes sign.

EXAMPLE �5�  Sketch a possible graph of a function f  that satisfies the following  
conditions:

   sid f 9sxd . 0 on s2`, 1d, f 9sxd , 0 on s1, `d
   siid f 0sxd . 0 on s2`, 22d and s2, `d, f 0sxd , 0 on s22, 2d
 siiid lim

x l
 

2`
 f sxd − 22,  lim

x l
 

`
 f sxd − 0

SOLUTION � Condition (i) tells us that f  is increasing on s2`, 1d and decreasing on 
s1, `d. Condition (ii) says that f  is concave upward on s2`, 22d and s2, `d, and con-
cave downward on s22, 2d. From condition (iii) we know that the graph of f  has two 
horizontal asymptotes: y − 22 (to the left) and y − 0 (to the right).

We first draw the horizontal asymptote y − 22 as a dashed line (see Figure 9). We 
then draw the graph of f  approaching this asymptote at the far left, increasing to its 
maximum point at x − 1, and decreasing toward the x-axis as at the far right. We also 
make sure that the graph has inflection points when x − 22 and 2. Notice that we 
made the curve bend upward for x , 22 and x . 2, and bend downward when x is 
between 22 and 2.	 n

Another application of the second derivative is the following test for identifying local 
maximum and minimum values. It is a consequence of the Concavity Test, and serves as 
an alternative to the First Derivative Test.

The Second Derivative Test � �Suppose f 0 is continuous near c.

(a)  If f 9scd − 0 and f 0scd . 0, then f  has a local minimum at c.

(b)  If f 9scd − 0 and f 0scd , 0, then f  has a local maximum at c.

For instance, part (a) is true because f 0sxd . 0 near c and so f  is concave upward  
near c. This means that the graph of f  lies above its horizontal tangent at c and so f  has  
a local minimum at c. (See Figure 10.)

x

y=_2

0 1 2-2

y

FIGURE 9 �  

f ª(c)=0
f(c)

ƒ

c

P

x x

y

0

f

FIGURE 10 �  
f 99scd . 0,  f  is concave upwardNot For Sale
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298	 CHAPTER 4    Applications of Differentiation

EXAMPLE �6�  Discuss the curve y − x 4 2 4x 3 with respect to concavity, points of  
inflection, and local maxima and minima. Use this information to sketch the curve.

SOLUTION � If f sxd − x 4 2 4x 3, then

 f 9sxd − 4x 3 2 12x 2 − 4x 2sx 2 3d

 f 0sxd − 12x 2 2 24x − 12xsx 2 2d

To find the critical numbers we set f 9sxd − 0 and obtain x − 0 and x − 3. (Note that f 9 
is a polynomial and hence defined everywhere.) To use the Second Derivative Test we 
evaluate f 0 at these critical numbers:

f 0s0d − 0            f 0s3d − 36 . 0

Since f 9s3d − 0 and f 0s3d . 0, f s3d − 227 is a local minimum. [In fact, the expres-
sion for f 9sxd shows that f  decreases to the left of 3 and increases to the right of 3.] 
Since f 0s0d − 0, the Second Derivative Test gives no information about the critical 
number 0. But since f 9sxd , 0 for x , 0 and also for 0 , x , 3, the First Derivative 
Test tells us that f  does not have a local maximum or minimum at 0. 

Since f 0sxd − 0 when x − 0 or 2, we divide the real line into intervals with these 
numbers as endpoints and complete the following chart.

Interval f 99sxd − 12x sx 2 2d Concavity

s2`, 0d 1 upward

s0, 2d 2 downward

s2, `d 1 upward

The point s0, 0d is an inflection point since the curve changes from concave upward 
to concave downward there. Also s2, 216d is an inflection point since the curve 
changes from concave downward to concave upward there.

Using the local minimum, the intervals of concavity, and the inflection points, we 
sketch the curve in Figure 11.	 n

NOTE  The Second Derivative Test is inconclusive when f 0scd − 0. In other words, 
at such a point there might be a maximum, there might be a minimum, or there might be 
neither (as in Example 6). This test also fails when f 0scd does not exist. In such cases the 
First Derivative Test must be used. In fact, even when both tests apply, the First Deriva-
tive Test is often the easier one to use.

EXAMPLE �7�  Sketch the graph of the function f sxd − x 2y3s6 2 xd1y3.

SOLUTION � Calculation of the first two derivatives gives 

f 9sxd −
4 2 x

x 1y3s6 2 xd2y3             f 0sxd −
28

x 4y3s6 2 xd5y3

Since f 9sxd − 0 when x − 4 and f 9sxd does not exist when x − 0 or x − 6, the critical 
numbers are 0, 4, and 6.

x

y

2 3

(2, _16)

(3, _27)

y=x$-4˛

inflection
points

(0, 0)

FIGURE 11 �

Use the differentiation rules to check  
these calculations.
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	 SECTION  4.3    How Derivatives Affect the Shape of a Graph	 299

Interval 4 2 x x1y3 s6 2 xd2y3 f 9sxd f

 x , 0 1 2 1 2 decreasing on s2`, 0d
 0 , x , 4 1 1 1 1 increasing on s0, 4d
 4 , x , 6 2 1 1 2 decreasing on s4, 6d

 x . 6 2 1 1 2 decreasing on s6, `d

To find the local extreme values we use the First Derivative Test. Since f 9 changes 
from negative to positive at 0, f s0d − 0 is a local minimum. Since f 9 changes from pos-
itive to negative at 4, f s4d − 25y3 is a local maximum. The sign of f 9 does not change 
at 6, so there is no minimum or maximum there. (The Second Derivative Test could be 
used at 4 but not at 0 or 6 since f 0 does not exist at either of these numbers.)

Looking at the expression for f 0sxd and noting that x 4y3 > 0 for all x, we have 
f 0sxd , 0 for x , 0 and for 0 , x , 6 and f 0sxd . 0 for x . 6. So f  is concave 
downward on s2`, 0d and s0, 6d and concave upward on s6, `d, and the only inflec-
tion point is s6, 0d. The graph is sketched in Figure 12. Note that the curve has vertical 
tangents at s0, 0d and s6, 0d because | f 9sxd |l ` as xl 0 and as xl 6.	 n

EXAMPLE �8�  Use the first and second derivatives of f sxd − e 1yx, together with asymp-
totes, to sketch its graph.

SOLUTION � Notice that the domain of f  is hx | x ± 0j, so we check for vertical 
asymptotes by computing the left and right limits as xl 0. As xl 01, we know that 
t − 1yxl `, so

lim
xl 01

e 1yx − lim
tl`

 e t − `

and this shows that x − 0 is a vertical asymptote. As xl 02, we have  
t − 1yxl 2`, so

lim
xl 02

e 1yx − lim
tl2`

 e t − 0

As xl 6`, we have 1yxl 0 and so

lim
xl 6`

e 1yx − e 0 − 1

This shows that y − 1 is a horizontal asymptote (both to the left and right).
Now let’s compute the derivative. The Chain Rule gives

f 9sxd − 2
e 1yx

x 2

Since e 1yx . 0 and x 2 . 0 for all x ± 0, we have f 9sxd , 0 for all x ± 0. Thus f  is 
decreasing on s2`, 0d and on s0, `d. There is no critical number, so the function has no 
local maximum or minimum. The second derivative is

f 0sxd − 2
x 2e 1yxs21yx 2 d 2 e 1yxs2xd

x 4 −
e 1yxs2x 1 1d

x 4

Since e 1yx . 0 and x 4 . 0, we have f 0sxd . 0 when x . 21
2 sx ± 0d and f 0sxd , 0 

when x , 21
2. So the curve is concave downward on s2`, 21

2 d and concave upward on 

s21
2, 0d and on s0, `d. The inflection point is s21

2, e22d.
To sketch the graph of f  we first draw the horizontal asymptote y − 1 (as a dashed 

line), together with the parts of the curve near the asymptotes in a preliminary sketch 

y

x0

2
3

4

1 2 3 4 5 7

(4, 2%?# )

y=x@ ?#(6-x)! ?#

FIGURE 12 �

TEC � �In Module 4.3 you can practice 
using information about f 9, f 0, and 
asymptotes to determine the shape of 
the graph of f.

Try reproducing the graph in Figure 12 
with a graphing calculator or computer. 
Some machines produce the complete 
graph, some produce only the portion 
to the right of the y-axis, and some 
produce only the portion between 
x − 0 and x − 6. For an explanation 
and cure, see Example 7 in “Graphing 
Calculators and Computers” at  
www.stewartcalculus.com. An equiva-
lent expression that gives the correct 
graph is
	

y − sx 2 d1y3 ?
6 2 x

| 6 2 x | | 6 2 x |1y3
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300	 CHAPTER 4    Applications of Differentiation

[Figure 13(a)]. These parts reflect the information concerning limits and the fact 
that f  is decreasing on both s2`, 0d and s0, `d. Notice that we have indicated that 
f sxdl 0 as xl 02 even though f s0d does not exist. In Figure 13(b) we finish the 
sketch by incorporating the information concerning concavity and the inflection point. 
In Figure 13(c) we check our work with a graphing device.

(a) Preliminary sketch (b) Finished sketch (c) Computer confirmation

4

_1

_3 3

x0

y

y=1

y=‰

inflection
point

x0

y

y=1

FIGURE 13 � 	 n

1–2 � Use the given graph of f  to find the following.
(a)  The open intervals on which f  is increasing.
(b)  The open intervals on which f  is decreasing.
(c)  The open intervals on which f  is concave upward.
(d)  The open intervals on which f  is concave downward.
(e)  The coordinates of the points of inflection.

	1.  y

0 x

1

1

  2  . � y

0 x

1

1

	3 .	� Suppose you are given a formula for a function f.
	 (a)	� How do you determine where f  is increasing or  

decreasing?
	 (b)	� How do you determine where the graph of f  is concave 

upward or concave downward?
	 (c)	 How do you locate inflection points?

	 4 .	� �(a)	 State the First Derivative Test.
	 (b)	� State the Second Derivative Test. Under what circum

stances is it inconclusive? What do you do if it fails?

5–6 � The graph of the derivative f 9 of a function f  is shown.
(a)  On what intervals is f  increasing or decreasing?

(b) � At what values of x does f  have a local maximum or  
minimum?

	 5.	

7et0403x05–06
09/10/09
MasterID: 00488-89

2 4 6 x

y

02 4 6 x

y

0

y=fª(x) y=fª(x)

	6 .	

0

y

x

y=fª(x)

2 4 6 8

	 7.	� �In each part state the x-coordinates of the inflection points  
of f. Give reasons for your answers.

	 (a)	 The curve is the graph of f.
	 (b)	 The curve is the graph of f 9.
	 (c)	 The curve is the graph of f 0.

7et0403x07
09/10/09
MasterID: 00490

2

y

0 x4 6 8
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	27.	� �f 9s0d − f 9s2d − f 9s4d − 0,  
	 f 9sxd . 0 if x , 0 or 2 , x , 4,  
	 f 9sxd , 0 if 0 , x , 2 or x . 4,  
	 f 0sxd . 0 if 1 , x , 3,    f 0sxd , 0 if x , 1 or x . 3

	28.	� �f 9sxd . 0 for all x ± 1,    vertical asymptote x − 1,
	 f 99sxd . 0 if x , 1 or x . 3,    f 99sxd , 0 if 1 , x , 3

	29.	� �f 9s5d − 0,    f 9sxd , 0 when x , 5,
	 f 9sxd . 0 when x . 5,    f 99s2d − 0,    f 99s8d − 0,
	 f 99sxd , 0 when x , 2 or x . 8,
	 f 99sxd . 0 for 2 , x , 8,    lim

xl`
 f sxd − 3,    lim

xl2`
 f sxd − 3

	30.	� �f 9s0d − f 9s4d − 0,    f 9sxd − 1 if x , 21,
	 f 9sxd . 0 if 0 , x , 2,
	 f 9sxd , 0 if 21 , x , 0 or 2 , x , 4 or x . 4,
	 lim

xl22
f 9sxd − `,    lim

xl21
f 9sxd − 2`,

	� f 99sxd . 0 if 21 , x , 2 or 2 , x , 4,     
f 0sxd , 0 if x . 4

	31.	� �f 9sxd . 0 if x ± 2,    f 99sxd . 0 if x , 2,
	 f 99sxd , 0 if x . 2,    f  has inflection point s2, 5d,
	 lim

xl`
 f sxd − 8,    lim

xl2`
 f sxd − 0

	32.	� �Suppose f s3d − 2,  f 9s3d − 1
2, and f 9sxd . 0 and f 0sxd , 0 

for all x.
	 (a)	 Sketch a possible graph for f.
	 (b)	� How many solutions does the equation f sxd − 0 have? 

Why?
	 (c)	 Is it possible that f 9s2d − 1

3? Why?

	33.	� �Suppose f  is a continuous function where f sxd . 0 for all x, 
f s0d − 4,    f 9sxd . 0 if x , 0 or x . 2,    f 9sxd , 0 
if 0 , x , 2,    f 99s21d − f 99s1d − 0,    f 99sxd . 0 if 
x , 21 or x . 1,    f 99sxd , 0 if 21 , x , 1.

	 (a)	� Can f  have an absolute maximum? If so, sketch a possible 
graph of f. If not, explain why.

	 (b)	� Can f  have an absolute minimum? If so, sketch a possible 
graph of f. If not, explain why.

	 (c)	� Sketch a possible graph for f  that does not achieve an 
absolute minimum.

	34.	� �The graph of a function y − f sxd is shown. At which point(s) 
are the following true?

	 (a)	
dy

dx
 and 

d 2y

dx 2  are both positive.

	 (b)	�
dy

dx
 and 

d 2y

dx 2   are both negative.

	 (c)	
dy

dx
 is negative but 

d 2y

dx 2  is positive.

0

y

x

A B

C
DD

E

	 8.	� �The graph of the first derivative f 9 of a function f  is shown.
	 (a)	 On what intervals is f  increasing? Explain.
	 (b)	� At what values of x does f  have a local maximum or  

minimum? Explain.
	 (c)	� On what intervals is f  concave upward or concave down

ward? Explain.
	 (d)	� What are the x-coordinates of the inflection points of f ? 

Why?

0

y

x2 4 6 8

y=fª(x)

9–18
(a)  Find the intervals on which f  is increasing or decreasing.
(b)  Find the local maximum and minimum values of f.
(c)  Find the intervals of concavity and the inflection points.

	 9.	� �f sxd − x 3 2 3x 2 2 9x 1 4

	10.	� �f sxd − 2x 3 2 9x 2 1 12x 2 3

	11.	 f sxd − x4 2 2x2 1 3	12 .	� f sxd −
x

x 2 1 1
	13.	 f sxd − sin x 1 cos x,    0 < x < 2�

	14.	� f sxd − cos2x 2 2 sin x,    0 < x < 2�

	15.	 f sxd − e2x 1 e2x	16 .	� f sxd − x 2 ln x

	17.	 f sxd − x 2 2 x 2 ln x	1 8.	� f sxd − x 4e2x

19–21 � Find the local maximum and minimum values of f  using 
both the First and Second Derivative Tests. Which method do you 
prefer?

	19.	 f sxd − 1 1 3x 2 2 2x 3	2 0.	� f sxd −
x 2

x 2 1
	21.	� f sxd − sx  2 s4 x  

	22.	� �(a)	 Find the critical numbers of f sxd − x 4sx 2 1d3.
	 (b)	� What does the Second Derivative Test tell you about the 

behavior of f  at these critical numbers?
	 (c)	 What does the First Derivative Test tell you?

	23.	� Suppose f 0 is continuous on s2`, `d.
	 (a)	� If f 9s2d − 0 and f 0s2d − 25, what can you say about f ?
	 (b)	� If f 9s6d − 0 and f 0s6d − 0, what can you say about f ?

24–31 � Sketch the graph of a function that satisfies all of the given 
conditions.

	24.	� �(a)	 f 9sxd , 0 and f 0sxd , 0 for all x
	 (b)	 f 9sxd . 0 and f 0sxd . 0 for all x

	25.	� �(a)	 f 9sxd . 0 and f 0sxd , 0 for all x
	 (b)	 f 9sxd , 0 and f 0sxd . 0 for all x

	26.	� Vertical asymptote x − 0,  �  f 9sxd . 0 if x , 22,
	 f 9sxd , 0 if x . 22  sx ± 0d,
	 f 0sxd , 0 if x , 0,    f 0sxd . 0 if x . 0Not For Sale
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(e) � Use the information from parts (a)–(d) to sketch the graph  
of f.

	49.	 f sxd − 1 1
1

x
2

1

x 2 	5 0.	� f sxd −
x 2 2 4

x 2 1 4

	51.	 f sxd − sx 2 1 1 2 x	52 .	� f sxd −
e x

1 2 e x

	53.	 f sxd − e2x 2

	54 .	� f sxd − x 2 1
6 x 2 2 2

3 ln x

	55.	 f sxd − lns1 2 ln xd	56 .	� f sxd − earctan x

	57.	� �Suppose the derivative of a function f  is 
f 9sxd − sx 1 1d2 sx 2 3d5 sx 2 6d4. On what interval is f  
increasing?

	58.	� �Use the methods of this section to sketch the curve 
y − x 3 2 3a 2x 1 2a 3, where a is a positive constant. What 
do the members of this family of curves have in common? 
How do they differ from each other?

59–60
(a) � Use a graph of f  to estimate the maximum and minimum  

values. Then find the exact values.
(b) � Estimate the value of x at which f  increases most rapidly. 

Then find the exact value.

	59.	 f sxd −
x 1 1

sx 2 1 1
	6 0.	� f sxd − x 2 e2x

61–62
(a) � Use a graph of f  to give a rough estimate of the intervals of 

concavity and the coordinates of the points of inflection.
(b)  Use a graph of f 0 to give better estimates.

	61.	� f sxd − sin 2x 1 sin 4x,    0 < x < �

	62.	� f sxd − sx 2 1d2 sx 1 1d3

63–64 � Estimate the intervals of concavity to one decimal place 
by using a computer algebra system to compute and graph f 0.

	63.	 f sxd −
x 4 1 x 3 1 1

sx 2 1 x 1 1 
	64 .	� f sxd −

x 2 tan21 x

1 1 x 3

	65.	� �A graph of a population of yeast cells in a new laboratory 
culture as a function of time is shown.

2 6 10 14 184 8 12 160

Time (in hours)

Number
of

yeast cells

100
200
300
400
500
600
700

	 (a)	 Describe how the rate of population increase varies.

;

;

CAS

35–36 � The graph of the derivative f 9 of a continuous function f  
is shown.
(a)  On what intervals is f  increasing? Decreasing?
(b) � At what values of x does f  have a local maximum? Local 

minimum?
(c)  On what intervals is f  concave upward? Concave downward?
(d)  State the x-coordinate(s) of the point(s) of inflection.
(e)  Assuming that f s0d − 0, sketch a graph of f.

	35.  �

2 4 6 8

y

0 x

_2

y=fª(x)

2

	36.� 
y

0 x2 4 6 8

_2

y=fª(x)

2

37–48 �
(a)  Find the intervals of increase or decrease.
(b)  Find the local maximum and minimum values.
(c)  Find the intervals of concavity and the inflection points.
(d) � Use the information from parts (a)–(c) to sketch the graph. 

Check your work with a graphing device if you have one.

	37.	 f sxd − x 3 2 12x 1 2	3 8.	� f sxd − 36x 1 3x 2 2 2x 3

	39.	 f sxd − 1
2 x 4 2 4x 2 1 3	4 0.	� tsxd − 200 1 8x 3 1 x 4

	41.	 hsxd − sx 1 1d5 2 5x 2 2	42 .	� hsxd − 5x 3 2 3x 5

	43.	 Fsxd − xs6 2 x 	44 .	� Gsxd − 5x 2y3 2 2x 5y3

	45.	 Csxd − x1y3sx 1 4d	46 .	� f sxd − lnsx 2 1 9d

	47.	� �f s�d − 2 cos � 1 cos2�,    0 < � < 2�

	48.	� Ssxd − x 2 sin x,    0 < x < 4�

49–56
(a)  Find the vertical and horizontal asymptotes.
(b)  Find the intervals of increase or decrease.
(c)  Find the local maximum and minimum values.
(d)  Find the intervals of concavity and the inflection points.
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the positive constant � is called the standard deviation. For 
simplicity, let’s scale the function so as to remove the factor 

1ys�s2� d and let’s analyze the special case where � − 0. 
So we study the function

f sxd − e2x 2ys2� 2d

	 (a)	� Find the asymptote, maximum value, and inflection 
points of f .

	 (b)	 What role does � play in the shape of the curve? 
	 (c)	� Illustrate by graphing four members of this family on the 

same screen.

	73.	� �Find a cubic function f sxd − ax 3 1 bx 2 1 cx 1 d that has a 
local maximum value of 3 at x − 22 and a local minimum 
value of 0 at x − 1.

	74.	� For what values of the numbers a and b does the function

f sxd − axe bx2

have the maximum value f s2d − 1?

	75.	� �(a)	� If the function f sxd − x 3 1 ax 2 1 bx has the local mini-
mum value 22

9 s3  at x − 1ys3 , what are the values of a 
and b?

	 (b)	� Which of the tangent lines to the curve in part (a) has the 
smallest slope?

	76.	� �For what values of a and b is s2, 2.5d an inflection point of the 
curve x 2y 1 ax 1 by − 0? What additional inflection points 
does the curve have?

	77.	� �Show that the curve y − s1 1 xdys1 1 x 2d has three points 
of inflection and they all lie on one straight line.

	78.	� �Show that the curves y − e2x and y − 2e2x touch the curve 
y − e2x sin x at its inflection points.

	79.	� �Show that the inflection points of the curve y − x sin x lie on 
the curve y 2sx 2 1 4d − 4x 2.

80–82 � Assume that all of the functions are twice differentiable 
and the second derivatives are never 0.

	80.	� �(a)	� If f  and t are concave upward on I, show that f 1 t is 
concave upward on I.

	 (b)	� If f  is positive and concave upward on I, show that the 
function tsxd − f f sxdg 2 is concave upward on I.

	81.	� �(a)	� If f  and t are positive, increasing, concave upward func-
tions on I, show that the product function ft is concave 
upward on I.

	 (b)	� Show that part (a) remains true if f  and t are both  
decreasing.

	 (c)	� Suppose f  is increasing and t is decreasing. Show, by  
giving three examples, that ft may be concave upward, 
concave downward, or linear. Why doesn’t the argument 
in parts (a) and (b) work in this case?

	82.	� �Suppose f  and t are both concave upward on s2`, `d.  
Under what condition on f  will the composite function 
hsxd − f stsxdd be concave upward?

;

	 (b)	 When is this rate highest?
	 (c)	� On what intervals is the population function concave 

upward or downward?
	 (d)	 Estimate the coordinates of the inflection point.

	66.	� �In an episode of The Simpsons television show, Homer 
reads from a newspaper and announces “Here’s good news! 
According to this eye-catching article, SAT scores are 
declining at a slower rate.” Interpret Homer’s statement in 
terms of a function and its first and second derivatives. 

	67.	� �The president announces that the national deficit is increas-
ing, but at a decreasing rate. Interpret this statement in terms 
of a function and its first and second derivatives.

	68.	� �Let f std be the temperature at time t where you live and sup-
pose that at time t − 3 you feel uncomfortably hot. How do 
you feel about the given data in each case?

	 (a)	 f 9s3d − 2,    f 0s3d − 4
	 (b)	 f 9s3d − 2,    f 0s3d − 24
	 (c)	 f 9s3d − 22,    f 0s3d − 4
	 (d)	 f 9s3d − 22,    f 0s3d − 24

	69.	� �Let Kstd be a measure of the knowledge you gain by 
studying for a test for t hours. Which do you think is larger, 
Ks8d 2 Ks7d or Ks3d 2 Ks2d? Is the graph of K concave 
upward or concave downward? Why?

	70.	� �Coffee is being poured into the mug shown in the figure at a 
constant rate (measured in volume per unit time). Sketch a  
rough graph of the depth of the coffee in the mug as a func-
tion of time. Account for the shape of the graph in terms of 
concavity. What is the significance of the inflection point?

	71.	� �A drug response curve describes the level of medication 
in the bloodstream after a drug is administered.  A surge 
function Sstd − At pe2kt is often used to model the response  
curve, reflecting an initial surge in the drug level and then a 
more gradual decline.  If, for a particular drug, A − 0.01, 
p − 4, k − 0.07, and t is measured in minutes, estimate the 
times corresponding to the inflection points and explain their 
significance.  If you have a graphing device, use it to graph 
the drug response curve.

	72.	� The family of bell-shaped curves

y −
1

�s2� 
 e2sx2�d2ys2� 2d

occurs in probability and statistics, where it is called the nor-
mal density function. The constant � is called the mean and Not For Sale

©
 2

01
4 

C
en

ga
ge

 L
ea

rn
in

g.
 A

ll 
R

ig
ht

s R
es

er
ve

d.
 T

hi
s c

on
te

nt
 is

 n
ot

 y
et

 fi
na

l a
nd

 C
en

ga
ge

 L
ea

rn
in

g 
do

es
 n

ot
 g

ua
ra

nt
ee

 th
is

 p
ag

e 
w

ill
 c

on
ta

in
 c

ur
re

nt
 m

at
er

ia
l o

r m
at

ch
 th

e 
pu

bl
is

he
d 

pr
od

uc
t.
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Suppose we are trying to analyze the behavior of the function

Fsxd −
ln x

x 2 1

Although F is not defined when x − 1, we need to know how F behaves near 1. In par-
ticular, we would like to know the value of the limit

lim
xl1

 
ln x

x 2 1

In computing this limit we can’t apply Law 5 of limits (the limit of a quotient is the 
quotient of the limits, see Section 2.3) because the limit of the denominator is 0. In fact, 
although the limit in (1) exists, its value is not obvious because both numerator and 
denominator approach 0 and 00 is not defined.

In general, if we have a limit of the form

lim
xl a

 
 f sxd
tsxd

where both f sxdl 0 and tsxdl 0 as xl a, then this limit may or may not exist and is 
called an indeterminate form of type 0

0. We met some limits of this type in Chapter 2. 
For rational functions, we can cancel common factors:

lim
xl1

 
x 2 2 x

x 2 2 1
− lim

xl1
 

xsx 2 1d
sx 1 1dsx 2 1d

− lim
xl1

 
x

x 1 1
−

1

2

1

	90.	� �Suppose that f 09 is continuous and f 9scd − f 0scd − 0, but 
f -scd . 0. Does f  have a local maximum or minimum at  
c? Does f  have a point of inflection at c?

	91.	� �Suppose f  is differentiable on an interval I and f 9sxd . 0 
for all numbers x in I except for a single number c. Prove 
that f  is increasing on the entire interval I.

	92.	� �For what values of c is the function

f sxd − cx 1
1

x 2 1 3
increasing on s2`, `d?

	93.	� �The three cases in the First Derivative Test cover the situa-
tions one commonly encounters but do not exhaust all pos-
sibilities. Consider the functions f, t, and h whose values at 
0 are all 0 and, for x ± 0,

 f sxd − x 4 sin 
1

x
            tsxd − x 4S2 1 sin 

1

xD
hsxd − x 4S22 1 sin 

1

xD
	 (a)	� Show that 0 is a critical number of all three functions 

but their derivatives change sign infinitely often on both 
sides of 0.

	 (b)	� Show that f  has neither a local maximum nor a local 
minimum at 0, t has a local minimum, and h has a local  
maximum.

	83.	� �Show that tan x . x for 0 , x , �y2.  [Hint: Show that 
f sxd − tan x 2 x is increasing on s0, �y2d.]

	84.	� �(a)	 Show that e x > 1 1 x for x > 0.
	 (b)	 Deduce that e x > 1 1 x 1 1

2 x 2 for x > 0.
	 (c)	� Use mathematical induction to prove that for x > 0 and 

any positive integer n,

e x > 1 1 x 1
x 2

2!
1 ∙ ∙ ∙ 1

x n

n!

	85.	� �Show that a cubic function (a third-degree polynomial)  
always has exactly one point of inflection. If its graph has 
three x-intercepts x1, x2, and x3, show that the x-coordinate 
of the inflection point is sx1 1 x2 1 x3 dy3.

	86.	� �For what values of c does the polynomial 
Psxd − x 4 1 cx 3 1 x 2 have two inflection points? One 
inflection point? None? Illustrate by graphing P for several 
values of c. How does the graph change as c decreases?

	87.	� �Prove that if sc, f scdd is a point of inflection of the graph  
of f  and f 0 exists in an open interval that contains c, then 
f 0scd − 0.  [Hint: Apply the First Derivative Test and  
Fermat’s Theorem to the function t − f 9.]

	88.	� �Show that if f sxd − x 4, then f 0s0d − 0, but s0, 0d is not an 
inflection point of the graph of f .

	89.	� �Show that the function tsxd − x | x | has an inflection point 
at s0, 0d but t0s0d does not exist.

;
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We used a geometric argument to show that

lim
xl 0

 
sin x

x
− 1

But these methods do not work for limits such as (1), so in this section we introduce a 
systematic method, known as l’Hospital’s Rule, for the evaluation of indeterminate forms.

Another situation in which a limit is not obvious occurs when we look for a horizontal 
asymptote of F and need to evaluate the limit

lim
xl`

 
ln x

x 2 1

It isn’t obvious how to evaluate this limit because both numerator and denominator 
become large as xl `. There is a struggle between numerator and denominator. If the 
numerator wins, the limit will be ` (the numerator was increasing significantly faster 
than the denominator); if the denominator wins, the answer will be 0. Or there may be 
some compromise, in which case the answer will be some finite positive number.

In general, if we have a limit of the form

lim
xl a

 
 f sxd
tsxd

where both f sxdl ` (or 2`) and tsxdl ` (or 2`), then the limit may or may not 
exist and is called an indeterminate form of type ` y` . We saw in Section 2.6 that 
this type of limit can be evaluated for certain functions, including rational functions, by 
dividing numerator and denominator by the highest power of x that occurs in the denom-
inator. For instance,

lim
xl`

 
x 2 2 1

2x 2 1 1
− lim

xl`
 

1 2
1

x 2

2 1
1

x 2

−
1 2 0

2 1 0
−

1

2

This method does not work for limits such as (2), but l’Hospital’s Rule also applies to this 
type of indeterminate form.

L’Hospital’s Rule � �Suppose f  and t are differentiable and t9sxd ± 0 on an open 
interval I that contains a (except possibly at a). Suppose that

 lim
x l a

 f sxd − 0        and         lim
x l a

 tsxd − 0

or that	  lim
x l a

 f sxd − 6`        and         lim
x l a

 tsxd − 6`

(In other words, we have an indeterminate form of type 00 or ỳ`.) Then

lim
xl a

 
 f sxd
tsxd

− lim
xl a

 
 f 9sxd
t9sxd

if the limit on the right side exists (or is ` or 2`).

NOTE 1  L’Hospital’s Rule says that the limit of a quotient of functions is equal to the 
limit of the quotient of their derivatives, provided that the given conditions are satisfied. 

2

Figure 1 suggests visually why 
l’Hospital’s Rule might be true. The 
first graph shows two differentiable 
functions f  and t, each of which 
approaches 0 as x l a. If we were 
to zoom in toward the point sa, 0d, 
the graphs would start to look almost 
linear. But if the functions actually 
were linear, as in the second graph, 
then their ratio would be

m1sx 2 ad
m2sx 2 ad

−
m1

m2

which is the ratio of their deriva-
tives. This suggests that

lim
xl a

 
f sxd
tsxd

− lim 
xl a

 
 f 9sxd
t9sxd

FIGURE 1 

0

y

xa

y=m¡(x-a)

y=m™(x-a)

0

y

xa

f

g
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It is especially important to verify the conditions regarding the limits of f  and t before 
using l’Hospital’s Rule.

NOTE 2  L’Hospital’s Rule is also valid for one-sided limits and for limits at infinity 
or negative infinity; that is, “xl a” can be replaced by any of the symbols xl a1, 
xl a2, xl `, or xl 2`.

NOTE 3  For the special case in which f sad − tsad − 0, f 9 and t9 are continuous, 
and t9sad ± 0, it is easy to see why l’Hospital’s Rule is true. In fact, using the alternative 
form of the definition of a derivative, we have

 lim
x l a

 
 f 9sxd
t9sxd

−
 f 9sad
t9sad

−

lim
x l a

 
 f sxd 2 f sad

x 2 a

lim
x l a

 
tsxd 2 tsad

x 2 a

− lim
x l a

 

 
 f sxd 2 f sad

x 2 a

 
tsxd 2 tsad

x 2 a

	   − lim
x l a

 
 f sxd 2 f sad
tsxd 2 tsad

− lim
x l a

 
 f sxd
tsxd

    fsince f sad − tsad − 0g

It is more difficult to prove the general version of l’Hospital’s Rule. See Appendix F.

EXAMPLE �1�  Find lim
x l 1

 
ln x

x 2 1
.

SOLUTION � Since

lim
xl1

 ln x − ln 1 − 0        and        lim
xl1

 sx 2 1d − 0

the limit is an indeterminate form of type 00 , so we can apply l’Hospital’s Rule:

 lim
x l 1

 
ln x

x 2 1
− lim

x l 1
 

d

dx
 sln xd

d

dx
 sx 2 1d

− lim
x l 1

 
1yx

1

	 − lim
x l 1

 
1

x
− 1	 n

EXAMPLE �2�  Calculate lim
xl`

 
ex

x 2 .

SOLUTION � We have lim xl` ex − ` and lim xl` x 2 − `, so the limit is an indetermi-
nate form of type `y`, and l’Hospital’s Rule gives

lim
xl`

ex

x 2 − lim
x l`

 

d

dx
sex d

d

dx
sx 2d

− lim
xl`

 
ex

2x

Since ex l ` and 2xl ` as xl `, the limit on the right side is also indeterminate, but 
a second application of l’Hospital’s Rule gives

	 lim
x l `

 
ex

x 2 − lim
x l `

 
ex

2x
− lim

x l `
 
ex

2
− `	 n

L’Hospital
L’Hospital’s Rule is named after a 
French nobleman, the Marquis de 
l’Hospital (1661–1704), but was 
discovered by a Swiss mathematician, 
John Bernoulli (1667–1748). You 
might sometimes see l’Hospital 
spelled as l’Hôpital, but he spelled 
his own name l’Hospital, as was 
common in the 17th century. See 
Exercise 83 for the example that the 
Marquis used to illustrate his rule. See 
the project on page 314 for further 
historical details.

  Notice that when using 
l’Hospital’s Rule we differentiate the 
numerator and denominator sepa-
rately. We do not use the Quotient 
Rule. 

The graph of the function of Example 2 
is shown in Figure 2. We have noticed 
previously that exponential functions 
grow far more rapidly than power func-
tions, so the result of Example 2 is not 
unexpected. See also Exercise 73.

y=´
≈

10

20

0

FIGURE 2
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EXAMPLE �3�  Calculate lim
x l `

 
ln x

sx 
.

SOLUTION � Since ln xl ` and sx l ` as xl ` , l’Hospital’s Rule applies:

lim
x l `

 
ln x

sx 
− lim

x l `
 

1yx
1
2 x21y2 − lim

xl`
 

1yx

1y(2sx )

Notice that the limit on the right side is now indeterminate of type 00 . But instead of 
applying l’Hospital’s Rule a second time as we did in Example 2, we simplify the 
expression and see that a second application is unnecessary:

	 lim
x l `

 
ln x

sx 
− lim

x l `
 

1yx

1y(2sx ) − lim
xl`

 
2

sx − 0 	 n

In both Examples 2 and 3 we evaluated limits of type `y`, but we got two different 
results. In Example 2, the infinite limit tells us that the numerator ex increases signifi-
cantly faster than the denominator x 2, resulting in larger and larger ratios. In fact, y − ex 
grows more quickly than all the power functions y − xn (see Exercise 73). In Example 
3 we have the opposite situation; the limit of 0 means that the denominator outpaces the 
numerator, and the ratio eventually approaches 0. 

EXAMPLE �4�  Find lim
x l 0

 
tan x 2 x

x 3 . (See Exercise 2.2.50.)

SOLUTION � Noting that both tan x 2 xl 0 and x 3 l 0 as xl 0, we use l’Hospital’s 
Rule:

lim
xl 0

 
tan x 2 x

x 3 − lim
xl 0

 
sec2x 2 1

3x 2

Since the limit on the right side is still indeterminate of type 00 , we apply l’Hospital’s 
Rule again:

lim
x l 0

 
sec2x 2 1

3x 2 − lim
x l 0

 
2 sec2x tan x

6x

Because limx l 0 sec2x − 1, we simplify the calculation by writing

lim
xl 0

 
2 sec2x tan x

6x
−

1

3
 lim
xl 0

 sec2x ? lim
xl 0

 
tan x

x
−

1

3
 lim
xl 0

 
tan x

x

We can evaluate this last limit either by using l’Hospital’s Rule a third time or by 
writing tan x as ssin xdyscos xd and making use of our knowledge of trigonometric 
limits. Putting together all the steps, we get

lim
x l 0

 
tan x 2 x

x3 − lim
x l 0

 
sec2x 2 1

3x2 − lim
x l 0

 
2 sec2x tan x

6x

	  −
1

3
 lim

x l 0
 
tan x

x
−

1

3
 lim
x l 0

 
sec2x

1
−

1

3
	 n

0

_1

2

10,000

y= ln x
œ„x

FIGURE 3 �

The graph of the function of Example 
3 is shown in Figure 3. We have dis-
cussed previously the slow growth of 
logarithms, so it isn’t surprising that 
this ratio approaches 0 as x l `. See 
also Exercise 74.

The graph in Figure 4 gives visual 
confirmation of the result of Example 4. 
If we were to zoom in too far, how- 
ever, we would get an inaccurate graph 
because tan x is close to x when x is 
small. See Exercise 2.2.50(d).

FIGURE 4 �

y= tan x- x
˛

0
_1 1

1
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EXAMPLE �5�  Find  lim
x l �2

 sin x

1 2 cos x
.

SOLUTION � If we blindly attempted to use l’Hospital’s Rule, we would get

 lim
xl�2

 sin x

1 2 cos x
− lim

xl�2
 cos x

sin x
− 2`

This is wrong! Although the numerator sin xl 0 as xl �2, notice that the denomi-
nator s1 2 cos xd does not approach 0, so l’Hospital’s Rule can’t be applied here.

The required limit is, in fact, easy to find because the function is continuous at � 
and the denominator is nonzero there:

	 lim
x l �2

 sin x

1 2 cos x
−

sin �

1 2 cos �
−

0

1 2 s21d
− 0	 n

Example 5 shows what can go wrong if you use l’Hospital’s Rule without think-
ing. Other limits can be found using l’Hospital’s Rule but are more easily found by other 
methods. (See Examples 2.3.3, 2.3.5, and 2.6.3, and the discussion at the beginning of 
this section.) So when evaluating any limit, you should consider other methods before 
using l’Hospital’s Rule.

Indeterminate Products
If lim xl a f sxd − 0 and lim xl a tsxd − ` (or 2`), then it isn’t clear what the value of 
lim xl a f f sxd tsxdg, if any, will be. There is a struggle between f  and t. If f  wins, the 
answer will be 0; if t wins, the answer will be ` (or 2`). Or there may be a compromise 
where the answer is a finite nonzero number. This kind of limit is called an indetermi-
nate form of type 0 ? `. We can deal with it by writing the product ft as a quotient:

ft −
 f

1yt         or        ft −
t

1yf

This converts the given limit into an indeterminate form of type 00 or ỳ` so that we can 
use l’Hospital’s Rule.

EXAMPLE �6�  Evaluate lim
x l

 

01
 x ln x.

SOLUTION � The given limit is indeterminate because, as xl 01, the first factor sxd  
approaches 0 while the second factor sln xd approaches 2`. Writing x − 1ys1yxd, we 
have 1yxl ` as xl 01, so l’Hospital’s Rule gives

	  lim
x l 01

 x ln x − lim
x l 01

 ln x

1yx
− lim

x l 01

 1yx

21yx 2
− lim

x l 01
 s2xd − 0	 n

NOTE  In solving Example 6 another possible option would have been to write

lim
xl 01

 x ln x − lim
xl 01

 
x

1yln x

This gives an indeterminate form of the type 00, but if we apply l’Hospital’s Rule we get 
a more complicated expression than the one we started with. In general, when we rewrite 
an indeterminate product, we try to choose the option that leads to the simpler limit.

Figure 5 shows the graph of the 
function in Example 6. Notice that 
the function is undefined at x − 0; 
the graph approaches the origin but 
never quite reaches it.

0

y

x1

y=x ln x

FIGURE 5 �
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Indeterminate Differences
If lim xl a f sxd − ` and lim xl a tsxd − `, then the limit

lim
xl a

 f f sxd 2 tsxdg

is called an indeterminate form of type ` 2 `. Again there is a contest between f  and 
t. Will the answer be ` ( f  wins) or will it be 2` (t wins) or will they compromise on a 
finite number? To find out, we try to convert the difference into a quotient (for instance, 
by using a common denominator, or rationalization, or factoring out a common factor) 
so that we have an indeterminate form of type 00 or ỳ` .

EXAMPLE �7�  Compute lim
xl11

 S 1

ln x
2

1

x 2 1D.

SOLUTION � First notice that 1ysln xd l ` and 1ysx 2 1dl ` as xl 11, so the limit 
is indeterminate of type ` 2 `. Here we can start with a common denominator:

lim
xl11

 S 1

ln x
2

1

x 2 1 D − lim
xl11

 
x 2 1 2 ln x

sx 2 1d ln x

Both numerator and denominator have a limit of 0, so l’Hospital’s Rule applies, giving

lim
xl11

 
x 2 1 2 ln x

sx 2 1d ln x
− lim

xl11
 

1 2
1

x

sx 2 1d ?
1

x
1 ln x

 − lim
xl11

 
x 2 1

x 2 1 1 x ln x

Again we have an indeterminate limit of type 00 , so we apply l’Hospital’s Rule a second 
time:

lim
xl11

 
x 2 1

x 2 1 1 x ln x
− lim

xl11
 

1

1 1 x ?
1

x
1 ln x

 

	 − lim
xl11

 
1

2 1 ln x
−

1

2
	 n

EXAMPLE �8�  Calculate lim
xl`

 sex 2 xd .

SOLUTION � This is an indeterminate difference because both ex and x approach infinity. 
We would expect the limit to be infinity because exl ` much faster than x. But we can 
verify this by factoring out x :

ex 2 x − xS ex

x
2 1D

The term exyx l ` as x l ` by l’Hospital’s Rule and so we now have a product in 
which both factors grow large:

	 lim
xl`

 sex 2 xd − lim
xl`

 FxS ex

x
2 1DG − ` 	 nNot For Sale
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Indeterminate Powers
Several indeterminate forms arise from the limit

lim
xla

− f f sxdg tsxd

1.	� lim
xl a

 f sxd − 0	 and    lim
xl a

 tsxd − 0	 type 00

2.	� lim
xl a

 f sxd − `	 and    lim
xl a

 tsxd − 0	 type ` 0

3.	� lim
xl a

 f sxd − 1	 and    lim
xl a

 tsxd − 6`	 type 1`

Each of these three cases can be treated either by taking the natural logarithm:

let    y − f f sxdg tsxd,    then    ln y − tsxd ln f sxd

or by writing the function as an exponential:

f f sxdg tsxd − e tsxd ln f sxd

(Recall that both of these methods were used in differentiating such functions.) In either 
method we are led to the indeterminate product tsxd ln f sxd, which is of type 0 ? `.

EXAMPLE �9 � Calculate lim
x l 01

 s1 1 sin 4xdcot x.

SOLUTION � First notice that as xl 01, we have 1 1 sin 4xl 1 and cot xl `, so the 
given limit is indeterminate (type 1`). Let

y − s1 1 sin 4xdcot x

Then	  ln y − lnfs1 1 sin 4xdcot x g − cot x lns1 1 sin 4xd −
lns1 1 sin 4xd

tan x

so l’Hospital’s Rule gives

lim
x l 01

 ln y − lim
xl 01

lns1 1 sin 4xd
tan x

− lim
x l 01

 

4 cos 4x

1 1 sin 4x

sec2x
− 4

So far we have computed the limit of ln y, but what we want is the limit of y. To find 
this we use the fact that y − e ln y:

	 lim
xl 01

 s1 1 sin 4xdcot x − lim
xl 01

 y − lim
xl 01

 e ln y − e 4	 n

EXAMPLE �10�  Find lim
xl 01

 x x.

SOLUTION � Notice that this limit is indeterminate since 0 x − 0 for any x . 0 but 
x 0 − 1 for any x ± 0. (Recall that 00 is undefined.) We could proceed as in Example 9 
or by writing the function as an exponential:

x x − se ln x dx − ex ln x

In Example 6 we used l’Hospital’s Rule to show that

lim
xl 01

 x ln x − 0

Although forms of the type 00, `0, 
and 1` are indeterminate, the form 
0` is not indeterminate. (See 
Exercise 86.)

The graph of the function y − x x, 
x . 0, is shown in Figure 6. Notice 
that although 00 is not defined, the 
values of the function approach 1 as 
x l 01. This confirms the result of 
Example 10.

FIGURE 6

2

0
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Therefore	

	 lim
xl 01

 x x − lim
xl 01

 ex ln x − e 0 − 1	 n

1–4 � Given that

lim
x l a

 f sxd − 0        lim
x l a

 tsxd − 0       lim
x l a

 hsxd − 1

lim
x l a

 psxd − `       lim
x l a

 qsxd − `

which of the following limits are indeterminate forms? For  
those that are not an indeterminate form, evaluate the limit 
where possible.

	 1.	� (a)	 lim
x l a

 
 f sxd
tsxd

	 (b)	 lim
x l a

 
 f sxd
psxd

	 (c)	 lim
x l a

 
hsxd
psxd

	 (d)	 lim
x l a

 
psxd
 f sxd

	 (e)	 lim
x l a

 
psxd
qsxd

	2 .	� (a)	 lim
x l a

 f f sxdpsxdg	 (b)	 lim
x l a

 fhsxdpsxdg

	 (c)	 lim
x l a

 f psxdqsxdg

	3 .	� (a)	 lim
x l a

 f f sxd 2 psxdg	 (b)	 lim
x l a

 f psxd 2 qsxdg

	 (c)	 lim
x l a

 f psxd 1 qsxdg

	4 .	� (a)	 lim
xl a

 f f sxdg tsxd	 (b)	 lim
x l a 

f f sxdg psxd

	 (c)	 lim
x l a

 fhsxdg psxd	 (d)	    lim
x l a

 f psxdg f sxd

	 (e)	 lim
x l a

 f psxdgqsxd	 (f)	 lim
x l a

 qsxdspsxd

5–6 � Use the graphs of f and t and their tangent lines at s2, 0d to 

find lim
x l

 

2
 
f sxd
tsxd

.

	5.  y y=1.8(x-2)

x0
y=    (x-2)4

5

2

f

g

  6  . � y
y=1.5(x-2)

x0
2

y=2-x

f

g

	7 .	� �The graph of a function f  and its tangent line at 0 are shown. 

What is the value of lim
x l

 

0
 

f sxd
e x 2 1

?

0

y

x

y=ƒ

y=x

8–68 � Find the limit. Use l’Hospital’s Rule where appropriate. 
If there is a more elementary method, consider using it. If 
l’Hospital’s Rule doesn’t apply, explain why.

	8 .	 lim
x l 3

 
x 2 3

x 2 2 9

	 9.	 lim
x l

 

4
  

x 2 2 2x 2 8

x 2 4
	10 .	 lim

x l 22
 
x 3 1 8

x 1 2

	11.	 lim 
x l

 

1

x 3 2 2x 2 1 1

x 3 2 1
	12 .	 lim

x l 1y2
 

6x 2 1 5x 2 4

4x 2 1 16x 2 9

	13. 	  lim
x l

 

s�y2d1
 cos x

1 2 sin x
	14 .	 lim

xl 0
 

tan 3x

sin 2x

	15. 	 lim
t l 0

 
e 2 t 2 1

sin t
	16 .	 lim

x  l 0
  

x 2

1 2 cos x

	17.	 lim
� l �y2

 
1 2 sin �

1 1 cos 2�
	18 .	 lim

� l �
 
1 1 cos �

1 2 cos �

	19.	 lim
x l `

 
ln x

sx 
	20 .	 lim

x l `
 

x 1 x 2

1 2 2x 2

	21.	 lim
x l 01

 
ln x

x
	22 .	 lim

x l `
 
lnsx 

x 2

	23.	 lim
t l 1

 
t 8 2 1

t 5 2 1
	24 .	 lim

t l 0
 
8 t 2 5 t

t

	25.	 lim
x l 0

 
s1 1 2x 2 s1 2 4x 

x
	26 .	 lim

ul `
 
e uy10

u3

	27.	 lim
x l 0

 
e x 2 1 2 x

x 2 	28 .	 lim
x l 0

 
sinh x 2 x
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	67.	 lim
x l 01

 s1 1 sin 3xd1yx	68 .	 lim
xl`

 S 2x 2 3

2x 1 5D2x11

69–70 � Use a graph to estimate the value of the limit. Then use 
l’Hospital’s Rule to find the exact value.

	69.	 lim
x l `

 S1 1
2

xD
x

	70 .	 lim
x l 0

 
5x 2 4x

3x 2 2x

71–72 � Illustrate l’Hospital’s Rule by graphing both f sxdytsxd 
and f 9sxdyt9sxd near x − 0 to see that these ratios have the same 
limit as x l 0. Also, calculate the exact value of the limit.

	71.	� f sxd − e x 2 1,    tsxd − x 3 1 4x

	72.	� f sxd − 2x sin x,    tsxd − sec x 2 1

	73.	 ��Prove that

lim
x l `

 
e x

x n − `

for any positive integer n. This shows that the exponential 
function approaches infinity faster than any power of x.

	74.	� Prove that

lim
x l `

 
ln x

x p − 0

�for any number p . 0. This shows that the logarithmic 
function approaches infinity more slowly than any power 
of x.

75–76 � What happens if you try to use l’Hospital’s Rule to find 
the limit? Evaluate the limit using another method.

	75.	 lim
xl `

 
x

sx 2 1 1
	76 .	 lim

x l
 

s�y2d2
 
sec x

tan x

	77.	� �Investigate the family of curves f sxd − e x 2 cx. In par- 
ticular, find the limits as x l 6` and determine the 
values of c for which f  has an absolute minimum. What 
happens to the minimum points as c increases?

	78.	� �If an object with mass m is dropped from rest, one model 
for its speed v after t seconds, taking air resistance into 
account, is

v −
mt
c

 s1 2 e 2ctym d

��where t is the acceleration due to gravity and c is a posi-
tive constant. (In Chapter 9 we will be able to deduce this 
equation from the assumption that the air resistance is 
proportional to the speed of the object; c is the proportion-
ality constant.)

	 (a)	 Calculate lim t l ` v. What is the meaning of this limit?
	 (b)	� For fixed t, use l’Hospital’s Rule to calculate 

lim cl 01
 v. What can you conclude about the velocity 

of a falling object in a vacuum?

;

;

;

	29.	 lim
x l 0

 
tanh x

tan x
	30 .	 lim

x l 0
 
x 2 sin x

x 2 tan x

	31.	 lim
x l 0

 
sin21x

x
	32 .	 lim

x l `
 
sln xd2

x

	33.	 lim
x l 0

 
x3 x

3x 2 1
	34 .	 lim

x l 0
 
cos mx 2 cos nx

x 2

	35.	 lim
x l 0

 
lns1 1 xd

cos x 1 ex 2 1
	36 .	 lim

x l 1
 

x sinsx 2 1d
2x 2 2 x 2 1

	37.	 lim
xl 01 

 
arctans2xd

ln x
	38 .	 lim

x l
 

01 
x x 2 1

ln x 1 x 2 1

	39.	 lim
x l 1

 
x a 2 1

x b 2 1
, b ± 0	40 .	 lim

x l 0
 
e x 2 e2x 2 2x

x 2 sin x

	41.	 lim
x l 0

 
cos x 2 1 1 1

2 x 2

x 4 	42 .	 lim
x l

 

a1 
cos x lnsx 2 ad

lnse x 2 ea d

	43.	 lim
x l `

 x sins�yxd	44 .	 lim
x l `

 sx  e2xy2

	45.	 lim
x l 0

 sin 5x csc 3x	46 .	 lim
x l 2`

 x lnS1 2
1

xD
	47.	 lim

x l `
 x 3e 2x 2

	48 .	 lim
x l `

 x 3y2 sins1yxd

	49.	 lim
x l

 

11 ln x tans�xy2d	50 .	 lim
x l

 

s�y2d2
cos x sec 5x

	51.	 lim
x l 1

 S x

x 2 1
2

1

ln xD	 52.	 lim
x l 0

 scsc x 2 cot xd

	53.	 lim
x l

 

01S 1

x
2

1

e x 2 1D	54 .	 lim
xl 01

 S 1

x
2

1

tan21 xD
	55.	 lim

x l `
 sx 2 ln xd	

	56.	 lim
x l

 

11
 flnsx 7 2 1d 2 lnsx 5 2 1dg

	57.	 lim
x l

 

01
 xsx 

	58 .	 lim
x l 01

 stan 2xdx

	59.	 lim
x l 0

 s1 2 2xd1yx	60 .	 lim
x l `

 S1 1
a

xDbx

	61.	 lim
x l

 

11
 x 1ys12xd	62 .	 lim

x l `
 x sln 2dys1 1 ln xd

	63.	 lim
xl`

 x 1yx	64 .	 lim
xl`

 x e2x

	65.	 lim
x l

 

01
 s4x 1 1dcot x	66 .	 lim

x l 1
 s2 2 xdtans�xy2d
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	81.	� �Some populations initally grow exponentially but eventually 
level off. Equations of the form

Pstd −
M

1 1 Ae2kt

where M, A, and k are positive constants, are called logistic 
equations and are often used to model such populations. (We 
will investigate these in detail in Chapter 9.) Here M is called 
the carrying capacity and represents the maximum population

size that can be supported, and A −
M 2 P0

P0

, where P0 is the 
initial population.

	 (a)	� Compute lim tl ` Pstd. Explain why your answer is to be 
expected.

	 (b)	� Compute lim Ml ` Pstd. (Note that A is defined in terms  
of M.) What kind of function is your result?

	82.	� �A metal cable has radius r and is covered by insulation so that 
the distance from the center of the cable to the exterior of the 
insulation is R. The velocity v of an electrical impulse in the 
cable is 

v − 2cS r

RD2
 lnS r

RD
where c is a positive constant. Find the following limits and 
interpret your answers.

	 (a)	� lim
R l

 

r1
 v	 (b)	 lim

r l
 

01
 v

	83.	�� The first appearance in print of l’Hospital’s Rule was in the 
book Analyse des Infiniment Petits published by the Marquis 
de l’Hospital in 1696. This was the first calculus textbook 
ever published and the example that the Marquis used in that 
book to illustrate his rule was to find the limit of the function

y −
s2a 3x 2 x 4 2 as3 aax 

a 2 s4 ax 3 

�as x approaches a, where a . 0. (At that time it was common 
to write aa instead of a 2.) Solve this problem.

	84.	�� The figure shows a sector of a circle with central angle �. Let 
As�d be the area of the segment between the chord PR and 
the arc PR. Let Bs�d be the area of the triangle PQR. Find 
lim �

 
l

  01  �s�dy�s�d.

P

Q R

A(¨)

B(¨)

O
¨

	85.	� Evaluate 

lim
x l `

 Fx 2 x 2 lnS 1 1 x

x DG.

	79.	� �If an initial amount A0 of money is invested at an interest 
rate r compounded n times a year, the value of the invest
ment after t years is

A − A0S1 1
r

nDnt

If we let n l `, we refer to the continuous compounding 
of interest. Use l’Hospital’s Rule to show that if interest is 
compounded continuously, then the amount after t years is

A − A0ert

	80.	� �Light enters the eye through the pupil and strikes the retina, 
where photoreceptor cells sense light and color. W. Stanley 
Stiles and B.H. Crawford studied the phenomenon in which 
measured brightness decreases as light enters farther from  
the center of the pupil. (See the figure.) 

B

A

A light beam A that enters through the center of the pupil 
measures brighter than a beam B entering near the edge  
of the pupil.

They detailed their findings of this phenomenon, known as 
the Stiles–Crawford effect of the first kind, in an important 
paper published in 1933. In particular, they observed that 
the amount of luminance sensed was not proportional to 
the area of the pupil as they expected. The percentage P of 
the total luminance entering a pupil of radius r mm that is 
sensed at the retina can be described by

P −
1 2 102�r 2

�r 2  ln 10

where � is an experimentally determined constant, typically 
about 0.05.

	 (a)	� What is the percentage of luminance sensed by a pupil 
of radius 3 mm? Use � − 0.05.

	 (b)	� Compute the percentage of luminance sensed by a pupil 
of radius 2 mm. Does it make sense that it is larger than 
the answer to part (a)?

	 (c)	� Compute lim
rl 01

 P. Is the result what you would expect?  

Is this result physically possible?

Source: Adapted from W. Stiles and B. Crawford, “The Luminous Efficiency 
of Rays Entering the Eye Pupil at Different Points.” Proceedings of the 
Royal Society of London, Series B: Biological Sciences 112 (1933): 428–50.Not For Sale
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	90.	� If f 0 is continuous, show that

lim
hl 0

 
 f sx 1 hd 2 2 f sxd 1 f sx 2 hd

h 2 − f 0sxd

	91.	� Let

f sxd − He21yx 2

0

 if  x ± 0

 if  x − 0

	 (a)	 Use the definition of derivative to compute f 9s0d.
	 (b)	� Show that f  has derivatives of all orders that are defined 

on R.  [Hint: First show by induction that there is a 
polynomial pnsxd and a nonnegative integer kn such that 
f sndsxd − pnsxdf sxdyxkn for x ± 0.]

	92.	� �Let

f sxd − H| x |x

1

if x ± 0

if x − 0

	 (a)	 Show that f  is continuous at 0.
	 (b)	� Investigate graphically whether f  is differentiable at 0  

by zooming in several times toward the point s0, 1d on 
the graph of  f .

	 (c)	� Show that f  is not differentiable at 0. How can you 
reconcile this fact with the appearance of the graphs in 
part (b)?

;

	86.	�� Suppose f  is a positive function. If lim xl a f sxd − 0 and 
lim xl a tsxd − `, show that

lim
x  l a

 f f sxdg tsxd − 0

This shows that 0` is not an indeterminate form.

	87.	� �If f 9 is continuous, f s2d − 0, and f 9s2d − 7, evaluate

lim
x l 0

 
 f s2 1 3xd 1 f s2 1 5xd

x

	88.	�� For what values of a and b is the following equation true?

lim
x l 0

 S sin 2x

x3 1 a 1
b

x2D − 0

	89.	 �If f 9 is continuous, use l’Hospital’s Rule to show that

lim
h l 0

 
 f sx 1 hd 2 f sx 2 hd

2h
− f 9sxd

Explain the meaning of this equation with the aid of a 
diagram.

WRITING PROJECT

L’Hospital’s Rule was first published in 1696 in the Marquis de l’Hospital’s calculus textbook 
Analyse des Infiniment Petits, but the rule was discovered in 1694 by the Swiss mathematician 
John (Johann) Bernoulli. The explanation is that these two mathematicians had entered into a 
curious business arrangement whereby the Marquis de l’Hospital bought the rights to Ber-
noulli’s mathematical discoveries. The details, including a translation of l’Hospital’s letter to 
Bernoulli proposing the arrangement, can be found in the book by Eves [1].

Write a report on the historical and mathematical origins of l’Hospital’s Rule. Start by pro-
viding brief biographical details of both men (the dictionary edited by Gillispie [2] is a good 
source) and outline the business deal between them. Then give l’Hospital’s statement of his 
rule, which is found in Struik’s sourcebook [4] and more briefly in the book of Katz [3]. Notice 
that l’Hospital and Bernoulli formulated the rule geometrically and gave the answer in terms of 
differentials. Compare their statement with the version of l’Hospital’s Rule given in Section 4.4 
and show that the two statements are essentially the same.

	1.	�� Howard Eves, In Mathematical Circles (Volume 2: Quadrants III and IV) (Boston: Prindle, 
Weber and Schmidt, 1969), pp. 20–22.

	2.	�� C. C. Gillispie, ed., Dictionary of Scientific Biography (New York: Scribner’s, 1974). See 
the article on Johann Bernoulli by E. A. Fellmann and J. O. Fleckenstein in Volume II and 
the article on the Marquis de l’Hospital by Abraham Robinson in Volume VIII.

	3.	�� Victor Katz, A History of Mathematics: An Introduction (New York: HarperCollins, 1993), 
p. 484.

	4.	�� D. J. Struik, ed., A Sourcebook in Mathematics, 1200–1800 (Princeton, NJ: Princeton 
University Press, 1969), pp. 315–16.

www.stewartcalculus.com
The Internet is another source of 
information for this project. Click on 
History of Mathematics for a list of 
reliable websites.
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So far we have been concerned with some particular aspects of curve sketching: domain, 
range, and symmetry in Chapter 1; limits, continuity, and asymptotes in Chapter 2; deriv-
atives and tangents in Chapters 2 and 3; and extreme values, intervals of increase and 
decrease, concavity, points of inflection, and l’Hospital’s Rule in this chapter. It is now 
time to put all of this information together to sketch graphs that reveal the important 
features of functions.

You might ask: Why don’t we just use a graphing calculator or computer to graph a 
curve? Why do we need to use calculus?

It’s true that modern technology is capable of producing very accurate graphs. But 
even the best graphing devices have to be used intelligently. It is easy to arrive at a 
misleading graph, or to miss important details of a curve, when relying solely on tech- 
nology. (See “Graphing Calculators and Computers” at www.stewartcalculus.com, espe-
cially Examples 1, 3, 4, and 5. See also Section 4.6.) The use of calculus enables us to 
discover the most interesting aspects of graphs and in many cases to calculate maximum 
and minimum points and inflection points exactly instead of approximately.

For instance, Figure 1 shows the graph of f sxd − 8x 3 2 21x 2 1 18x 1 2. At first 
glance it seems reasonable: It has the same shape as cubic curves like y − x 3, and it 
appears to have no maximum or minimum point. But if you compute the derivative, you 
will see that there is a maximum when x − 0.75 and a minimum when x − 1. Indeed, 
if we zoom in to this portion of the graph, we see that behavior exhibited in Figure 2. 
Without calculus, we could easily have overlooked it.

In the next section we will graph functions by using the interaction between calculus 
and graphing devices. In this section we draw graphs by first considering the following 
information. We don’t assume that you have a graphing device, but if you do have one 
you should use it as a check on your work.

Guidelines for Sketching a Curve
The following checklist is intended as a guide to sketching a curve y − f sxd by hand. Not 
every item is relevant to every function. (For instance, a given curve might not have an 
asymptote or possess symmetry.) But the guidelines provide all the information you need 
to make a sketch that displays the most important aspects of the function.

A. � Domain�  It’s often useful to start by determining the domain D of f , that is, the set 
of values of x for which f sxd is defined.

B. � Intercepts�  The y-intercept is f s0d and this tells us where the curve intersects the  
y-axis. To find the x-intercepts, we set y − 0 and solve for x. (You can omit this step 
if the equation is difficult to solve.)

C. � Symmetry
	 (i )	 If f s2xd − f sxd for all x in D, that is, the equation of the curve is unchanged 
when x is replaced by 2x, then f  is an even function and the curve is symmetric 
about the y-axis. This means that our work is cut in half. If we know what the curve 
looks like for x > 0, then we need only reflect about the y-axis to obtain the com-
plete curve [see Figure 3(a)]. Here are some examples: y − x 2, y − x 4, y − | x |, and 
y − cos x.
	 (ii)	 If f s2xd − 2f sxd for all x in D, then f  is an odd function and the curve 
is symmetric about the origin. Again we can obtain the complete curve if we know 
what it looks like for x > 0. [Rotate 180° about the origin; see Figure 3(b).] Some 
simple examples of odd functions are y − x, y − x 3, y − x 5, and y − sin x.

FIGURE 1� 

30

_10

_2 4

y=8˛-21≈+18x+2

y=8˛-21≈+18x+2

8

6
0 2

FIGURE 2� 

(a) Even function: re�ectional symmetry

(b) Odd function: rotational symmetry

x

y

0

x

y

0

FIGURE 3�  Not For Sale
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	 (iii)	 If f sx 1 pd − f sxd for all x in D, where p is a positive constant, then f  is 
called a periodic function and the smallest such number p is called the period. For 
instance, y − sin x has period 2� and y − tan x has period �. If we know what the 
graph looks like in an interval of length p, then we can use translation to sketch the 
entire graph (see Figure 4).

a-p a a+p a+2p x

y

0

period p

D. � Asymptotes
	 (i)	 Horizontal Asymptotes.	Recall from Section 2.6 that if either lim xl` f sxd − L 
or lim xl2 ` f sxd − L, then the line y − L is a horizontal asymptote of the curve 
y − f sxd. If it turns out that lim xl` f sxd − ` (or 2`), then we do not have an  
asymptote to the right, but this fact is still useful information for sketching the curve.
	 (ii)	 Vertical Asymptotes.	Recall from Section 2.2 that the line x − a is a vertical 
asymptote if at least one of the following statements is true:

 lim
x l

 

a1
  f sxd − `    lim

x l
 

a2
  f sxd − `

 lim
x l

 

a1
  f sxd − 2`    lim

x l
 

a2
  f sxd − 2`

(For rational functions you can locate the vertical asymptotes by equating the denomi-
nator to 0 after canceling any common factors. But for other functions this method 
does not apply.) Furthermore, in sketching the curve it is very useful to know exactly 
which of the statements in (1) is true. If f sad is not defined but a is an endpoint of the 
domain of f, then you should compute lim xl a2 f sxd or lim xl a1 f sxd, whether or not 
this limit is infinite.
	 (iii)	 Slant Asymptotes.  These are discussed at the end of this section.

E.	� Intervals of Increase or Decrease�  Use the I/D Test. Compute f 9sxd and find the 
intervals on which f 9sxd is positive ( f  is increasing) and the intervals on which f 9sxd 
is negative ( f  is decreasing).

F.	� Local Maximum and Minimum Values�  Find the critical numbers of f  [the num-
bers c where f 9scd − 0 or f 9scd does not exist]. Then use the First Derivative Test. 
If f 9 changes from positive to negative at a critical number c, then f scd is a local 
maximum. If f 9 changes from negative to positive at c, then f scd is a local minimum. 
Although it is usually preferable to use the First Derivative Test, you can use the 
Second Derivative Test if f 9scd − 0 and f 0scd ± 0. Then f 0scd . 0 implies that f scd 
is a local minimum, whereas f 0scd , 0 implies that f scd is a local maximum.

G.	� Concavity and Points of Inflection�  Compute f 0sxd and use the Concavity Test. The 
curve is concave upward where f 0sxd . 0 and concave downward where f 0sxd , 0. 
Inflection points occur where the direction of concavity changes.

H.	� Sketch the Curve�  Using the information in items A–G, draw the graph. Sketch the 
asymptotes as dashed lines. Plot the intercepts, maximum and minimum points, and 
inflection points. Then make the curve pass through these points, rising and falling 
according to E, with concavity according to G, and approaching the asymptotes. 

FIGURE 4�  
Periodic function: 

 translational symmetry

1
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If additional accuracy is desired near any point, you can compute the value of the 
derivative there. The tangent indicates the direction in which the curve proceeds.

EXAMPLE �1�  Use the guidelines to sketch the curve y −
2x 2

x 2 2 1
.

A.	� The domain is

hx | x 2 2 1 ± 0j − hx | x ± 61j − s2`, 21d ø s21, 1d ø s1, `d

B.	� The x- and y-intercepts are both 0.
C.	� Since f s2xd − f sxd, the function f  is even. The curve is symmetric about the y-axis.

D.	 lim
xl6`

 
2x 2

x 2 2 1
− lim

xl6`
 

2

1 2 1yx 2 − 2

	� Therefore the line y − 2 is a horizontal asymptote.
	� 	 Since the denominator is 0 when x − 61, we compute the following limits:

 lim
x l

 

11
 2x 2

x 2 2 1
− `                 lim

x l
 

12
 

2x 2

x 2 2 1
− 2`

 lim
x l

 

211
 

2x 2

x 2 2 1
− 2`            lim

x l
 

212
 

2x 2

x 2 2 1
− `

	�� Therefore the lines x − 1 and x − 21 are vertical asymptotes. This information 
about limits and asymptotes enables us to draw the preliminary sketch in Figure 5, 
showing the parts of the curve near the asymptotes.

E.	 f 9sxd −
sx 2 2 1ds4xd 2 2x 2 ? 2x

sx 2 2 1d2 −
24x

sx 2 2 1d2

	�� Since f 9sxd . 0 when x , 0 sx ± 21d and f 9sxd , 0 when x . 0 sx ± 1d, f  is  
increasing on s2`, 21d and s21, 0d and decreasing on s0, 1d and s1, `d.

F.	�� The only critical number is x − 0. Since f 9 changes from positive to negative at 0, 
f s0d − 0 is a local maximum by the First Derivative Test.

G.	 f 0sxd −
sx 2 2 1d2s24d 1 4x ? 2sx 2 2 1d2x

sx 2 2 1d4 −
12x 2 1 4

sx 2 2 1d3

	� Since 12x 2 1 4 . 0 for all x, we have

f 0sxd . 0   &?    x 2 2 1 . 0   &?    | x | . 1

	�� and f 0sxd , 0   &?   | x | , 1. Thus the curve is concave upward on the intervals 
s2`, 21d and s1, `d and concave downward on s21, 1d. It has no point of inflec-
tion since 1 and 21 are not in the domain of f.

H.	� Using the information in E–G, we finish the sketch in Figure 6.	 n

EXAMPLE �2�  Sketch the graph of f sxd −
x 2

sx 1 1
.

A.	� Domain − hx | x 1 1 . 0j − hx | x . 21j − s21, `d

x=1x=_1

y=2

x

y

0

FIGURE 5�   
Preliminary sketch

We have shown the curve approaching 
its horizontal asymptote from above 
in Figure 5. This is confirmed by the 
intervals of increase and decrease.

x=1x=_1

y=2

x

y

0

FIGURE 6�   
Finished sketch of y −

2x 2

x 2 2 1
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318	 CHAPTER 4    Applications of Differentiation

B.	� The x- and y-intercepts are both 0.
C.	� Symmetry: None
D.	� Since

lim
x l `

 
x 2

sx 1 1
− `

	�� there is no horizontal asymptote. Since sx 1 1l 0 as xl 211 and f sxd is 
always positive, we have

lim
x l

 

211

x 2

sx 1 1
− `

�	 and so the line x − 21 is a vertical asymptote.

E.	 f 9sxd −
sx 1 1 s2xd 2 x 2 ? 1y(2sx 1 1)

x 1 1
−

3x 2 1 4x

2sx 1 1d3y2 −
xs3x 1 4d
2sx 1 1d3y2

	� �We see that f 9sxd − 0 when x − 0 (notice that 24
3 is not in the domain of f ), so the 

only critical number is 0. Since f 9sxd , 0 when 21 , x , 0 and f 9sxd . 0 when 
x . 0, f  is decreasing on s21, 0d and increasing on s0, `d.

F.	�� Since f 9s0d − 0 and f 9 changes from negative to positive at 0, f s0d − 0 is a local 
(and absolute) minimum by the First Derivative Test.

G.	� f 0sxd −
2sx 1 1d3y2s6x 1 4d 2 s3x 2 1 4xd3sx 1 1d1y2

4sx 1 1d3 −
3x 2 1 8x 1 8

4sx 1 1d5y2

�	� Note that the denominator is always positive. The numerator is the quadratic
	� �3x 2 1 8x 1 8, which is always positive because its discriminant is 

b 2 2 4ac − 232, which is negative, and the coefficient of x 2 is positive. Thus 
f 0sxd . 0 for all x in the domain of f, which means that f  is concave upward on 
s21, `d and there is no point of inflection.

H.	� The curve is sketched in Figure 7.	 n

EXAMPLE �3�  Sketch the graph of f sxd − xex.

A.	� The domain is R.
B.	� The x- and y-intercepts are both 0.
C.	� Symmetry: None
D.	�� Because both x and ex become large as xl `, we have lim xl` xex − `. As 

xl 2`, however, ex l 0 and so we have an indeterminate product that requires 
the use of l’Hospital’s Rule:

lim
xl2` 

xex − lim
xl2`

 
x

e2x − lim
xl2`

 
1

2e2x − lim
xl2`

s2ex d − 0

	� Thus the x-axis is a horizontal asymptote.

E.	 f 9sxd − xex 1 ex − sx 1 1dex

	�� Since ex is always positive, we see that f 9sxd . 0 when x 1 1 . 0, and f 9sxd , 0 
when x 1 1 , 0. So f  is increasing on s21, `d and decreasing on s2`, 21d.

F.	�� Because f 9s21d − 0 and f 9 changes from negative to positive at x − 21, 
f s21d − 2e21 < 20.37 is a local (and absolute) minimum.

G.	 f 0sxd − sx 1 1dex 1 ex − sx 1 2dex

	�� Since f 0sxd . 0 if x . 22 and f 0sxd , 0 if x , 22, f  is concave upward on 

x=_1
x

y

0

œ„„„„
y= ≈

x+1

FIGURE 7�   
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s22, `d and concave downward on s2`, 22d. The inflection point is  
s22, 22e22 d < s22, 20.27d.

H.	� We use this information to sketch the curve in Figure 8.	 n

EXAMPLE �4�  Sketch the graph of f sxd −
cos x

2 1 sin x
.

A.	� The domain is R.
B.	�� The y-intercept is f s0d − 1

2. The x-intercepts occur when cos x − 0, that is, 
x − s�y2d 1 n�, where n is an integer.

C.	�� f  is neither even nor odd, but f sx 1 2�d − f sxd for all x and so f  is periodic and 
has period 2�. Thus, in what follows, we need to consider only 0 < x < 2� and 
then extend the curve by translation in part H.

D.	� Asymptotes: None

E.	 f 9sxd −
s2 1 sin xds2sin xd 2 cos x scos xd

s2 1 sin xd2 − 2
2 sin x 1 1

s2 1 sin xd2

	�� The denominator is always positive, so f 9sxd . 0 when 2 sin x 1 1 , 0    &?    
sin x , 21

2    &?  7�y6 , x , 11�y6. So f  is increasing on s7�y6, 11�y6d and 
decreasing on s0, 7�y6d and s11�y6, 2�d.

F.	�� From part E and the First Derivative Test, we see that the local minimum value is 
f s7�y6d − 21ys3  and the local maximum value is f s11�y6d − 1ys3 .

G.	�� If we use the Quotient Rule again and simplify, we get

f 0sxd − 2
2 cos x s1 2 sin xd

s2 1 sin xd3

	�� Because s2 1 sin xd3 . 0 and 1 2 sin x > 0 for all x, we know that f 0sxd . 0 
when cos x , 0, that is, �y2 , x , 3�y2. So f  is concave upward on s�y2, 3�y2d 
and concave downward on s0, �y2d and s3�y2, 2�d. The inflection points are 
s�y2, 0d and s3�y2, 0d.

H.	�� T�he graph of the function restricted to 0 < x < 2� is shown in Figure 9. Then we 
extend it, using periodicity, to the complete graph in Figure 10.

y

xππ
2

1
2

2π3π
2

”     ,      ’11π
6

1
œ„3

-” 7π
6

1
œ„3, ’

y

xπ_π

1
2

2π 3π

	
n

EXAMPLE �5�  Sketch the graph of y − lns4 2 x 2 d.
A.	� The domain is

hx | 4 2 x 2 . 0j − hx | x 2 , 4j − hx | | x | , 2j − s22, 2d

x

y

1

_1_2

y=x´

(_1, _1/e)

FIGURE 8�   

FIGURE 9�  FIGURE 10�

Not For Sale

©
 2

01
4 

C
en

ga
ge

 L
ea

rn
in

g.
 A

ll 
R

ig
ht

s R
es

er
ve

d.
 T

hi
s c

on
te

nt
 is

 n
ot

 y
et

 fi
na

l a
nd

 C
en

ga
ge

 L
ea

rn
in

g 
do

es
 n

ot
 g

ua
ra

nt
ee

 th
is

 p
ag

e 
w

ill
 c

on
ta

in
 c

ur
re

nt
 m

at
er

ia
l o

r m
at

ch
 th

e 
pu

bl
is

he
d 

pr
od

uc
t.
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B.	� The y-intercept is f s0d − ln 4. To find the x-intercept we set

y − lns4 2 x 2 d − 0

	�� We know that ln 1 − 0, so we have 4 2 x 2 − 1 ? x 2 − 3 and therefore the  
x-intercepts are 6s3 .

C .	� Since f s2xd − f sxd, f  is even and the curve is symmetric about the y-axis.
D.	�� We look for vertical asymptotes at the endpoints of the domain. Since 4 2 x 2 l 01 

as xl 22 and also as xl 221, we have

lim
x l

 

22
 lns4 2 x 2 d − 2`            lim

x l
 

221
 lns4 2 x 2 d − 2`

	� Thus the lines x − 2 and x − 22 are vertical asymptotes.

E .	 f 9sxd −
22x

4 2 x 2

	� �Since f 9sxd . 0 when 22 , x , 0 and f 9sxd , 0 when 0 , x , 2, f  is increasing  
on s22, 0d and decreasing on s0, 2d.

F .	��� The only critical number is x − 0. Since f 9 changes from positive to negative at 0, 
f s0d − ln 4 is a local maximum by the First Derivative Test.

G.	 f 0sxd −
s4 2 x 2 ds22d 1 2xs22xd

s4 2 x 2 d2 −
28 2 2x 2

s4 2 x 2 d2

	� �Since f 0sxd , 0 for all x, the curve is concave downward on s22, 2d and has no 
inflection point.

H.	� �Using this information, we sketch the curve in Figure 11.	 n

Slant Asymptotes
Some curves have asymptotes that are oblique, that is, neither horizontal nor vertical. If

lim
xl`

 f f sxd 2 smx 1 bdg − 0

where m ± 0, then the line y − mx 1 b is called a slant asymptote because the ver-
tical distance between the curve y − f sxd and the line y − mx 1 b approaches 0, as 
in  Figure  12. (A similar situation exists if we let xl 2`.) For rational functions, 
slant  asymptotes occur when the degree of the numerator is one more than the degree of 
the denominator. In such a case the equation of the slant asymptote can be found by long 
division as in the following example.

EXAMPLE �6�  Sketch the graph of f sxd −
x 3

x 2 1 1
.

A.	� The domain is R − s2`, `d.
B.	� The x- and y-intercepts are both 0.
C.	� Since f s2xd − 2f sxd, f  is odd and its graph is symmetric about the origin.
D.	�� Since x 2 1 1 is never 0, there is no vertical asymptote. Since f sxdl ` as xl ` 

and f sxdl 2` as xl 2`, there is no horizontal asymptote. But long division

0

y

x
{œ„3, 0}{_œ„3, 0}

x=2x=_2

(0, ln 4)

FIGURE 11�   
y − lns4 2 x 2d

y=ƒ

x

y

0

y=mx+b

ƒ-(mx+b)

FIGURE 12� 
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�	 gives

 f sxd −
x 3

x 2 1 1
− x 2

x

x 2 1 1

	� This equation suggests that y − x is a candidate for a slant asymptote. In fact,

 f sxd 2 x − 2
x

x 2 1 1
− 2

1

x

1 1
1

x 2

l 0     as    xl 6`

	� So the line y − x is a slant asymptote.

E.	 f 9sxd −
sx 2 1 1ds3x2d 2 x 3 ? 2x

sx 2 1 1d2 −
x 2sx 2 1 3d
sx 2 1 1d2

	� Since f 9sxd . 0 for all x (except 0), f  is increasing on s2`, `d.
F.	�� Although f 9s0d − 0, f 9 does not change sign at 0, so there is no local maximum or 

minimum.

G.	 f 0sxd −
sx 2 1 1d2s4x3 1 6xd 2 sx 4 1 3x 2 d ? 2sx 2 1 1d2x

sx 2 1 1d4 −
2xs3 2 x 2 d
sx 2 1 1d3

	� Since f 0sxd − 0 when x − 0 or x − 6s3 , we set up the following chart:

Interval x 3 2 x 2 sx 2 1 1d3 f 99sxd f

 x , 2s3 2 2 1 1 CU on (2`, 2s3 )
 2s3 , x , 0 2 1 1 2 CD on (2s3 , 0)

0 ,  x , s3 1 1 1 1 CU on (0, s3 )
 x . s3 1 2 1 2 CD on (s3 , `)

	� The points of inflection are (2s3 , 23
4 s3 ), s0, 0d, and (s3 , 34 s3 ).

H.	� The graph of f  is sketched in Figure 13.	 n

y=x

”_œ„3, _       ’3œ„3
4

inflection
points

y= ˛
≈+1

x

y

0

”œ„3,        ’3œ„3
4

FIGURE 13� 

1–54 � Use the guidelines of this section to sketch the curve.

	1 .	 y − x 3 1 3x2	2 .	 y − 2 1 3x 2 2 x 3

	3 .	 y − x 4 2 4x	4 .	 y − x 4 2 8x 2 1 8

	5 .	 y − xsx 2 4d3	6 .	 y − x 5 2 5x

	 7.	 y − 1
5 x 5 2 8

3 x 3 1 16x	 8.	 y − s4 2 x 2 d5

	 9.	 y −
x

x 2 1
	1 0.	 y −

x 2 1 5x

25 2 x2

	11.	 y −
x 2 x 2

2 2 3x 1 x 2 	12 .	 y − 1 1
1

x
1

1

x 2

	13.	 y −
x

x 2 2 4
	14 .	 y −

1

x 2 2 4

	15.	 y −
x 2

x 2 1 3
	16 .	 y −

sx 2 1d2

x 2 1 1

	17.	 y −
x 2 1

x 2 	1 8.	 y −
x

x 3 2 1Not For Sale
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	19.	 y −
x3

x3 1 1
	2 0.	 y −

x 3

x 2 2

	21.	 y − sx 2 3dsx 	22 .	 y − sx 2 4ds3 x 

	23.	 y − sx 2 1 x 2 2 	24 .	 y − sx 2 1 x  2 x

	25.	 y −
x

sx 2 1 1
	26 .	 y − xs2 2 x 2 

	27.	 y −
s1 2 x 2 

x
	2 8.	 y −

x

sx 2 2 1

	29.	 y − x 2 3x1y3	3 0.	 y − x 5y3 2 5x 2y3

	31.	 y − s3 x 2 2 1	32 .	 y − s3 x 3 1 1

	33.	 y − sin3 x	34 .	 y − x 1 cos x

	35.	� y − x tan x,    2�y2 , x , �y2

	36.	� y − 2x 2 tan x,    2�y2 , x , �y2

	37.	� y − sin x 1 s3  cos x,    22� < x < 2�

	38.	 y − csc x 2 2sin x,    0 , x , �

	39.	 y −
sin x

1 1 cos x
	4 0.	 y −

sin x

2 1 cos x

	41.	 y − arctanse xd	42 .	 y − s1 2 xde x

	43.	 y − 1ys1 1 e 2x d

	44.	� y − e2x sin x,    0 < x < 2�

	45.	 y −
1
x 1 ln x	46 .	 y − e2 x 2 e x

	47.	 y − s1 1 e x d22	4 8.	 y − e xyx 2

	49.	 y − lnssin xd	5 0.	 y − lns1 1 x3d

	51.	 y − xe21yx	52 .	 y −
ln x

x 2

	53.	 y − earctan x	54 .	 y − tan21S x 2 1

x 1 1D
	55.	�� �In the theory of relativity, the mass of a particle is

m −
m0

s1 2 v2yc2 

where m0 is the rest mass of the particle, m is the mass 
when the particle moves with speed v relative to the 
observer, and c is the speed of light. Sketch the graph of m 
as a function of v.

	56.	�� �In the theory of relativity, the energy of a particle is

E − sm0
2 c4 1 h2 c 2y�2 

where m0 is the rest mass of the particle, � is its wave 

length, and h is Planck’s constant. Sketch the graph of E as a 
function of �. What does the graph say about the energy?

	57.	�� �A model for the spread of a rumor is given by the equation

pstd −
1

1 1 ae2kt

where pstd is the proportion of the population that knows the 
rumor at time t and a and k are positive constants.

	 (a)	� When will half the population have heard the rumor?
	 (b)	� When is the rate of spread of the rumor greatest?
	 (c)	 Sketch the graph of p.

	58.	�� �A model for the concentration at time t of a drug injected 
into the bloodstream is

Cstd − Kse2at 2 e2btd

where a, b, and K are positive constants and b . a. Sketch 
the graph of the concentration function. What does the 
graph tell us about how the concentration varies as time 
passes?

	59.	�� �The figure shows a beam of length L embedded in concrete 
walls. If a constant load W is distributed evenly along its 
length, the beam takes the shape of the deflection curve

y − 2
W

24EI
 x 4 1

WL

12EI
 x 3 2

WL2

24EI
 x 2

where E and I are positive constants. (E is Young’s modu-
lus of elasticity and I is the moment of inertia of a cross- 
section of the beam.) Sketch the graph of the deflection 
curve.

Wy

0

L

	60.	�� �Coulomb’s Law states that the force of attraction between 
two charged particles is directly proportional to the product 
of the charges and inversely proportional to the square of 
the distance between them. The figure shows particles with 
charge 1 located at positions 0 and 2 on a coordinate line and 
a particle with charge 21 at a position x between them. It 
follows from Coulomb’s Law that the net force acting on the 
middle particle is

Fsxd − 2
k

x 2 1
k

sx 2 2d2          0 , x , 2

where k is a positive constant. Sketch the graph of the net 
force function. What does the graph say about the force?

7et0405x60
09/11/09
MasterID: 00518

_1
x

x
+1

2
+1

0
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61–64 � Find an equation of the slant asymptote. Do not sketch 
the curve.

	61.	 y −
x2 1 1

x 1 1
	62 .	 y −

4x 3 2 10x 2 2 11x 1 1

x 2 2 3x

	63.	 y −
2x 3 2 5x 2 1 3x

x 2 2 x 2 2
	64 .	 y −

26x 4 1 2x3 1 3

2x 3 2 x

65–70 � Use the guidelines of this section to sketch the curve. In 
guideline D find an equation of the slant asymptote.

	65.	 y −
x 2

x 2 1
	66 .	 y −

1 1 5x 2 2x 2

x 2 2

	67.	 y −
x 3 1 4

x 2 	6 8.	 y −
x 3

sx 1 1d2

	69.	 y − 1 1 1
2 x 1 e2x	 70.	 y − 1 2 x 1 e11xy3

	71.	�� �Show that the curve y − x 2 tan21x has two slant asymp-
totes: y − x 1 �y2 and y − x 2 �y2. Use this fact to help 
sketch the curve.

	72.	�� �Show that the curve y − sx2 1 4x  has two slant asymp-
totes: y − x 1 2 and y − 2x 2 2. Use this fact to help 
sketch the curve.

	73.	�� �Show that the lines y − sbyadx and y − 2sbyadx are slant 
asymptotes of the hyperbola sx 2ya 2 d 2 sy 2yb 2 d − 1.

	74.	� Let f sxd − sx 3 1 1dyx. Show that

lim
xl6`

 f f sxd 2 x 2 g − 0

This shows that the graph of f  approaches the graph of 
y − x 2, and we say that the curve y − f sxd is asymptotic  
to the parabola y − x 2. Use this fact to help sketch the 
graph of f.

	75.	�� �Discuss the asymptotic behavior of f sxd − sx 4 1 1dyx in  
the same manner as in Exercise 74. Then use your results 
to help sketch the graph of f.

	76.	�� �Use the asymptotic behavior of f sxd − sin x 1 e2x 
to sketch its graph without going through the curve-
sketching procedure of this section.

The method we used to sketch curves in the preceding section was a culmination of much 
of our study of differential calculus. The graph was the final object that we produced. 
In this section our point of view is completely different. Here we start with a graph 
produced by a graphing calculator or computer and then we refine it. We use calculus 
to make sure that we reveal all the important aspects of the curve. And with the use of 
graphing devices we can tackle curves that would be far too complicated to consider 
without technology. The theme is the interaction between calculus and calculators.

EXAMPLE �1�  Graph the polynomial f sxd − 2x 6 1 3x 5 1 3x 3 2 2x 2. Use the graphs 
of f 9 and f 0 to estimate all maximum and minimum points and intervals of concavity.

SOLUTION � If we specify a domain but not a range, many graphing devices will deduce 
a suitable range from the values computed. Figure 1 shows the plot from one such 
device if we specify that 25 < x < 5. Although this viewing rectangle is useful for 
showing that the asymptotic behavior (or end behavior) is the same as for y − 2x 6, it is 
obviously hiding some finer detail. So we change to the viewing rectangle f23, 2g by 
f250, 100g shown in Figure 2.

FIGURE 1� 

41,000

_1000
_5 5

y=ƒ

          FIGURE 2� 

100

_50

_3 2

y=ƒ

You may want to read “Graphing 
Calculators and Computers” at  
www.stewartcalculus.com if you 
haven’t already. In particular, it 
explains how to avoid some of the 
pitfalls of graphing devices by choosing 
appropriate viewing rectangles.
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From this graph it appears that there is an absolute minimum value of about 215.33 
when x < 21.62 (by using the cursor) and f  is decreasing on s2`, 21.62d and 
increasing on s21.62, `d. Also there appears to be a horizontal tangent at the origin and 
inflection points when x − 0 and when x is somewhere between 22 and 21.

Now let’s try to confirm these impressions using calculus. We differentiate and get 

 f 9sxd − 12x 5 1 15x 4 1 9x 2 2 4x

  f 0sxd − 60x 4 1 60x 3 1 18x 2 4

When we graph f 9 in Figure 3 we see that f 9sxd changes from negative to positive when 
x < 21.62; this confirms (by the First Derivative Test) the minimum value that we 
found earlier. But, perhaps to our surprise, we also notice that f 9sxd changes from posi-
tive to negative when x − 0 and from negative to positive when x < 0.35. This means 
that f  has a local maximum at 0 and a local minimum when x < 0.35, but these were 
hidden in Figure 2. Indeed, if we now zoom in toward the origin in Figure 4, we see 
what we missed before: a local maximum value of 0 when x − 0 and a local minimum 
value of about 20.1 when x < 0.35.

What about concavity and inflection points? From Figures 2 and 4 there appear to 
be inflection points when x is a little to the left of 21 and when x is a little to the right 
of 0. But it’s difficult to determine inflection points from the graph of f , so we graph 
the second derivative f 0 in Figure 5. We see that f 0 changes from positive to negative 
when x < 21.23 and from negative to positive when x < 0.19. So, correct to two deci-
mal places, f  is concave upward on s2`, 21.23d and s0.19, `d and concave downward 
on s21.23, 0.19d. The inflection points are s21.23, 210.18d and s0.19, 20.05d.

We have discovered that no single graph reveals all the important features of this 
polynomial. But Figures 2 and 4, when taken together, do provide an accurate picture.

	 n

EXAMPLE �2�  Draw the graph of the function

f sxd −
x 2 1 7x 1 3

x 2

in a viewing rectangle that contains all the important features of the function. Estimate 
the maximum and minimum values and the intervals of concavity. Then use calculus to 
find these quantities exactly.

SOLUTION � Figure 6, produced by a computer with automatic scaling, is a disaster. 
Some graphing calculators use f210, 10g by f210, 10g as the default viewing rect-
angle, so let’s try it. We get the graph shown in Figure 7; it’s a major improvement.

3 � 10!*

_5 5

y=ƒ

10

_10

_10 10

y=ƒ

FIGURE 6�	 FIGURE 7�

FIGURE 3� 

FIGURE 4� 

20

_5

_3 2

y=fª(x)

1

_1

_1 1

y=ƒ

10

_30

_3 2

y=f·(x)

FIGURE 5� 
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The y-axis appears to be a vertical asymptote and indeed it is because 

lim
xl 0

 
x 2 1 7x 1 3

x 2 − `

Figure 7 also allows us to estimate the x-intercepts: about 20.5 and 26.5. The 
exact values are obtained by using the quadratic formula to solve the equation 
x 2 1 7x 1 3 − 0; we get x − (27 6 s37 )y2.

To get a better look at horizontal asymptotes, we change to the viewing rectangle 
f220, 20g by f25, 10g in Figure 8. It appears that y − 1 is the horizontal asymptote 
and this is easily confirmed:

lim
xl6`

 
x 2 1 7x 1 3

x 2 − lim
xl6`

 S1 1
7

x
1

3

x 2D − 1

To estimate the minimum value we zoom in to the viewing rectangle f23, 0g by 
f24, 2g in Figure 9. The cursor indicates that the absolute minimum value is about 
23.1 when x < 20.9, and we see that the function decreases on s2`, 20.9d and s0, `d 
and increases on s20.9, 0d. The exact values are obtained by differentiating:

f 9sxd − 2
7

x 2 2
6

x 3 − 2
7x 1 6

x 3

This shows that f 9sxd . 0 when 26
7 , x , 0 and f 9sxd , 0 when x , 26

7 and when

x . 0. The exact minimum value is f (26
7 ) − 237

12 < 23.08.
Figure 9 also shows that an inflection point occurs somewhere between x − 21 and 

x − 22. We could estimate it much more accurately using the graph of the second 
derivative, but in this case it’s just as easy to find exact values. Since

f 0sxd −
14

x 3 1
18

x 4 −
2s7x 1 9d

x 4

we see that f 0sxd . 0 when x . 29
7 sx ± 0d. So f  is concave upward on s29

7, 0d and 

s0, `d and concave downward on s2`, 29
7 d. The inflection point is s29

7, 271
27 d.

The analysis using the first two derivatives shows that Figure 8 displays all the 
major aspects of the curve.	 n

EXAMPLE �3�  Graph the function  f sxd −
x 2sx 1 1d3

sx 2 2d2sx 2 4d4 .

SOLUTION � Drawing on our experience with a rational function in Example 2, let’s 
start by graphing f  in the viewing rectangle f210, 10g by f210, 10g. From Figure 10 
we have the feeling that we are going to have to zoom in to see some finer detail and 
also zoom out to see the larger picture. But, as a guide to intelligent zooming, let’s 
first take a close look at the expression for f sxd. Because of the factors sx 2 2d2 and 
sx 2 4d4 in the denominator, we expect x − 2 and x − 4 to be the vertical asymp-
totes. Indeed

lim
x l

 

2
 

x 2sx 1 1d3

sx 2 2d2sx 2 4d4 − `        and        lim
x l

 

4
 

x 2sx 1 1d3

sx 2 2d2sx 2 4d4 − `

10

_5

_20 20

y=ƒ

y=1

FIGURE 8�

2

_4

_3 0

y=ƒ

FIGURE 9� 

10

_10

_10 10
y=ƒ

FIGURE 10�  Not For Sale
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To find the horizontal asymptotes, we divide numerator and denominator by x 6:

x 2sx 1 1d3

sx 2 2d2sx 2 4d4 −

x 2

x 3 ?
sx 1 1d3

x 3

sx 2 2d2

x 2 ?
sx 2 4d4

x 4

−

1

x S1 1
1

xD3

S1 2
2

xD2S1 2
4

xD4

This shows that f sxdl0 as xl6`, so the x-axis is a horizontal asymptote.
It is also very useful to consider the behavior of the graph near the x-intercepts 

using an analysis like that in Example 2.6.12. Since x 2 is positive, f sxd does not 
change sign at 0 and so its graph doesn’t cross the x-axis at 0. But, because of the 
factor sx 1 1d3, the graph does cross the x-axis at 21 and has a horizontal tangent 
there. Putting all this information together, but without using derivatives, we see that 
the curve has to look something like the one in Figure 11.

Now that we know what to look for, we zoom in (several times) to produce the 
graphs in Figures 12 and 13 and zoom out (several times) to get Figure 14.

0.05

_0.05

_100 1

y=ƒ

0.0001

_0.0001

_1.5 0.5

y=ƒ

500

_10
_1 10

y=ƒ

	 FIGURE 13�	 FIGURE 14�

We can read from these graphs that the absolute minimum is about 20.02 and 
occurs when x < 220. There is also a local maximum <0.00002 when x < 20.3 and 
a local minimum <211 when x < 2.5. These graphs also show three inflection points 
near 235, 25, and 21 and two between 21 and 0. To estimate the inflection points 
closely we would need to graph f 0, but to compute f 0 by hand is an unreasonable 
chore. If you have a computer algebra system, then it’s easy to do (see Exercise 15).

We have seen that, for this particular function, three graphs (Figures 12, 13, and 14) 
are necessary to convey all the useful information. The only way to display all these 
features of the function on a single graph is to draw it by hand. Despite the exaggera-
tions and distortions, Figure 11 does manage to summarize the essential nature of the 
function.	 n

EXAMPLE �4�  Graph the function f sxd − sinsx 1 sin 2xd. For 0 < x < �, estimate 
all maximum and minimum values, intervals of increase and decrease, and inflection 
points.

SOLUTION � We first note that f  is periodic with period 2�. Also, f  is odd and 

| f sxd | < 1 for all x. So the choice of a viewing rectangle is not a problem for this func-
tion: We start with f0, �g by f21.1, 1.1g. (See Figure 15.) It appears that there are three 
local maximum values and two local minimum values in that window. To confirm��

x

y

1 2 3_1 4

FIGURE 11� 

FIGURE 12�

1.1

_1.1

0

1.2

_1.2

0π π

y=ƒ

y=fª(x)

FIGURE 15�
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 �this and locate them more accurately, we calculate that

f 9sxd − cossx 1 sin 2xd ? s1 1 2 cos 2xd

and graph both f  and f 9 in Figure 16.
Using zoom-in and the First Derivative Test, we find the following approximate  

values:

 Intervals of increase:  s0, 0.6d, s1.0, 1.6d, s2.1, 2.5d

 Intervals of decrease:  s0.6, 1.0d, s1.6, 2.1d, s2.5, �d

 Local maximum values: f s0.6d < 1, f s1.6d < 1, f s2.5d < 1

 Local minimum values:  f s1.0d < 0.94, f s2.1d < 0.94

The second derivative is

f 0sxd − 2s1 1 2 cos 2xd2 sinsx 1 sin 2xd 2 4 sin 2x cossx 1 sin 2xd

Graphing both f  and f 0 in Figure 17, we obtain the following approximate values:

 Concave upward on:  s0.8, 1.3d, s1.8, 2.3d

 Concave downward on: s0, 0.8d, s1.3, 1.8d, s2.3, �d

 Inflection points:  s0, 0d, s0.8, 0.97d, s1.3, 0.97d, s1.8, 0.97d, s2.3, 0.97d

Having checked that Figure 15 does indeed represent f  accurately for 0 < x < �,  
we can state that the extended graph in Figure 18 represents f  accurately for 
22� < x < 2�.	 n

Our final example is concerned with families of functions. This means that the func-
tions in the family are related to each other by a formula that contains one or more arbi-
trary constants. Each value of the constant gives rise to a member of the family and the 
idea is to see how the graph of the function changes as the constant changes.

EXAMPLE �5�  How does the graph of f sxd − 1ysx 2 1 2x 1 cd vary as c varies?

SOLUTION � The graphs in Figures 19 and 20 (the special cases c − 2 and c − 22)  
show two very different-looking curves. 

y= 1
≈+2x+2

2

_2

_5 4

2

_2

_5 4

y=
1

≈+2x-2

FIGURE 19�	 FIGURE 20�
c − 2	 c − 22

1.1

_1.1

0

1.2

_1.2

0π π

y=ƒ

y=fª(x)

FIGURE 16�

FIGURE 17�

1.2

_1.2

0 π

f

f ·

FIGURE 18�

1.2

_1.2

_2π 2π

The family of functions

f sxd − sinsx 1 sin cxd

where c is a constant, occurs in appli- 
cations to frequency modulation (FM) 
synthesis. A sine wave is modulated by 
a wave with a different frequency 
ssin cxd. The case where c − 2 is 
studied in Example 4. Exercise 27 
explores another special case.
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Before drawing any more graphs, let’s see what members of this family have in 
common. Since

lim
xl6`

 
1

x 2 1 2x 1 c
− 0

for any value of c, they all have the x-axis as a horizontal asymptote. A vertical asymp-
tote will occur when x 2 1 2x 1 c − 0. Solving this quadratic equation, we get 
x − 21 6 s1 2 c . When c . 1, there is no vertical asymptote (as in Figure 19).  
When c − 1, the graph has a single vertical asymptote x − 21 because

lim
xl21

 
1

x 2 1 2x 1 1
− lim

xl21
 

1

sx 1 1d2 − `

When c , 1, there are two vertical asymptotes: x − 21 6 s1 2 c  (as in Figure 20)
Now we compute the derivative:

f 9sxd − 2
2x 1 2

sx 2 1 2x 1 cd2

This shows that f 9sxd − 0 when x − 21 (if c ± 1), f 9sxd . 0 when x , 21, and 
f 9sxd , 0 when x . 21. For c > 1, this means that f  increases on s2`, 21d 
and decreases on s21, `d. For c . 1, there is an absolute maximum value 
f s21d − 1ysc 2 1d. For c , 1, f s21d − 1ysc 2 1d is a local maximum value and the 
intervals of increase and decrease are interrupted at the vertical asymptotes.

Figure 21 is a “slide show” displaying five members of the family, all graphed in the 
viewing rectangle f25, 4g by f22, 2g. As predicted, a transition takes place from two 
vertical asymptotes to one at c − 1, and then to none for c . 1. As c increases from 
1, we see that the maximum point becomes lower; this is explained by the fact that 
1ysc 2 1dl 0 as cl `. As c decreases from 1, the vertical asymptotes become more 
widely separated because the distance between them is 2s1 2 c , which becomes large 
as cl 2`. Again, the maximum point approaches the x-axis because 1ysc 2 1dl 0 
as cl 2`.

c=3c=2c=1c=0c=_1

There is clearly no inflection point when c < 1. For c . 1 we calculate that

f 0sxd −
2s3x 2 1 6x 1 4 2 cd

sx 2 1 2x 1 cd3

and deduce that inflection points occur when x − 21 6 s3sc 2 1dy3. So the inflection 
points become more spread out as c increases and this seems plausible from the last 
two parts of Figure 21.	 n

FIGURE 21�   
The family of functions 
f sxd − 1ysx2 1 2x 1 cd

TEC � See an animation of Figure 21 in 
Visual 4.6.
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; 
1–8 � Produce graphs of f  that reveal all the important aspects 
of the curve. In particular, you should use graphs of f 9 and 
f 0 to estimate the intervals of increase and decrease, extreme 
values, intervals of concavity, and inflection points.

	 1.	 f sxd − x 5 2 5x4 2 x 3 2 28x 2 2 2x

	2 .	 f sxd − 22x6 1 5x 5 1 140x 3 2 110x 2

	3 .	 f sxd − x 6 2 5x 5 1 25x 3 2 6x 2 2 48x

	4 .	 f sxd −
x4 2 x 3 2 8

x 2 2 x 2 6
	5 .	 f sxd −

x

x 3 1 x 2 1 1

	 6.	� f sxd − 6 sin x 2 x 2,    25 < x < 3

	 7.	� f sxd − 6 sin x 1 cot x,    2� < x < �

	 8.	 f sxd − e x 2 0.186x 4

9–10 � Produce graphs of f  that reveal all the important aspects 
of the curve. Estimate the intervals of increase and decrease 
and intervals of concavity, and use calculus to find these inter-
vals exactly.

	 9.	 f sxd − 1 1
1

x
1

8

x 2 1
1

x 3 	 10.	 f sxd −
1

x 8 2
2 3 108

x 4

	11–12
	(a)  Graph the function.
	(b) � Use l’Hospital’s Rule to explain the behavior as x l 0.
	(c) � Estimate the minimum value and intervals of concavity. 

Then use calculus to find the exact values.

	11.	 f sxd − x 2 ln x	 12.	 f sxd − xe1yx

13–14 � Sketch the graph by hand using asymptotes and inter-
cepts, but not derivatives. Then use your sketch as a guide to 
producing graphs (with a graphing device) that display the 
major features of the curve. Use these graphs to estimate the 
maximum and minimum values.

	13.	 f sxd −
sx 1 4dsx 2 3d2

x 4sx 2 1d

	14.  f sxd −
s2x 1 3d2sx 2 2d5

x 3sx 2 5d2

	15.	� �If f  is the function considered in Example 3, use a com
puter algebra system to calculate f 9 and then graph it to 
confirm that all the maximum and minimum values are as 
given in the example. Calculate f 0 and use it to estimate 
the intervals of concavity and inflection points.

	16.	� �If f  is the function of Exercise 14, find f 9 and f 0 and 
use their graphs to estimate the intervals of increase and 
decrease and concavity of f.

CAS

CAS

17–22 � Use a computer algebra system to graph f  and to find 
f 9 and f 0. Use graphs of these derivatives to estimate the 
intervals of increase and decrease, extreme values, intervals  
of concavity, and inflection points of f.

	17.	 f sxd −
x 3 1 5x 2 1 1

x 4 1 x 3 2 x 2 1 2

	18.	 f sxd −
x 2y3

1 1 x 1 x 4

	19.	� f sxd − sx 1 5 sin x ,    x < 20

	20.	 f sxd − x 2 tan21sx 2d

	21.	 f sxd −
1 2 e1yx

1 1 e1yx

	22.	 f sxd −
3

3 1 2 sin x

23–24 � Graph the function using as many viewing rectangles 
as you need to depict the true nature of the function.

	23.	 f sxd −
1 2 cossx 4d

x 8

	24.	 f sxd − e x 1 ln| x 2 4 |

25–26
	(a)  Graph the function.
	(b) � Explain the shape of the graph by computing the limit as 

x l 01 or as x l `.
	(c) � Estimate the maximum and minimum values and then use  

calculus to find the exact values.
	(d) � Use a graph of f 0 to estimate the x-coordinates of the 

inflection points.

	25.	 f sxd − x 1yx	2 6.	 f sxd − ssin xdsin x

	27.	�� In Example 4 we considered a member of the family 
of functions f sxd − sinsx 1 sin cxd that occur in FM 
synthesis. Here we investigate the function with c − 3. 
Start by graphing f  in the viewing rectangle f0, �g by 
f21.2, 1.2g. How many local maximum points do you 
see? The graph has more than are visible to the naked eye. 
To discover the hidden maximum and minimum points 
you will need to examine the graph of f 9 very carefully. 
In fact, it helps to look at the graph of f 0 at the same 
time. Find all the maximum and minimum values and 
inflection points. Then graph f  in the viewing rectangle 
f22�, 2�g by f21.2, 1.2g and comment on symmetry.

28–35 � Describe how the graph of f  varies as c varies. Graph 
several members of the family to illustrate the trends that you 

CAS

CAS

CAS
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x l 6`. Identify any transitional values of c where the basic 
shape changes. What happens to the maximum or minimum 
points and inflection points as c changes? Illustrate by graph-
ing several members of the family.

	38.	�� Investigate the family of curves given by the equation 
f sxd − x 4 1 cx 2 1 x. Start by determining the transitional 
value of c at which the number of inflection points changes. 
Then graph several members of the family to see what shapes 
are possible. There is another transitional value of c at which 
the number of critical numbers changes. Try to discover it 
graphically. Then prove what you have discovered.

	39.	� (a)	� Investigate the family of polynomials given by the equa
tion f sxd − cx 4 2 2x 2 1 1. For what values of c does 
the curve have minimum points?

	 (b)	� Show that the minimum and maximum points of every 
curve in the family lie on the parabola y − 1 2 x 2. 
Illustrate by graphing this parabola and several members 
of the family.

	40.	� (a)	� Investigate the family of polynomials given by the equa
tion f sxd − 2x 3 1 cx 2 1 2x. For what values of c does 
the curve have maximum and minimum points?

	 (b)	� Show that the minimum and maximum points of every 
curve in the family lie on the curve y − x 2 x 3. Illustrate 
by graphing this curve and several members of the family.

discover. In particular, you should investigate how maximum  
and minimum points and inflection points move when c changes. 
You should also identify any transitional values of c at which the 
basic shape of the curve changes.

	28.	 f sxd − x 3 1 cx

	29.	� f sxd − x2 1 6x 1 cyx  (Trident of Newton)

	30.	 f sxd − xsc 2 2 x 2 	3 1.	 f sxd − e x 1 ce2x

	32.	 f sxd − lnsx 2 1 cd	33 .	 f sxd −
cx

1 1 c 2x 2

	34.	 f sxd −
sin x

c 1 cos x
	35 .	 f sxd − cx 1 sin x

	36.	�� The family of functions f std − Cse2at 2 e2bt d, where a,  
b, and C are positive numbers and b . a, has been used to 
model the concentration of a drug injected into the blood-
stream at time t − 0. Graph several members of this family. 
What do they have in common? For fixed values of C and a,  
discover graphically what happens as b increases. Then use 
calculus to prove what you have discovered.

	37.	�� Investigate the family of curves given by f sxd − xe2cx,  
where c is a real number. Start by computing the limits as 

The methods we have learned in this chapter for finding extreme values have practi-
cal applications in many areas of life. A businessperson wants to minimize costs and 
maximize profits. A traveler wants to minimize transportation time. Fermat’s Principle in 
optics states that light follows the path that takes the least time. In this section we solve 
such problems as maximizing areas, volumes, and profits and minimizing distances, 
times, and costs.

In solving such practical problems the greatest challenge is often to convert the word 
problem into a mathematical optimization problem by setting up the function that is to  
be maximized or minimized. Let’s recall the problem-solving principles discussed on 
page 71 and adapt them to this situation:

Steps In Solving Optimization Problems
1.	� Understand the Problem�  The first step is to read the problem carefully until it is 

clearly understood. Ask yourself: What is the unknown? What are the given quanti-
ties? What are the given conditions?

2.	� Draw a Diagram�  In most problems it is useful to draw a diagram and identify the 
given and required quantities on the diagram.

3.	� Introduce Notation�  Assign a symbol to the quantity that is to be maximized or 
minimized (let’s call it Q for now). Also select symbols sa, b, c, . . . , x, yd for other 
unknown quantities and label the diagram with these symbols. It may help to use 
initials as suggestive symbols—for example, A for area, h for height, t for time.

PS
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4.	� Express Q in terms of some of the other symbols from Step 3.

5.	�� If Q has been expressed as a function of more than one variable in Step 4, use the 
given information to find relationships (in the form of equations) among these 
variables. Then use these equations to eliminate all but one of the variables in the 
expression for Q. Thus Q will be expressed as a function of one variable x, say, 
Q − f sxd. Write the domain of this function in the given context.

6.	�� Use the methods of Sections 4.1 and 4.3 to find the absolute maximum or minimum 
value of f. In particular, if the domain of f  is a closed interval, then the Closed 
Interval Method in Section 4.1 can be used.

EXAMPLE �1�  A farmer has 2400 ft of fencing and wants to fence off a rectangular field 
that borders a straight river. He needs no fence along the river. What are the dimensions 
of the field that has the largest area?

SOLUTION � In order to get a feeling for what is happening in this problem, let’s experi-
ment with some specific cases. Figure 1 (not to scale) shows three possible ways of 
laying out the 2400 ft of fencing.

100
2200

100

Area=100 · 2200=220,000 ft@

700

1000

700

Area=700 · 1000=700,000 ft@

1000

400

1000

Area=1000 · 400=400,000 ft@

We see that when we try shallow, wide fields or deep, narrow fields, we get rela-
tively small areas. It seems plausible that there is some intermediate configuration that 
produces the largest area.

Figure 2 illustrates the general case. We wish to maximize the area A of the rect-
angle. Let x and y be the depth and width of the rectangle (in feet). Then we express A 
in terms of x and y:

A − xy

We want to express A as a function of just one variable, so we eliminate y by express-
ing it in terms of x. To do this we use the given information that the total length of the 
fencing is 2400 ft. Thus 

2x 1 y − 2400

From this equation we have y − 2400 2 2x, which gives

A − xy − xs2400 2 2xd − 2400x 2 2x 2

Note that the largest x can be is 1200 (this uses all the fence for the depth and none for 
the width) and x can’t be negative, so the function that we wish to maximize is

Asxd − 2400x 2 2x 2        0 < x < 1200

PS    Understand the problem
PS    Analogy: Try special cases
PS    Draw diagrams

FIGURE 1�   

FIGURE 2�   

x

y

A x

PS    Introduce notation
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The derivative is A9sxd − 2400 2 4x, so to find the critical numbers we solve the  
equation

2400 2 4x − 0

which gives x − 600. The maximum value of A must occur either at this critical number 
or at an endpoint of the interval. Since As0d − 0, As600d − 720,000, and As1200d − 0, 
the Closed Interval Method gives the maximum value as As600d − 720,000.

[Alternatively, we could have observed that A0sxd − 24 , 0 for all x, so A is 
always concave downward and the local maximum at x − 600 must be an absolute 
maximum.]

The corresponding y-value is y − 2400 2 2s600d − 1200; so the rectangular field 
should be 600 ft deep and 1200 ft wide. 	 n

EXAMPLE �2�  A cylindrical can is to be made to hold 1 L of oil. Find the dimensions 
that will minimize the cost of the metal to manufacture the can.

SOLUTION � Draw the diagram as in Figure 3, where r is the radius and h the height (both 
in centimeters). In order to minimize the cost of the metal, we minimize the total surface 
area of the cylinder (top, bottom, and sides). From Figure 4 we see that the sides are 
made from a rectangular sheet with dimensions 2�r and h. So the surface area is

A − 2�r 2 1 2�rh

We would like to express A in terms of one variable, r. To eliminate h we use the 
fact that the volume is given as 1 L, which is equivalent to 1000 cm3. Thus

�r 2h − 1000

which gives h − 1000ys�r 2 d. Substitution of this into the expression for A gives

A − 2�r 2 1 2�rS 1000

�r 2 D − 2�r 2 1
2000

r

We know r must be positive, and there are no limitations on how large r can be. There-
fore the function that we want to minimize is

Asrd − 2�r 2 1
2000

r
        r . 0

To find the critical numbers, we differentiate:

A9srd − 4�r 2
2000

r 2 −
4s�r 3 2 500d

r 2

Then A9srd − 0 when �r 3 − 500, so the only critical number is r − s3 500y�
  .

Since the domain of A is s0, `d, we can’t use the argument of Example 1 concern-
ing endpoints. But we can observe that A9srd , 0 for r , s3 500y�   and A9srd . 0 for 
r . s3 500y�  , so A is decreasing for all r to the left of the critical number and increas-
ing for all r to the right. Thus r − s3 500y�   must give rise to an absolute minimum.

[Alternatively, we could argue that Asrdl ` as r l 01 and Asrdl ` as r l `, so 
there must be a minimum value of Asrd, which must occur at the critical number. See 
Figure 5.]

r

h

FIGURE 3� 

r

Area 2{πr@} Area (2πr)h

2πr

h

FIGURE 4� 

r

y

0 10

1000 y=A(r)

FIGURE 5� 
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The value of h corresponding to r − s3 500y�   is

h −
1000

�r 2 −
1000

�s500y�d2y3 − 2Î3
500

�
 − 2r

Thus, to minimize the cost of the can, the radius should be s3 500y�   cm and the height 
should be equal to twice the radius, namely, the diameter.	 n

NOTE 1  The argument used in Example 2 to justify the absolute minimum is a vari-
ant of the First Derivative Test (which applies only to local maximum or minimum val-
ues) and is stated here for future reference.

�First Derivative Test for Absolute Extreme Values � Suppose that c is a critical 
number of a continuous function f  defined on an interval.

(a) � If f 9sxd . 0 for all x , c and f 9sxd , 0 for all x . c, then f scd is the abso- 
lute maximum value of f.

(b) � If f 9sxd , 0 for all x , c and f 9sxd . 0 for all x . c, then f scd is the abso- 
lute minimum value of f.

TEC � Module 4.7 takes you through 
six additional optimization problems, 
including animations of the physical 
situations.

NOTE 2  An alternative method for solving optimization problems is to use implicit 
differentiation. Let’s look at Example 2 again to illustrate the method. We work with the 
same equations

A − 2�r 2 1 2�rh            �r 2h − 1000

but instead of eliminating h, we differentiate both equations implicitly with respect to r:

A9 − 4�r 1 2�rh9 1 2�h            �r 2h9 1 2�rh − 0

The minimum occurs at a critical number, so we set A9 − 0, simplify, and arrive at the  
equations

2r 1 rh9 1 h − 0            rh9 1 2h − 0

and subtraction gives 2r 2 h − 0, or h − 2r.

EXAMPLE �3�  Find the point on the parabola y 2 − 2x that is closest to the point s1, 4d.

SOLUTION � The distance between the point s1, 4d and the point sx, yd is

d − ssx 2 1d2 1 sy 2 4d2 

(See Figure 6.) But if sx, yd lies on the parabola, then x − 1
2 y 2, so the expression for d 

becomes

d − s(1
2 y2 2 1)2 1 sy 2 4d2 

(Alternatively, we could have substituted y − s2x  to get d in terms of x alone.) 
Instead of minimizing d, we minimize its square:

d 2 − f syd − s1
2 y 2 2 1d 2 1 sy 2 4d2

In the Applied Project on page 343 we 
investigate the most economical shape 
for a can by taking into account other 
manufacturing costs.

x

y

0 1

1

2 3 4

¥=2x(1, 4)

(x, y)

FIGURE 6
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(You should convince yourself that the minimum of d occurs at the same point as the 
minimum of d 2, but d 2 is easier to work with.) Note that there are no restrictions on y, 
so the domain is all real numbers. Differentiating, we obtain

f 9syd − 2s1
2 y 2 2 1dy 1 2sy 2 4d − y 3 2 8

so f 9syd − 0 when y − 2. Observe that f 9syd , 0 when y , 2 and f 9syd . 0 when 
y . 2, so by the First Derivative Test for Absolute Extreme Values, the absolute mini-
mum occurs when y − 2. (Or we could simply say that because of the geometric nature 
of the problem, it’s obvious that there is a closest point but not a farthest point.) The 
corresponding value of x is x − 1

2 y 2 − 2. Thus the point on y 2 − 2x closest to s1, 4d is 
s2, 2d. [The distance between the points is d − sf s2d − s5 .]	 n

EXAMPLE �4�  A man launches his boat from point A on a bank of a straight river, 3 km 
wide, and wants to reach point B, 8 km downstream on the opposite bank, as quickly as 
possible (see Figure 7). He could row his boat directly across the river to point C and 
then run to B, or he could row directly to B, or he could row to some point D between 
C and B and then run to B. If he can row 6 kmyh and run 8 kmyh, where should he 
land to reach B as soon as possible? (We assume that the speed of the water is negli-
gible compared with the speed at which the man rows.)

SOLUTION � If we let x be the distance from C to D, then the running distance is 

| DB | − 8 2 x and the Pythagorean Theorem gives the rowing distance as

| AD | − sx 2 1 9 . We use the equation

time −
distance

rate

Then the rowing time is sx 2 1 9 y6 and the running time is s8 2 xdy8, so the total time 
T  as a function of x is

Tsxd −
sx 2 1 9 

6
1

8 2 x

8

The domain of this function T  is f0, 8g. Notice that if x − 0, he rows to C and if x − 8, 
he rows directly to B. The derivative of T  is

T9sxd −
x

6sx 2 1 9 
2

1

8

Thus, using the fact that x > 0, we have

T9sxd − 0    &?  
x

6sx 2 1 9 
−

1

8
    &?    4x − 3sx 2 1 9  

    &?    16x 2 − 9sx 2 1 9d    &?    7x 2 − 81

    &?    x −
9

s7 

The only critical number is x − 9ys7 . To see whether the minimum occurs at this 
critical number or at an endpoint of the domain f0, 8g, we follow the Closed Interval 

8 km

C

D

B

A

3 km

x

FIGURE 7� 
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Method by evaluating T  at all three points:

Ts0d − 1.5            TS 9

s7 D − 1 1
s7 

8
< 1.33            Ts8d −

s73 

6
< 1.42 

Since the smallest of these values of T  occurs when x − 9ys7 , the absolute minimum 
value of T  must occur there. Figure 8 illustrates this calculation by showing the graph 
of T.

Thus the man should land the boat at a point 9ys7  km (<3.4 km) downstream from 
his starting point.	 n

EXAMPLE �5�  Find the area of the largest rectangle that can be inscribed in a semicircle 
of radius r.

SOLUTION 1 � Let’s take the semicircle to be the upper half of the circle x 2 1 y 2 − r 2 
with center the origin. Then the word inscribed means that the rectangle has two  
vertices on the semicircle and two vertices on the x-axis as shown in Figure 9.

Let sx, yd be the vertex that lies in the first quadrant. Then the rectangle has sides of 
lengths 2x and y, so its area is

A − 2xy

To eliminate y we use the fact that sx, yd lies on the circle x 2 1 y 2 − r 2 and so
y − sr 2 2 x 2 . Thus

A − 2xsr 2 2 x 2 

The domain of this function is 0 < x < r. Its derivative is

A9 − 2sr 2 2 x 2 2
2x 2

sr 2 2 x 2 
−

2sr 2 2 2x 2 d
sr 2 2 x 2 

which is 0 when 2x 2 − r 2, that is, x − rys2  (since x > 0). This value of x gives a  
maximum value of A since As0d − 0 and Asrd − 0. Therefore the area of the largest 
inscribed rectangle is

AS r

s2 D − 2 
r

s2 Îr 2 2
r 2

2
 − r 2

SOLUTION 2 � A simpler solution is possible if we think of using an angle as a variable. 
Let � be the angle shown in Figure 10. Then the area of the rectangle is

As�d − s2r cos �dsr sin �d − r 2s2 sin � cos �d − r 2 sin 2�

We know that sin 2� has a maximum value of 1 and it occurs when 2� − �y2. So As�d 
has a maximum value of r 2 and it occurs when � − �y4.

Notice that this trigonometric solution doesn’t involve differentiation. In fact, we  
didn’t need to use calculus at all.	 n

Applications to Business and Economics
In Section 3.7 we introduced the idea of marginal cost. Recall that if Csxd, the cost func-
tion, is the cost of producing x units of a certain product, then the marginal cost is the 
rate of change of C with respect to x. In other words, the marginal cost function is the 
derivative, C9sxd, of the cost function.

x

T

0

1

2 4 6

y=T(x)

FIGURE 8� 

x

y

0

2x
(x, y) 

y

_r r

FIGURE 9� 

r

¨

r cos ̈

r sin ̈

FIGURE 10� 
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336	 CHAPTER 4    Applications of Differentiation

Now let’s consider marketing. Let psxd be the price per unit that the company can 
charge if it sells x units. Then p is called the demand function (or price function) and 
we would expect it to be a decreasing function of x. (More units sold corresponds to a 
lower price.) If x units are sold and the price per unit is psxd, then the total revenue is

Rsxd − quantity 3 price − xpsxd

and R is called the revenue function. The derivative R9 of the revenue function is called 
the marginal revenue function and is the rate of change of revenue with respect to the 
number of units sold.

If x units are sold, then the total profit is

Psxd − Rsxd 2 Csxd

and P is called the profit function. The marginal profit function is P9, the derivative of 
the profit function. In Exercises 59–63 you are asked to use the marginal cost, revenue, 
and profit functions to minimize costs and maximize revenues and profits.

EXAMPLE �6�  A store has been selling 200 flat-screen TVs a week at $350 each. A mar-
ket survey indicates that for each $10 rebate offered to buyers, the number of TVs sold 
will increase by 20 a week. Find the demand function and the revenue function. How 
large a rebate should the store offer to maximize its revenue?

SOLUTION � If x is the number of TVs sold per week, then the weekly increase in sales is 
x 2 200. For each increase of 20 units sold, the price is decreased by $10. So for each 
additional unit sold, the decrease in price will be 1

20 3 10 and the demand function is

 psxd − 350 2 10
20 sx 2 200d − 450 2 1

2 x

The revenue function is

 Rsxd − xpsxd − 450x 2 1
2 x 2

Since R9sxd − 450 2 x, we see that R9sxd − 0 when x − 450. This value of x gives an 
absolute maximum by the First Derivative Test (or simply by observing that the graph 
of R is a parabola that opens downward). The corresponding price is

 ps450d − 450 2 1
2 s450d − 225

and the rebate is 350 2 225 − 125. Therefore, to maximize revenue, the store should 
offer a rebate of $125.	 n

First number Second number Product

	 1 22 	 22
	 2 21 	 42
	 3 20 	 60

. . .

. . .

. . .

	 1.	�� Consider the following problem: Find two numbers whose 
sum is 23 and whose product is a maximum.

	 (a)	�� Make a table of values, like the one at the right, so that 
the sum of the numbers in the first two columns is always 
23. On the basis of the evidence in your table, estimate 
the answer to the problem.

	 (b)	�� Use calculus to solve the problem and compare with your 
answer to part (a).
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ing up the sides. Find the largest volume that such a box can 
have.

	 (a)	�� Draw several diagrams to illustrate the situation, some 
short boxes with large bases and some tall boxes with 
small bases. Find the volumes of several such boxes. 
Does it appear that there is a maximum volume? If so, 
estimate it.

	 (b)	�� Draw a diagram illustrating the general situation. Intro-
duce notation and label the diagram with your symbols.

	 (c)	 Write an expression for the volume.
	 (d)	�� Use the given information to write an equation that 

relates the variables.
	 (e)	�� Use part (d) to write the volume as a function of one  

variable.
	 (f  )	�� Finish solving the problem and compare the answer with 

your estimate in part (a).

	13.	�� A farmer wants to fence in an area of 1.5 million square feet 
in a rectangular field and then divide it in half with a fence 
parallel to one of the sides of the rectangle. How can he do 
this so as to minimize the cost of the fence?

	14.	�� A box with a square base and open top must have a volume of 
32,000 cm3. Find the dimensions of the box that minimize the 
amount of material used.

	15.	�� If 1200 cm2 of material is available to make a box with a 
square base and an open top, find the largest possible volume 
of the box.

	16.	�� A rectangular storage container with an open top is to have 
a volume of 10 m3. The length of its base is twice the width. 
Material for the base costs $10 per square meter. Material for 
the sides costs $6 per square meter. Find the cost of materials 
for the cheapest such container.

	17.	�� Do Exercise 16 assuming the container has a lid that is made 
from the same material as the sides.

	18.	�� A farmer wants to fence in a rectangular plot of land adjacent 
to the north wall of his barn. No fencing is needed along the 
barn, and the fencing along the west side of the plot is shared 
with a neighbor who will split the cost of that portion of the 
fence. If the fencing costs $20 per linear foot to install and 
the farmer is not willing to spend more than $5000, find the 
dimensions for the plot that would enclose the most area.

	19.	� �If the farmer in Exercise 18 wants to enclose 8000 square  
feet of land, what dimensions will minimize the cost of  
the fence?

	20.	� (a)	�� Show that of all the rectangles with a given area, the one 
with smallest perimeter is a square.

	 (b)	�� Show that of all the rectangles with a given perimeter, the 
one with greatest area is a square.

	21.	�� Find the point on the line y − 2x 1 3 that is closest to the 
origin.

	22.	�� Find the point on the curve y − sx  that is closest to the  
point s3, 0d.

	2 .	�� Find two numbers whose difference is 100 and whose product 
is a minimum.

	3 .	�� Find two positive numbers whose product is 100 and whose 
sum is a minimum.

	4 .	�� The sum of two positive numbers is 16. What is the smallest 
possible value of the sum of their squares?

	5 .	�� �What is the maximum vertical distance between the line 
y − x 1 2 and the parabola y − x 2 for 21 < x < 2?

	 6.	�� �What is the minimum vertical distance between the parabolas 
y − x 2 1 1 and y − x 2 x 2?

	 7.	�� Find the dimensions of a rectangle with perimeter 100 m 
whose area is as large as possible.

	 8.	�� Find the dimensions of a rectangle with area 1000 m2 whose 
perimeter is as small as possible.

	 9.	�� A model used for the yield Y of an agricultural crop as a 
function of the nitrogen level N in the soil (measured in 
appropriate units) is

Y −
kN

1 1 N 2

where k is a positive constant. What nitrogen level gives the 
best yield?

	10.	�� The rate sin mg carbonym3yhd at which photosynthesis takes 
place for a species of phytoplankton is modeled by the  
function

P −
100 I

I 2 1 I 1 4

where I is the light intensity (measured in thousands of foot-
candles). For what light intensity is P a maximum?

	11.	�� Consider the following problem: A farmer with 750 ft of 
fencing wants to enclose a rectangular area and then divide 
it into four pens with fencing parallel to one side of the 
rectangle. What is the largest possible total area of the  
four pens?

	 (a)	�� Draw several diagrams illustrating the situation, some 
with shallow, wide pens and some with deep, narrow pens. 
Find the total areas of these configurations. Does it appear 
that there is a maximum area? If so, estimate it.

	 (b)	�� Draw a diagram illustrating the general situation. Intro-
duce notation and label the diagram with your symbols.

	 (c)	 Write an expression for the total area.
	 (d)	�� Use the given information to write an equation that 

relates the variables.
	 (e)	�� Use part (d) to write the total area as a function of one 

variable.
	 (f  )	�� Finish solving the problem and compare the answer with 

your estimate in part (a).

	12.	�� Consider the following problem: A box with an open top is to 
be constructed from a square piece of cardboard, 3 ft wide, by 
cutting out a square from each of the four corners and bend-Not For Sale
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338	 CHAPTER 4    Applications of Differentiation

	39.	�� If you are offered one slice from a round pizza (in other 
words, a sector of a circle) and the slice must have a 
perimeter of 32 inches, what diameter pizza will reward 
you with the largest slice?

	40.	�� A fence 8 ft tall runs parallel to a tall building at a distance 
of 4 ft from the building. What is the length of the shortest 
ladder that will reach from the ground over the fence to 
the wall of the building?

	41.	�� A cone-shaped drinking cup is made from a circular piece 
of paper of radius R by cutting out a sector and joining 
the edges CA and CB. Find the maximum capacity of 
such a cup.

A B

R

C

	42.	�� A cone-shaped paper drinking cup is to be made to hold 
27 cm3 of water. Find the height and radius of the cup that 
will use the smallest amount of paper.

	43.	�� A cone with height h is inscribed in a larger cone with  
height H so that its vertex is at the center of the base of 
the larger cone. Show that the inner cone has maximum 
volume when h − 1

3 H.

	44.	�� An object with weight W is dragged along a horizontal 
plane by a force acting along a rope attached to the object. 
If the rope makes an angle � with a plane, then the magni-
tude of the force is

F −
�W

� sin � 1 cos �

where � is a constant called the coefficient of friction. For 
what value of � is F smallest?

	45.	�� If a resistor of R ohms is connected across a battery of E 
volts with internal resistance r ohms, then the power (in 
watts) in the external resistor is

P −
E 2R

sR 1 rd2

If E and r are fixed but R varies, what is the maximum 
value of the power?

	46.	�� For a fish swimming at a speed v relative to the water, 
the energy expenditure per unit time is proportional to 
v 3. It is believed that migrating fish try to minimize the 
total energy required to swim a fixed distance. If the fish 
are swimming against a current u su , vd, then the time 

	23.	�� Find the points on the ellipse 4x 2 1 y 2 − 4 that are farthest 
away from the point s1, 0d.

	24.	�� Find, correct to two decimal places, the coordinates of the 
point on the curve y − sin x that is closest to the point s4, 2d.

	25.	�� Find the dimensions of the rectangle of largest area that can 
be inscribed in a circle of radius r.

	26.	�� Find the area of the largest rectangle that can be inscribed in 
the ellipse x 2ya2 1 y 2yb 2 − 1.

	27.	�� Find the dimensions of the rectangle of largest area that can 
be inscribed in an equilateral triangle of side L if one side of 
the rectangle lies on the base of the triangle.

	28.	�� Find the area of the largest trapezoid that can be inscribed 
in a circle of radius 1 and whose base is a diameter of the 
circle.

	29.	�� Find the dimensions of the isosceles triangle of largest area 
that can be inscribed in a circle of radius r.

	30.	�� If the two equal sides of an isosceles triangle have length a,  
find the length of the third side that maximizes the area of 
the triangle.

	31.	�� A right circular cylinder is inscribed in a sphere of radius r. 
Find the largest possible volume of such a cylinder.

	32.	�� A right circular cylinder is inscribed in a cone with height h 
and base radius r. Find the largest possible volume of such  
a cylinder.

	33.	�� A right circular cylinder is inscribed in a sphere of radius r. 
Find the largest possible surface area of such a cylinder.

	34.	�� A Norman window has the shape of a rectangle sur- 
mounted by a semicircle. (Thus the diameter of the  
semicircle is equal to the width of the rectangle. See Exer-
cise 1.1.62.) If the perimeter of the window is 30 ft, find 
the dimensions of the window so that the greatest possible 
amount of light is admitted.

	35.	�� The top and bottom margins of a poster are each 6 cm and 
the side margins are each 4 cm. If the area of printed mate-
rial on the poster is fixed at 384 cm2, find the dimensions of 
the poster with the smallest area.

	36.	�� A poster is to have an area of 180 in2 with 1-inch margins at 
the bottom and sides and a 2-inch margin at the top. What 
dimensions will give the largest printed area?

	37.	�� A piece of wire 10 m long is cut into two pieces. One piece 
is bent into a square and the other is bent into an equilateral 
triangle. How should the wire be cut so that the total area 
enclosed is (a) a maximum? (b) A minimum?

	38.	�� Answer Exercise 37 if one piece is bent into a square and 
the other into a circle.

;

Not For Sale

©
 2

01
4 

C
en

ga
ge

 L
ea

rn
in

g.
 A

ll 
R

ig
ht

s R
es

er
ve

d.
 T

hi
s c

on
te

nt
 is

 n
ot

 y
et

 fi
na

l a
nd

 C
en

ga
ge

 L
ea

rn
in

g 
do

es
 n

ot
 g

ua
ra

nt
ee

 th
is

 p
ag

e 
w

ill
 c

on
ta

in
 c

ur
re

nt
 m

at
er

ia
l o

r m
at

ch
 th

e 
pu

bl
is

he
d 

pr
od

uc
t.



	 SECTION  4.7    Optimization Problems	 339

opposite A on the other side of the lake in the shortest 
possible time (see the figure). She can walk at the rate of  
4 miyh and row a boat at 2 miyh. How should she proceed?

¨

B

A C
22

	51.	�� An oil refinery is located on the north bank of a straight 
river that is 2 km wide. A pipeline is to be constructed from 
the refinery to storage tanks located on the south bank of 
the river 6 km east of the refinery. The cost of laying pipe is 
$400,000ykm over land to a point P on the north bank and 
$800,000ykm under the river to the tanks. To minimize the 
cost of the pipeline, where should P be located?

	52.	�� Suppose the refinery in Exercise 51 is located 1 km north  
of the river. Where should P be located?

	53.	�� The illumination of an object by a light source is directly 
proportional to the strength of the source and inversely pro-
portional to the square of the distance from the source.  
If two light sources, one three times as strong as the other,  
are placed 10 ft apart, where should an object be placed  
on the line between the sources so as to receive the least 
illumination?

	54.	�� Find an equation of the line through the point s3, 5d that cuts 
off the least area from the first quadrant.

	55.	�� Let a and b be positive numbers. Find the length of the short-
est line segment that is cut off by the first quadrant and passes 
through the point sa, bd.

	56.	�� At which points on the curve y − 1 1 40x 3 2 3x 5 does the 
tangent line have the largest slope?

	57.	�� What is the shortest possible length of the line segment that 
is cut off by the first quadrant and is tangent to the curve 
y − 3yx at some point?

	58.	�� What is the smallest possible area of the triangle that is cut 
off by the first quadrant and whose hypotenuse is tangent to 
the parabola y − 4 2 x 2 at some point?

	59.	� (a)	� If Csxd is the cost of producing x units of a commodity, 
then the average cost per unit is csxd − Csxdyx. Show 
that if the average cost is a minimum, then the marginal 
cost equals the average cost.

	 (b)	� If Csxd − 16,000 1 200x 1 4x 3y2, in dollars, find (i) the 
cost, average cost, and marginal cost at a production level 
of 1000 units; (ii) the production level that will minimize 
the average cost; and (iii) the minimum average cost.

;

required to swim a distance L is Lysv 2 ud and the total 
energy E required to swim the distance is given by

Esvd − av 3 ?
L

v 2 u

where a is the proportionality constant.
	 (a)	 Determine the value of v that minimizes E.
	 (b)	 Sketch the graph of E.

Note: This result has been verified experimentally; migrat-
ing fish swim against a current at a speed 50% greater than 
the current speed.

	47.	�� In a beehive, each cell is a regular hexagonal prism, open 
at one end with a trihedral angle at the other end as in the 
figure. It is believed that bees form their cells in such a 
way as to minimize the surface area for a given side length 
and height, thus using the least amount of wax in cell 
construction. Examination of these cells has shown that 
the measure of the apex angle � is amazingly consistent. 
Based on the geometry of the cell, it can be shown that the 
surface area S is given by

S − 6sh 2 3
2 s2 cot � 1 (3s 2s3 y2) csc �

where s, the length of the sides of the hexagon, and h, the 
height, are constants.

	 (a)	 Calculate dSyd�.
	 (b)	 What angle should the bees prefer?
	 (c)	�� Determine the minimum surface area of the cell (in 

terms of s and h).
Note: Actual measurements of the angle � in beehives 
have been made, and the measures of these angles seldom 
differ from the calculated value by more than 28.

s

trihedral
angle ̈rear

of cell

front
of cell

h

b

	48.	�� A boat leaves a dock at 2:00 pm and travels due south at a 
speed of 20 kmyh. Another boat has been heading due east 
at 15 kmyh and reaches the same dock at 3:00 pm. At what 
time were the two boats closest together?

	49.	�� Solve the problem in Example 4 if the river is 5 km wide 
and point B is only 5 km downstream from A.

	50.	�� A woman at a point A on the shore of a circular lake with 
radius 2 mi wants to arrive at the point C diametrically Not For Sale
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	 (c)	� Show that the triangle formed by the tangent line and the 
coordinate axes has minimum area ab.

	68.	�� The frame for a kite is to be made from six pieces of wood. 
The four exterior pieces have been cut with the lengths indi-
cated in the figure. To maximize the area of the kite, how long 
should the diagonal pieces be?

a

a b

b

	69.	�� A point P needs to be located somewhere on the line AD so 
that the total length L of cables linking P to the points A, B. 
and C is minimized (see the figure). Express L as a function 
of x − | AP | and use the graphs of L and dLydx to estimate 
the minimum value of L.

B C

P

A

2 m 3 m
D

5 m

	70.	�� The graph shows the fuel consumption c of a car (measured 
in gallons per hour) as a function of the speed v of the car. 
At very low speeds the engine runs inefficiently, so initially c 
decreases as the speed increases. But at high speeds the fuel 
consumption increases. You can see that csvd is minimized for 
this car when v < 30 miyh. However, for fuel efficiency, what 
must be minimized is not the consumption in gallons per hour 
but rather the fuel consumption in gallons per mile. Let’s call 
this consumption G. Using the graph, estimate the speed at 
which G has its minimum value.

√

c

0 20 40 60

	71.	�� Let v1 be the velocity of light in air and v2 the velocity of light 
in water. According to Fermat’s Principle, a ray of light will 
travel from a point A in the air to a point B in the water by a 
path ACB that minimizes the time taken. Show that

sin �1

sin �2
−

v1

v2

CAS

;

	60.	� (a)	� Show that if the profit Psxd is a maximum, then the 
marginal revenue equals the marginal cost.

	 (b)	� If Csxd − 16,000 1 500x 2 1.6x 2 1 0.004x 3 is the cost 
function and psxd − 1700 2 7x is the demand function, 
find the production level that will maximize profit.

	61.	�� A baseball team plays in a stadium that holds 55,000 specta-
tors. With ticket prices at $10, the average attendance had 
been 27,000. When ticket prices were lowered to $8, the 
average attendance rose to 33,000.

	 (a)	 Find the demand function, assuming that it is linear.
	 (b)	 How should ticket prices be set to maximize revenue?

	62.	�� During the summer months Terry makes and sells necklaces 
on the beach. Last summer he sold the necklaces for $10 
each and his sales averaged 20 per day. When he increased 
the price by $1, he found that the average decreased by two 
sales per day.

	 (a)	 Find the demand function, assuming that it is linear.
	 (b)	�� If the material for each necklace costs Terry $6, what 

should the selling price be to maximize his profit?

	63.	�� A retailer has been selling 1200 tablet computers a week 
at $350 each. The marketing department estimates that an 
additional 80 tablets will sell each week for every $10 that 
the price is lowered.

	 (a)	 Find the demand function.
	 (b)	�� What should the price be set at in order to maximize 

revenue?
	 (c)	�� If the retailer’s weekly cost function is 

Csxd − 35,000 1 120x

what price should it choose in order to maximize its 
profit?

	64.	�� A company operates 16 oil wells in a designated area. Each 
pump, on average, extracts 240 barrels of oil daily. The com-
pany can add more wells but every added well reduces the 
average daily ouput of each of the wells by 8 barrels. How 
many wells should the company add in order to maximize 
daily production?

	65.	�� Show that of all the isosceles triangles with a given perime
ter, the one with the greatest area is equilateral.

	66.	�� Consider the situation in Exercise 51 if the cost of laying 
pipe under the river is considerably higher than the cost of 
laying pipe over land ($400,000ykm). You may suspect that 
in some instances, the minimum distance possible under the 
river should be used, and P should be located 6 km from the 
refinery, directly across from the storage tanks. Show that this 
is never the case, no matter what the “under river” cost is.

	67.	�� Consider the tangent line to the ellipse 
x 2

a 2 1
y2

b2 − 1
at a point s p, qd in the first quadrant. 

	 (a)	� Show that the tangent line has x-intercept a2yp and  
y-intercept b2yq.

	 (b)	� Show that the portion of the tangent line cut off by the 
coordinate axes has minimum length a 1 b.
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	 SECTION  4.7    Optimization Problems	 341

where �1 (the angle of incidence) and �2 (the angle of refrac-
tion) are as shown. This equation is known as Snell’s Law.

C

A

B

¨¡

¨™

	72.	�� Two vertical poles PQ and ST are secured by a rope PRS 
going from the top of the first pole to a point R on the ground 
between the poles and then to the top of the second pole as in 
the figure. Show that the shortest length of such a rope occurs 
when �1 − � 2.

Q R T

P
S

¨¡ ¨™

	73.	�� The upper right-hand corner of a piece of paper, 12 in. by  
8 in., as in the figure, is folded over to the bottom edge. How 
would you fold it so as to minimize the length of the fold?  
In other words, how would you choose x to minimize y?

xy

8

12

	74.	�� A steel pipe is being carried down a hallway 9 ft wide. At 
the end of the hall there is a right-angled turn into a narrower 
hallway 6 ft wide. What is the length of the longest pipe that 
can be carried horizontally around the corner?

6

¨

9

	75.	�� An observer stands at a point P, one unit away from a 
track. Two runners start at the point S in the figure and run 
along the track. One runner runs three times as fast as the 
other. Find the maximum value of the observer’s angle of 
sight � between the runners.

S

1

P

¨

	76.	�� A rain gutter is to be constructed from a metal sheet of 
width 30 cm by bending up one-third of the sheet on each 
side through an angle �. How should � be chosen so that 
the gutter will carry the maximum amount of water?

10 cm 10 cm 10 cm

¨ ¨

	77.	�� Where should the point P be chosen on the line segment 
AB so as to maximize the angle �?

5

2

A

B

P ¨
3

	78.	�� A painting in an art gallery has height h and is hung so that 
its lower edge is a distance d above the eye of an observer 
(as in the figure). How far from the wall should the 
observer stand to get the best view? (In other words, where 
should the observer stand so as to maximize the angle � 
subtended at his eye by the painting?)

¨

h

d

	79.	�� Find the maximum area of a rectangle that can be circum
scribed about a given rectangle with length L and width W. 
[Hint: Express the area as a function of an angle �.]Not For Sale
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fly in order to minimize the total energy expended in 
returning to its nesting area?

	 (b)	�� Let W and L denote the energy (in joules) per kilo-
meter flown over water and land, respectively. What 
would a large value of the ratio WyL mean in terms 
of the bird’s flight? What would a small value mean? 
Determine the ratio WyL corresponding to the mini-
mum expenditure of energy.

	 (c)	�� What should the value of WyL be in order for the bird 
to fly directly to its nesting area D? What should the 
value of WyL be for the bird to fly to B and then along 
the shore to D?

	 (d)	�� If the ornithologists observe that birds of a certain 
species reach the shore at a point 4 km from B, how 
many times more energy does it take a bird to fly over 
water than over land?

13 km
B

C D

island

5 km

nest

	82.	�� Two light sources of identical strength are placed 10 m 
apart. An object is to be placed at a point P on a line ,,  
parallel to the line joining the light sources and at a dis-
tance d meters from it (see the figure). We want to locate 
P on , so that the intensity of illumination is minimized. 
We need to use the fact that the intensity of illumination 
for a single source is directly proportional to the strength 
of the source and inversely proportional to the square of 
the distance from the source.

	 (a)	� Find an expression for the intensity Isxd at the point P.
	 (b)	�� If d − 5 m, use graphs of Isxd and I9sxd to show that 

the intensity is minimized when x − 5 m, that is, 
when P is at the midpoint of ,.

	 (c)	�� If d − 10 m, show that the intensity (perhaps surpris
ingly) is not minimized at the midpoint.

	 (d)	�� Somewhere between d − 5 m and d − 10 m there is 
a transitional value of d at which the point of minimal 
illumination abruptly changes. Estimate this value of d 
by graphical methods. Then find the exact value of d.

7et0407x78
09/11/09
MasterID: 00567

�
P

d

10 m

x

;

	80.	�� The blood vascular system consists of blood vessels (arteries, 
arterioles, capillaries, and veins) that convey blood from the 
heart to the organs and back to the heart. This system should 
work so as to minimize the energy expended by the heart in 
pumping the blood. In particular, this energy is reduced when 
the resistance of the blood is lowered. One of Poiseuille’s 
Laws gives the resistance R of the blood as

R − C 
L

r 4

where L is the length of the blood vessel, r is the radius, and 
C is a positive constant determined by the viscosity of the 
blood. (Poiseuille established this law experimentally, but it 
also follows from Equation 8.4.2.) The figure shows a main 
blood vessel with radius r1 branching at an angle � into a 
smaller vessel with radius r2.

b

A

B

r¡

r™

¨

C

a

vascular
branching

	 (a)	�� Use Poiseuille’s Law to show that the total resistance of 
the blood along the path ABC is

R − CS a 2 b cot �

r1
4 1

b csc �

r2
4 D

where a and b are the distances shown in the figure.
	 (b)	 Prove that this resistance is minimized when

cos � −
r 4

2

r 4
1

	 (c)	�� Find the optimal branching angle (correct to the nearest 
degree) when the radius of the smaller blood vessel is 
two-thirds the radius of the larger vessel.

	81.	�� Ornithologists have determined that some species of birds 
tend to avoid flights over large bodies of water during daylight 
hours. It is believed that more energy is required to fly over 
water than over land because air generally rises over land and 
falls over water during the day. A bird with these tendencies 
is released from an island that is 5 km from the nearest point 
B on a straight shoreline, flies to a point C on the shoreline, 
and then flies along the shoreline to its nesting area D. Assume 
that the bird instinctively chooses a path that will minimize its 
energy expenditure. Points B and D are 13 km apart.

	 (a)	�� In general, if it takes 1.4 times as much energy to fly over 
water as it does over land, to what point C should the bird 
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	 APPLIED PROJECT    The Shape of a Can	 343

In this project we investigate the most economical shape for a can. We first interpret this to mean 
that the volume V of a cylindrical can is given and we need to find the height h and radius r that 
minimize the cost of the metal to make the can (see the figure). If we disregard any waste metal 
in the manufacturing process, then the problem is to minimize the surface area of the cylinder. 
We solved this problem in Example 4.7.2 and we found that h − 2r; that is, the height should be 
the same as the diameter. But if you go to your cupboard or your supermarket with a ruler, you 
will discover that the height is usually greater than the diameter and the ratio hyr varies from 2 
up to about 3.8. Let’s see if we can explain this phenomenon.

1. �� The material for the cans is cut from sheets of metal. The cylindrical sides are formed by 
bending rectangles; these rectangles are cut from the sheet with little or no waste. But if the 
top and bottom discs are cut from squares of side 2r (as in the figure), this leaves considerable 
waste metal, which may be recycled but has little or no value to the can makers. If this is the 
case, show that the amount of metal used is minimized when

h

r
−

8

�
< 2.55

2. �� A more efficient packing of the discs is obtained by dividing the metal sheet into hexagons 
and cutting the circular lids and bases from the hexagons (see the figure). Show that if this 
strategy is adopted, then

h

r
−

4s3 

�
< 2.21

3. � �The values of hyr that we found in Problems 1 and 2 are a little closer to the ones that  
actually occur on supermarket shelves, but they still don’t account for everything. If we  
look more closely at some real cans, we see that the lid and the base are formed from discs 
with radius larger than r that are bent over the ends of the can. If we allow for this we would 
increase hyr. More significantly, in addition to the cost of the metal we need to incorporate 
the manufacturing of the can into the cost. Let’s assume that most of the expense is incurred 
in joining the sides to the rims of the cans. If we cut the discs from hexagons as in Problem 2, 
then the total cost is proportional to

4s3  r 2 1 2�rh 1 ks4�r 1 hd

	�� where k is the reciprocal of the length that can be joined for the cost of one unit area of metal. 
Show that this expression is minimized when

s3 V  

k
− Î�h

r
 ?

2� 2 hyr

�hyr 2 4s3 

4. � �Plot s3 V  yk as a function of x − hyr and use your graph to argue that when a can is large or 
joining is cheap, we should make hyr approximately 2.21 (as in Problem 2). But when the can 
is small or joining is costly, hyr should be substantially larger.

5. � �Our analysis shows that large cans should be almost square but small cans should be tall and 
thin. Take a look at the relative shapes of the cans in a supermarket. Is our conclusion usu-
ally true in practice? Are there exceptions? Can you suggest reasons why small cans are not 
always tall and thin?

3

;

r

h

Discs cut from squares

Discs cut from hexagons

APPLIED PROJECT THE SHAPE OF A CAN
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344	 CHAPTER 4    Applications of Differentiation

APPLIED PROJECT	 PLANES AND BIRDS: MINIMIZING ENERGY

Small birds like finches alternate between flapping their wings and keeping them folded while 
gliding (see Figure 1). In this project we analyze this phenomenon and try to determine how 
frequently a bird should flap its wings. Some of the principles are the same as for fixed-wing 
aircraft and so we begin by considering how required power and energy depend on the speed of 
airplanes.1

FIGURE 1� 

1. �� The power needed to propel an airplane forward at velocity v is 

P − Av 3 1
BL2

v

where A and B are positive constants specific to the particular aircraft and L is the lift, the 
upward force supporting the weight of the plane. Find the speed that minimizes the required 
power.

2.   ��The speed found in Problem 1 minimizes power but a faster speed might use less fuel. The 
energy needed to propel the airplane a unit distance is E − Pyv. At what speed is energy 
minimized?

3. �� Hows much faster is the speed for minimum energy than the speed for minimum power?

4. �� In applying the equation of Problem 1 to bird flight we split the term Av3 into two parts: Abv3 
for the bird’s body and Awv3 for its wings. Let x be the fraction of flying time spent in flapping 
mode. If m is the bird’s mass and all the lift occurs during flapping, then the lift is mtyx and 
so the power needed during flapping is 

Pflap − sAb 1 Awdv 3 1
Bsmtyxd2

v

The power while wings are folded is Pfold − Abv3. Show that the average power over an entire 
flight cycle is 

P − xPflap 1 s1 2 xdPfold − Abv3 1 xAwv3 1
Bm2t2

xv

5. � �For what value of x is the average power a minimum? What can you conclude if the bird flies 
slowly? What can you conclude if the bird flies faster and faster?

6. �� The average energy over a cycle is E − Pyv. What value of x minimizes E?

1. Adapted from R. McNeill Alexander, Optima for Animals (Princeton, NJ: Princeton University  
Press, 1996.)
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	 SECTION  4.8    Newton’s Method	 345

Suppose that a car dealer offers to sell you a car for $18,000 or for payments of $375 per 
month for five years. You would like to know what monthly interest rate the dealer is, in 
effect, charging you. To find the answer, you have to solve the equation

48xs1 1 xd60 2 s1 1 xd60 1 1 − 0

(The details are explained in Exercise 41.) How would you solve such an equation?
For a quadratic equation ax 2 1 bx 1 c − 0 there is a well-known formula for the 

solutions. For third- and fourth-degree equations there are also formulas for the solu-
tions, but they are extremely complicated. If f  is a polynomial of degree 5 or higher, 
there is no such formula (see the note on page 211). Likewise, there is no formula that 
will enable us to find the exact roots of a transcendental equation such as cos x − x.

We can find an approximate solution to Equation 1 by plotting the left side of the 
equation. Using a graphing device, and after experimenting with viewing rectangles, we 
produce the graph in Figure 1.

We see that in addition to the solution x − 0, which doesn’t interest us, there is a 
solution between 0.007 and 0.008. Zooming in shows that the root is approximately 
0.0076. If we need more accuracy we could zoom in repeatedly, but that becomes tire-
some. A faster alternative is to use a calculator or computer algebra system to solve the 
equation numerically. If we do so, we find that the root, correct to nine decimal places, 
is 0.007628603.

How do these devices solve equations? They use a variety of methods, but most of 
them make some use of Newton’s method, also called the Newton-Raphson method. 
We will explain how this method works, partly to show what happens inside a calculator 
or computer, and partly as an application of the idea of linear approximation.

The geometry behind Newton’s method is shown in Figure 2. We wish to solve an 
equation of the form f sxd − 0, so the roots of the equation correspond to the x-intercepts 
of the graph of f. The root that we are trying to find is labeled r in the figure. We start 
with a first approximation x1, which is obtained by guessing, or from a rough sketch of 
the graph of f , or from a computer-generated graph of f. Consider the tangent line L to 
the curve y − f sxd at the point sx1, f sx1dd and look at the x-intercept of L, labeled x2.  
The idea behind Newton’s method is that the tangent line is close to the curve and so 
its x-intercept, x2, is close to the x-intercept of the curve (namely, the root r that we are 
seeking). Because the tangent is a line, we can easily find its x-intercept.

To find a formula for x2 in terms of x1 we use the fact that the slope of L is f 9sx1d, so 
its equation is

y 2 f sx1d − f 9sx1dsx 2 x1d

Since the x-intercept of L is x2 , we know that the point sx2, 0d  is on the line, and so

0 2 f sx1d − f 9sx1dsx2 2 x1d

If f 9sx1d ± 0, we can solve this equation for x2 :

x2 − x1 2
 f sx1d
f 9sx1d

We use x2 as a second approximation to r.

1

0.15

_0.05

0 0.012

FIGURE 1� 

Try to solve Equation 1 numerically 
using your calculator or computer. 
Some machines are not able to solve it. 
Others are successful but require you to
specify a starting point for the search.

y

0 x

{x ¡, f(x¡)}

x™ x ¡

L

r

y=ƒ

FIGURE 2� 
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346	 CHAPTER 4    Applications of Differentiation

Next we repeat this procedure with x1 replaced by the second approximation x2 , using 
the tangent line at sx2, f sx2 dd. This gives a third approximation:

x3 − x2 2
 f sx2 d
f 9sx2 d

If we keep repeating this process, we obtain a sequence of approximations x1, x2, x3, x4, . . . 
as shown in Figure 3. In general, if the nth approximation is xn and f 9sxn d ± 0, then 
the next approximation is given by

xn11 − xn 2
 f sxn d
f 9sxn d

If the numbers xn become closer and closer to r as n becomes large, then we say that 
the sequence converges to r and we write

lim
nl`

 xn − r

�Although the sequence of successive approximations converges to the desired root for 
functions of the type illustrated in Figure 3, in certain circumstances the sequence may 
not converge. For example, consider the situation shown in Figure 4. You can see that 
x2 is a worse approximation than x1. This is likely to be the case when f 9sx1d is close to 
0. It might even happen that an approximation (such as x3 in Figure 4) falls outside the 
domain of f. Then Newton’s method fails and a better initial approximation x1 should 
be chosen. See Exercises 31–34 for specific examples in which Newton’s method works 
very slowly or does not work at all.

EXAMPLE �1�  Starting with x1 − 2, find the third approximation x3 to the root of the 
equation x 3 2 2x 2 5 − 0.

SOLUTION � We apply Newton’s method with

f sxd − x 3 2 2x 2 5        and        f 9sxd − 3x 2 2 2

Newton himself used this equation to illustrate his method and he chose x1 − 2 after 
some experimentation because f s1d − 26, f s2d − 21, and f s3d − 16. Equation 2 
becomes

xn11 − xn 2
f sxnd
f 9sxnd

− xn 2
xn

3 2 2xn 2 5

3xn
2 2 2

With n − 1 we have

 x2 − x1 2
f sx1d
f 9sx1d

− x1 2
x1

3 2 2x1 2 5

3x1
2 2 2

 − 2 2
23 2 2s2d 2 5

3s2d2 2 2
− 2.1

Then with n − 2 we obtain

 x3 − x2 2
x2

3 2 2x2 2 5

3x2
2 2 2

− 2.1 2
s2.1d3 2 2s2.1d 2 5

3s2.1d2 2 2
< 2.0946

y

0 xx™ x¡x£
x¢

r

{x™, f(x™)}

{x¡, f(x¡)}

FIGURE 3� 

2

Sequences were briefly introduced 
in A Preview of Calculus on page 5. 
A more thorough discussion starts 
in Section 11.1.

x

y

0
r

x™
x£ x¡

FIGURE 4� 

TEC � In Module 4.8 you can investi-
gate how Newton’s method works for 
several functions and what happens 
when you change x1.

�Figure 5 shows the geometry behind 
the first step in Newton’s method in 
Example 1. Since f 9s2d − 10, the 
tangent line to y − x3 2 2x 2 5 at 
s2, 21d has equation y − 10x 2 21  
so its x-intercept is x 2 − 2.1.

1

1.8 2.2

_2

y=10x-21

x™

y=˛-2x-5

FIGURE 5� 
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	 SECTION  4.8    Newton’s Method	 347

It turns out that this third approximation x3 < 2.0946 is accurate to four decimal 
places.	 n

Suppose that we want to achieve a given accuracy, say to eight decimal places, using 
Newton’s method. How do we know when to stop? The rule of thumb that is generally 
used is that we can stop when successive approximations xn and xn11 agree to eight deci-
mal places. (A precise statement concerning accuracy in Newton’s method will be given 
in Exercise 11.11.39.)

Notice that the procedure in going from n to n 1 1 is the same for all values of n. (It is 
called an iterative process.) This means that Newton’s method is particularly convenient 
for use with a programmable calculator or a computer.

EXAMPLE �2�  Use Newton’s method to find s6 2  correct to eight decimal places.

SOLUTION � First we observe that finding s6 2  is equivalent to finding the positive root of 
the equation 

x 6 2 2 − 0

so we take f sxd − x 6 2 2. Then f 9sxd − 6x 5 and Formula 2 (Newton’s method) 
becomes

xn11 − xn 2
fsxnd
f 9sxnd

− xn 2
xn

6 2 2

6xn
5

If we choose x1 − 1 as the initial approximation, then we obtain

x2 < 1.16666667

x3 < 1.12644368

x4 < 1.12249707

x5 < 1.12246205

x6 < 1.12246205

Since x5 and x6 agree to eight decimal places, we conclude that

s6 2 < 1.12246205

to eight decimal places.	 n

EXAMPLE �3�  Find, correct to six decimal places, the root of the equation cos x − x.

SOLUTION � We first rewrite the equation in standard form:

cos x 2 x − 0

Therefore we let f sxd − cos x 2 x. Then f 9sxd − 2sin x 2 1, so Formula 2 becomes

xn11 − xn 2
cos xn 2 xn

2sin xn 2 1
− xn 1

cos xn 2 xn

sin xn 1 1

In order to guess a suitable value for x1 we sketch the graphs of y − cos x and y − x in 
Figure 6. It appears that they intersect at a point whose x-coordinate is somewhat less 

1

y

xπ

y=cos x

y=x

π
2

FIGURE 6�  Not For Sale
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348	 CHAPTER 4    Applications of Differentiation

than 1, so let’s take x1 − 1 as a convenient first approximation. Then, remembering to 
put our calculator in radian mode, we get

x2 < 0.75036387

x3 < 0.73911289

x4 < 0.73908513

x5 < 0.73908513

Since x4 and x5 agree to six decimal places (eight, in fact), we conclude that the root of 
the equation, correct to six decimal places, is 0.739085.	 n

Instead of using the rough sketch in Figure 6 to get a starting approximation for 
Newton’s method in Example 3, we could have used the more accurate graph that a 
calculator or computer provides. Figure 7 suggests that we use x1 − 0.75 as the initial 
approximation. Then Newton’s method gives

x2 < 0.73911114      

x3 < 0.73908513      

x4 < 0.73908513

and so we obtain the same answer as before, but with one fewer step.

1

0 1

y=x

y=cos x

FIGURE 7�

	 1.	�� The figure shows the graph of a function f. Suppose that 
Newton’s method is used to approximate the root s of the 
equation f sxd − 0 with initial approximation x1 − 6.

	 (a)	� Draw the tangent lines that are used to find x2 and x3, 
and estimate the numerical values of x2 and x3.

	 (b)	� Would x1 − 8 be a better first approximation? Explain.

	 2.	�� Follow the instructions for Exercise 1(a) but use x1 − 1  
as the starting approximation for finding the root r.

	 3.	�� Suppose the tangent line to the curve y − f sxd at the point 
s2, 5d has the equation y − 9 2 2x. If Newton’s method is 
used to locate a root of the equation f sxd − 0 and the initial 
approximation is x1 − 2, find the second approximation x2.

	 4.	�� For each initial approximation, determine graphically what 
happens if Newton’s method is used for the function whose 
graph is shown.

	 (a)	 x1 − 0	 (b) � x1 − 1	 (c) � x1 − 3
	 (d)	 x1 − 4	� (e) � x1 − 5

7et0408x04
09/11/09
MasterID: 00578

3

y

0 51 x

	 5.	�� For which of the initial approximations x1 − a, b, c, and d do 
you think Newton’s method will work and lead to the root of 
the equation f sxd − 0?

7et0408x05
01/19/10
MasterID: 03017

y

0 b c da x

6–8 � Use Newton’s method with the specified initial approxima-
tion x1 to find x3, the third approximation to the root of the given 
equation. (Give your answer to four decimal places.)

	 6.	� 2x 3 2 3x 2 1 2 − 0 , � x1 − 21
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	 SECTION  4.8    Newton’s Method	 349

	29.	� (a)	� Apply Newton’s method to the equation x 2 2 a − 0 to 
derive the following square-root algorithm (used by the 
ancient Babylonians to compute sa ):

xn11 −
1

2 Sxn 1
a

xn
D

	 (b)	� Use part (a) to compute s1000  correct to six decimal 
places.

	30.	� (a)	� Apply Newton’s method to the equation 1yx 2 a − 0 
to derive the following reciprocal algorithm:

xn11 − 2xn 2 axn
2

	� (This algorithm enables a computer to find reciprocals 
without actually dividing.)

	 (b)	� Use part (a) to compute 1y1.6984 correct to six 
decimal places.

	31.	�� Explain why Newton’s method doesn’t work for finding the 
root of the equation 

x 3 2 3x 1 6 − 0 

		�  if the initial approximation is chosen to be x1 − 1.

	32.	� (a)	� Use Newton’s method with x1 − 1 to find the root of 
the equation x 3 2 x − 1 correct to six decimal places.

	 (b)	� Solve the equation in part (a) using x1 − 0.6 as the 
initial approximation.

	 (c)	� Solve the equation in part (a) using x1 − 0.57.  
(You definitely need a programmable calculator for 
this part.)

	 (d)	� Graph f sxd − x 3 2 x 2 1 and its tangent lines at 
x1 − 1, 0.6, and 0.57 to explain why Newton’s method 
is so sensitive to the value of the initial approximation.

	33.	�� Explain why Newton’s method fails when applied to the 

		��  equation s3 x  − 0 with any initial approximation x1 ± 0. 
Illustrate your explanation with a sketch.

	34.	� If

f sxd − Hsx  

2s2x  
if x > 0

if x , 0

then the root of the equation f sxd − 0 is x − 0. Explain 
why Newton’s method fails to find the root no matter 
which initial approximation x1 ± 0 is used. Illustrate your 
explanation with a sketch.

	35.	� (a)	� Use Newton’s method to find the critical numbers of 
the function 

f sxd − x 6 2 x 4 1 3x 3 2 2x 

			�   correct to six decimal places.
	 (b)	� Find the absolute minimum value of f  correct to four 

decimal places. 

;

	 7.	�
2

x
2 x 2 1 1 − 0, � x1 − 2	 8.	 x 7 1 4 − 0, � x1 − 21

	 9.	�� Use Newton’s method with initial approximation x1 − 21 
to find x2, the second approximation to the root of the 
equation x 3 1 x 1 3 − 0. Explain how the method works 
by first graphing the function and its tangent line at s21, 1d.

	10.	�� Use Newton’s method with initial approximation x1 − 1 to 
find x2, the second approximation to the root of the equation 
x4 2 x 2 1 − 0. Explain how the method works by first 
graphing the function and its tangent line at s1, 21d.

11–12 � Use Newton’s method to approximate the given number 
correct to eight decimal places.

	11.	 s4 75 	 12.	 s8 500 

13–14 � (a) Explain how we know that the given equation must 
have a root in the given interval. (b) Use Newton’s method to 
approximate the root correct to six decimal places.

	13.	� 3x4 2 8x 3 1 2 − 0, � �  f2, 3g

	14.	� 22x 5 1 9x4 2 7x3 2 11x − 0, � �  f3, 4g

�15–16 � Use Newton’s method to approximate the indicated root 
of the equation correct to six decimal places.

	15.	� The negative root of e x − 4 2 x 2

	16.	� The positive root of 3 sin x − x

17–22 � Use Newton’s method to find all solutions of the equation 
correct to six decimal places.

	17.	 3 cos x − x 1 1	 18.	 sx 1 1 − x 2 2 x

	19.	 2x − 2 2 x2	 20.	 ln x −
1

x 2 3

	21.	 x 3 − tan21x	 22.	 sin x − x 2 2 2

23–28 � Use Newton’s method to find all the solutions of the 
equation correct to eight decimal places. Start by drawing a 
graph to find initial approximations.

	23.	 22x7 2 5x4 1 9x 3 1 5 − 0

	24.	 x 5 2 3x 4 1 x 3 2 x 2 2 x 1 6 − 0

	25.	
x

x 2 1 1
− s1 2 x 

	26.	 cossx 2 2 xd − x 4

	27.	 4e2x 2

 sin x − x 2 2 x 1 1

	28.	 lnsx 2 1 2d −
3x

sx2 1 1 

;

;

;
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350	 CHAPTER 4    Applications of Differentiation

Replacing i by x, show that

48xs1 1 xd60 2 s1 1 xd60 1 1 − 0 

Use Newton’s method to solve this equation.

	42.	�� The figure shows the sun located at the origin and the earth 
at the point s1, 0d. (The unit here is the distance between 
the centers of the earth and the sun, called an astronomical 
unit: 1 AU < 1.496 3 108 km.) There are five locations 
L1, L 2, L 3, L 4, and L 5 in this plane of rotation of the earth 
about the sun where a satellite remains motionless with 
respect to the earth because the forces acting on the satellite 
(including the gravitational attractions of the earth and the 
sun) balance each other. These locations are called libration 
points. (A solar research satellite has been placed at one of 
these libration points.) If m1 is the mass of the sun, m2 is the 
mass of the earth, and r − m2ysm1 1 m2 d, it turns out that 
the x-coordinate of L 1 is the unique root of the fifth-degree 
equation

 psxd − x 5 2 s2 1 rdx 4 1 s1 1 2rdx 3 2 s1 2 rdx 2

� − 1 2s1 2 rdx 1 r 2 1 − 0 

and the x-coordinate of L 2 is the root of the equation

psxd 2 2rx 2 − 0

Using the value r < 3.04042 3 1026, find the locations of the 
libration points (a) L 1  and (b) L 2.

L¡ L™L∞

L¢

L£

sun earth

x

y

	36.	�� Use Newton’s method to find the absolute maximum value 
of the function f sxd − x cos x, 0 < x < �, correct to six 
decimal places.

	37.	�� Use Newton’s method to find the coordinates of the 
inflection point of the curve y − x 2 sin x, 0 < x < �, 
correct to six decimal places.

	38.	�� Of the infinitely many lines that are tangent to the curve 
y − 2sin x and pass through the origin, there is one that 
has the largest slope. Use Newton’s method to find the 
slope of that line correct to six decimal places.

	39.	�� Use Newton’s method to find the coordinates, correct to six 
decimal places, of the point on the parabola y − sx 2 1d2 
that is closest to the origin.

	40.	�� In the figure, the length of the chord AB is 4 cm and the 
length of the arc AB is 5 cm. Find the central angle �,  
in radians, correct to four decimal places. Then give the 
answer to the nearest degree.

5 cm

4 cm

¨

BA

	41.	�� A car dealer sells a new car for $18,000. He also offers to 
sell the same car for payments of $375 per month for five 
years. What monthly interest rate is this dealer charging?

To solve this problem you will need to use the formula 
for the present value A of an annuity consisting of n equal 
payments of size R with interest rate i per time period: 

A −
R

i
 f1 2 s1 1 i d2n g

A physicist who knows the velocity of a particle might wish to know its position at a 
given time. An engineer who can measure the variable rate at which water is leaking 
from a tank wants to know the amount leaked over a certain time period. A biologist who 
knows the rate at which a bacteria population is increasing might want to deduce what 
the size of the population will be at some future time. In each case, the problem is to 
find a function F whose derivative is a known function f. If such a function F exists, it  
is called an antiderivative of f.

�Definition � A function F is called an antiderivative of f  on an interval I if 
F9sxd − f sxd for all x in I.
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For instance, let f sxd − x 2. It isn’t difficult to discover an antiderivative of f  if we 
keep the Power Rule in mind. In fact, if Fsxd − 1

3 x 3, then F9sxd − x 2 − f sxd. But the 
function Gsxd − 1

3 x 3 1 100 also satisfies G9sxd − x 2. Therefore both F and G are antide-
rivatives of f. Indeed, any function of the form Hsxd − 1

3 x 3 1 C, where C is a constant, 
is an antiderivative of f. The question arises: Are there any others?

To answer this question, recall that in Section 4.2 we used the Mean Value Theorem to 
prove that if two functions have identical derivatives on an interval, then they must differ 
by a constant (Corollary 4.2.7). Thus if F and G are any two antiderivatives of f , then

F9sxd − f sxd − G9sxd

so Gsxd 2 Fsxd − C, where C is a constant. We can write this as Gsxd − Fsxd 1 C, so 
we have the following result.

1 �  Theorem � If F is an antiderivative of f  on an interval I, then the most general 
antiderivative of f  on I is

Fsxd 1 C

�where C is an arbitrary constant.

Going back to the function f sxd − x 2, we see that the general antiderivative of f  is 
1
3 x 3 1 C. By assigning specific values to the constant C, we obtain a family of functions 
whose graphs are vertical translates of one another (see Figure 1). This makes sense 
because each curve must have the same slope at any given value of x.

EXAMPLE �1�  Find the most general antiderivative of each of the following functions.
(a)  f sxd − sin x            (b)  f sxd − 1yx            (c)  f sxd − xn,    n ± 21

SOLUTION� 
(a)  If Fsxd − 2cos x , then F9sxd − sin x, so an antiderivative of sin x is 2cos x. By 
Theorem 1, the most general antiderivative is Gsxd − 2cos x 1 C.
(b)  Recall from Section 3.6 that

d

dx
 sln xd −

1

x

So on the interval s0, `d the general antiderivative of 1yx is ln x 1 C. We also learned 
that

d

dx
 (ln | x |) −

1

x

for all x ± 0. Theorem 1 then tells us that the general antiderivative of f sxd − 1yx is 
ln | x | 1 C on any interval that doesn’t contain 0. In particular, this is true on each of 
the intervals s2`, 0d and s0, `d. So the general antiderivative of f  is

Fsxd − Hln x 1 C1

lns2xd 1 C2

if  x . 0

if  x , 0

(c)  We use the Power Rule to discover an antiderivative of xn. In fact, if n ± 21, then

d

dx
 S xn11

n 1 1D −
sn 1 1dxn

n 1 1
− xn

FIGURE 1�   
Members of the family of 
antiderivatives of f sxd − x 2

x

y

0
y= ˛

3

y=    -2˛
3

y=    -1˛
3

y=    +1˛
3

y=    +2˛
3

y=    +3˛
3
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352	 CHAPTER 4    Applications of Differentiation

Therefore the general antiderivative of f sxd − xn is

Fsxd −
xn11

n 1 1
1 C

This is valid for n > 0 since then f sxd − xn is defined on an interval. If n is negative 
(but n ± 21), it is valid on any interval that doesn’t contain 0.	 n

As in Example 1, every differentiation formula, when read from right to left, gives 
rise to an antidifferentiation formula. In Table 2 we list some particular antiderivatives. 
Each formula in the table is true because the derivative of the function in the right column 
appears in the left column. In particular, the first formula says that the antiderivative of 
a constant times a function is the constant times the antiderivative of the function. The 
second formula says that the antiderivative of a sum is the sum of the antiderivatives. (We 
use the notation F9− f , G9 − t.)

Function Particular antiderivative Function Particular antiderivative

cf sxd cFsxd sin x 2cos x

f sxd 1 tsxd Fsxd 1 Gsxd sec2x tan x

x n  sn ± 21d
x n11

n 1 1
sec x tan x sec x

1

x
ln | x |

1

s1 2 x 2 sin21x

e x e x 1

1 1 x 2 tan21x

b x
b x

ln b
cosh x sinh x

cos x sin x sinh x cosh x

To obtain the most general antiderivative 
from the particular ones in Table 2, we 
have to add a constant (or constants),  
as in Example 1.

EXAMPLE �2�  Find all functions t such that

t9sxd − 4 sin x 1
2x 5 2 sx 

x

SOLUTION � We first rewrite the given function as follows:

t9sxd − 4 sin x 1
2x 5

x
2

sx 

x
− 4 sin x 1 2x 4 2

1

sx 

Thus we want to find an antiderivative of 

t9sxd − 4 sin x 1 2x 4 2 x21y2

Using the formulas in Table 2 together with Theorem 1, we obtain

 tsxd − 4s2cos xd 1 2 
x 5

5
2

x1y2

1
2

1 C

	 − 24 cos x 1 2
5 x 5 2 2sx 1 C 	 n

�Table of  
Antidifferentiation  
Formulas

2

We often use a capital letter F to repre-
sent an antiderivative of a function f.  
If we begin with derivative notation, f 9, 
an antiderivative is f, of course.
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In applications of calculus it is very common to have a situation as in Example 2, 
where it is required to find a function, given knowledge about its derivatives. An equation 
that involves the derivatives of a function is called a differential equation. These will 
be studied in some detail in Chapter 9, but for the present we can solve some elementary 
differential equations. The general solution of a differential equation involves an arbi-
trary constant (or constants) as in Example 2. However, there may be some extra condi-
tions given that will determine the constants and therefore uniquely specify the solution.

EXAMPLE �3�  Find f  if f 9sxd − ex 1 20s1 1 x 2 d21 and f s0d − 22.

SOLUTION�  The general antiderivative of

f 9sxd − ex 1
20

1 1 x 2

is	 f sxd − ex 1 20 tan21x 1 C

To determine C we use the fact that f s0d − 22: 

f s0d − e 0 1 20 tan21 0 1 C − 22

Thus we have C − 22 2 1 − 23, so the particular solution is

	 f sxd − ex 1 20 tan21x 2 3	 n

EXAMPLE �4�  Find f  if f 0sxd − 12x 2 1 6x 2 4, f s0d − 4, and f s1d − 1.

SOLUTION � The general antiderivative of f 0sxd − 12x 2 1 6x 2 4 is

f 9sxd − 12 
x 3

3
1 6 

x 2

2
2 4x 1 C − 4x 3 1 3x 2 2 4x 1 C

Using the antidifferentiation rules once more, we find that

f sxd − 4 
x 4

4
1 3 

x 3

3
2 4 

x 2

2
1 Cx 1 D − x 4 1 x 3 2 2x 2 1 Cx 1 D

To determine C and D we use the given conditions that f s0d − 4 and f s1d − 1. Since 
f s0d − 0 1 D − 4, we have D − 4. Since

f s1d − 1 1 1 2 2 1 C 1 4 − 1

we have C − 23. Therefore the required function is

	 f sxd − x 4 1 x 3 2 2x 2 2 3x 1 4	 n

If we are given the graph of a function f, it seems reasonable that we should be able to 
sketch the graph of an antiderivative F. Suppose, for instance, that we are given that 
Fs0d − 1. Then we have a place to start, the point s0,1d, and the direction in which we move 
our pencil is given at each stage by the derivative F9sxd − f sxd. In the next example we use 
the principles of this chapter to show how to graph F even when we don’t have a formula 
for f. This would be the case, for instance, when f sxd is determined by experimental data.

Figure 2 shows the graphs of the func- 
tion f 9 in Example 3 and its anti-
derivative f. Notice that f 9sxd . 0, so 
f  is always increasing. Also notice that 
when f 9 has a maximum or minimum, 
f  appears to have an inflection point. 
So the graph serves as a check on our 
calculation.

FIGURE 2� 

40

_2 3
f

fª

_25
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EXAMPLE �5�  The graph of a function f  is given in Figure 3. Make a rough sketch of 
an antiderivative F, given that Fs0d − 2.

SOLUTION � We are guided by the fact that the slope of y − Fsxd is f sxd. We start at the 
point s0, 2d and draw F as an initially decreasing function since f sxd is negative when 
0 , x , 1. Notice that f s1d − f s3d − 0, so F has horizontal tangents when x − 1 and 
x − 3. For 1 , x , 3, f sxd is positive and so F is increasing. We see that F has a local 
minimum when x − 1 and a local maximum when x − 3. For x . 3, f sxd is negative 
and so F is decreasing on s3, `d. Since f sxdl 0 as xl `, the graph of F becomes 
flatter as xl `. Also notice that F0sxd − f 9sxd changes from positive to negative at 
x − 2 and from negative to positive at x − 4, so F has inflection points when x − 2 and 
x − 4. We use this information to sketch the graph of the antiderivative in Figure 4.	 n

Rectilinear Motion
Antidifferentiation is particularly useful in analyzing the motion of an object moving in 
a straight line. Recall that if the object has position function s − f std, then the velocity 
function is vstd − s9std. This means that the position function is an antiderivative of the 
velocity function. Likewise, the acceleration function is astd − v9std, so the velocity 
function is an antiderivative of the acceleration. If the acceleration and the initial values ss0d 
and vs0d are known, then the position function can be found by antidifferentiating twice.

EXAMPLE �6�  A particle moves in a straight line and has acceleration given by 
astd − 6t 1 4. Its initial velocity is vs0d − 26 cmys and its initial displacement is 
ss0d − 9 cm. Find its position function sstd.

SOLUTION � Since v9std − astd − 6t 1 4, antidifferentiation gives

vstd − 6 
t 2

2
1 4t 1 C − 3t 2 1 4t 1 C

Note that vs0d − C. But we are given that vs0d − 26, so C − 26 and

vstd − 3t 2 1 4t 2 6

Since vstd − s9std, s is the antiderivative of v:

sstd − 3 
t 3

3
1 4 

t 2

2
2 6t 1 D − t 3 1 2t 2 2 6t 1 D

This gives ss0d − D. We are given that ss0d − 9, so D − 9 and the required position 
function is

	 sstd − t 3 1 2t 2 2 6t 1 9	 n

An object near the surface of the earth is subject to a gravitational force that produces 
a downward acceleration denoted by t. For motion close to the ground we may assume 
that t is constant, its value being about 9.8 mys2 (or 32 ftys2).

EXAMPLE �7�  A ball is thrown upward with a speed of 48 ftys from the edge of a cliff 
432 ft above the ground. Find its height above the ground t seconds later. When does it 
reach its maximum height? When does it hit the ground?

1 2 30 4 x
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	 SECTION  4.9    Antiderivatives	 355

	13.	 f sxd −
1

5
2

2

x
	 14.	 f std −

3t 4 2 t 3 1 6t 2

t 4

	15.	 tstd −
1 1 t 1 t 2

st  
	 16.	 rs�d − sec� tan � 2 2e �

	17.	 hs�d − 2 sin � 2 sec2 �	 18.	 tsvd − 2 cos v 2
3

s1 2 v2 

	19.	 f sxd − 2 x 1 4 sinh x	 20.	 f sxd − 1 1 2 sin x 1 3ysx 

	21.	� f sxd −
2x 4 1 4x 3 2 x

x 3 ,  x . 0

1–22 � Find the most general antiderivative of the function.  
(Check your answer by differentiation.)

	 1.	 f sxd − 4x 1 7	 2.	 f sxd − x 2 2 3x 1 2

	 3.	 f sxd − 2x 3 2 2
3 x 2 1 5x	 4.	 f sxd − 6x5 2 8x4 2 9x 2

	 5.	 f sxd − xs12x 1 8d	 6.	 f sxd − sx 2 5d2

	 7.	 f sxd − 7x 2y5 1 8x24y5	 8.	 f sxd − x3.4 2 2xs221

	 9.	 f sxd − s2 	 10.	 f sxd − e 2

	11.	 f sxd − 3sx 2 2s3 x 	 12.	 f sxd − s3 x 2 1 xsx 

SOLUTION � The motion is vertical and we choose the positive direction to be upward. 
At time t the distance above the ground is sstd and the velocity vstd is decreasing. There-
fore the acceleration must be negative and we have

astd −
dv

dt
− 232

Taking antiderivatives, we have

vstd − 232t 1 C

To determine C we use the given information that vs0d − 48. This gives 48 − 0 1 C, so

vstd − 232t 1 48

The maximum height is reached when vstd − 0, that is, after 1.5 seconds. Since 
s9std − vstd, we antidifferentiate again and obtain

sstd − 216t 2 1 48t 1 D

Using the fact that ss0d − 432, we have 432 − 0 1 D and so

sstd − 216t 2 1 48t 1 432

The expression for sstd is valid until the ball hits the ground. This happens when 
sstd − 0, that is, when

 216t 2 1 48t 1 432 − 0

or, equivalently,	  t 2 2 3t 2 27 − 0

Using the quadratic formula to solve this equation, we get

t −
3 6 3s13 

2

We reject the solution with the minus sign since it gives a negative value for t. Therefore 
the ball hits the ground after 3(1 1 s13 )y2 < 6.9 seconds.	 n

Figure 5 shows the position function of 
the ball in Example 7. The graph cor-
roborates the conclusions we reached: 
The ball reaches its maximum height 
after 1.5 seconds and hits the ground 
after about 6.9 seconds.

500

0 8

FIGURE 5� 
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356	 CHAPTER 4    Applications of Differentiation

51–52 � The graph of a function f  is shown. Which graph is  
an antiderivative of f  and why?

	51. y

x

f
b

c

a

  52.

x

y

f

b

c

a

	53.	�� The graph of a function is shown in the figure. Make a 
rough sketch of an antiderivative F, given that Fs0d − 1.

y
y=ƒ

0 x1

	54.	�� The graph of the velocity function of a particle is shown  
in the figure. Sketch the graph of a position function.

√

0 t

	55.	�� The graph of f 9 is shown in the figure. Sketch the graph  
of f  if f  is continuous and f s0d − 21.

_1
x

y

0 1 2

1

2
y=fª(x)

	56.	� (a)	 Use a graphing device to graph f sxd − 2x 2 3sx .
	 (b)	� Starting with the graph in part (a), sketch a rough graph 

of the antiderivative F that satisfies Fs0d − 1.
	 (c)	� Use the rules of this section to find an expression  

for Fsxd.
	 (d)	� Graph F using the expression in part (c). Compare with 

your sketch in part (b).

57–58 � Draw a graph of f  and use it to make a rough sketch  
of the antiderivative that passes through the origin.

	57.	� f sxd −
sin x

1 1 x 2 ,    22� < x < 2�

	58.	� f sxd − sx 4 2 2x 2 1 2 2 2,    23 < x < 3

;

;

	22.	 f sxd −
2x 2 1 5

x 2 1 1

23–24 � Find the antiderivative F of f  that satisfies the given 
condition. Check your answer by comparing the graphs of 
f  and F.

	23.	 f sxd − 5x 4 2 2x 5, Fs0d − 4

	24.	 f sxd − 4 2 3s1 1 x 2 d21, Fs1d − 0

25–48 � Find f.

	25.	 f 0sxd − 20x 3 2 12x 2 1 6x

	26.	 f 0sxd − x 6 2 4x 4 1 x 1 1

	27.	 f 0sxd − 2x 1 3e x	 28.	 f 0sxd − 1yx 2

	29.	 f -std − 12 1 sin t	 30.	 f -std − st 2 2 cos t

	31.	� f 9sxd − 1 1 3sx ,    f s4d − 25

	32.	� f 9sxd − 5x 4 2 3x 2 1 4,    f s21d − 2

	33.	� f 9std − 4ys1 1 t 2d,    f s1d − 0

	34.	� f 9std − t 1 1yt 3,    t . 0,    f s1d − 6

	35.	� f 9sxd − 5x 2y3,    f s8d − 21

	36.	� f 9sxd − sx 1 1dysx ,    f s1d − 5

	37.	�� f 9std − sec t ssec t 1 tan td,    2�y2 , t , �y2,  
f s�y4d − 21

	38.	� f 9std − 3t 2 3yt ,    f s1d − 2,    f s21d − 1

	39.	 f 0sxd − 22 1 12x 2 12x 2, f s0d − 4,  f 9s0d − 12

	40.	 f 0sxd − 8x 3 1 5,  f s1d − 0,  f 9s1d − 8

	41.	� f 0s�d − sin � 1 cos �,    f s0d − 3,    f 9s0d − 4

	42.	� f 0std − t 2 1 1yt 2,  t . 0,    f s2d − 3,    f 9s1d − 2

	43.	� f 0sxd − 4 1 6x 1 24x 2,    f s0d − 3,    f s1d − 10

	44.	� f 0sxd − x 3 1 sinh x,    f s0d − 1,    f s2d − 2.6

	45.	� f 0sxd − e x 2 2 sin x,    f s0d − 3,    f s�y2d − 0

	46.	� f 0std − s3 t 2 cos t,    f s0d − 2,    f s1d − 2

	47.	� f 0sxd − x 22,    x . 0,    f s1d − 0,    f s2d − 0

	48.	� f -sxd − cos x,    f s0d − 1,    f 9s0d − 2,    f 0s0d − 3

	49.	�� Given that the graph of f  passes through the point  
(2, 5) and that the slope of its tangent line at sx, f sxdd  
is 3 2 4x, find f s1d.

	50.	�� Find a function f  such that f 9sxd − x 3 and the line 
x 1 y − 0 is tangent to the graph of f .

;
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	 SECTION  4.9    Antiderivatives	 357

producing one item is $562, find the cost of producing 100 
items.

	72.	�� The linear density of a rod of length 1 m is given by 
�sxd − 1ysx  , in grams per centimeter, where x is mea-
sured in centimeters from one end of the rod. Find the 
mass of the rod.

	73.	�� Since raindrops grow as they fall, their surface area increases 
and therefore the resistance to their falling increases. A 
raindrop has an initial downward velocity of 10 mys and its 
downward acceleration is

a − H9 2 0.9t

0

if 0 < t < 10

if t . 10

If the raindrop is initially 500 m above the ground, how 
long does it take to fall?

	74.	�� A car is traveling at 50 miyh when the brakes are fully 
applied, producing a constant deceleration of 22 ftys2. What 
is the distance traveled before the car comes to a stop?

	75.	�� What constant acceleration is required to increase the speed 
of a car from 30 miyh to 50 miyh in 5 seconds?

	76.	�� A car braked with a constant deceleration of 16 ftys2, pro-
ducing skid marks measuring 200 ft before coming to a 
stop. How fast was the car traveling when the brakes were 
first applied?

	77.	�� A car is traveling at 100 kmyh when the driver sees an  
accident 80 m ahead and slams on the brakes. What con-
stant deceleration is required to stop the car in time to  
avoid a pileup?

	78.	�� A model rocket is fired vertically upward from rest. Its 
acceleration for the first three seconds is astd − 60t, at 
which time the fuel is exhausted and it becomes a freely 
“falling” body. Fourteen seconds later, the rocket’s 
parachute opens, and the (downward) velocity slows 
linearly to 218 ftys in 5 seconds. The rocket then “floats” 
to the ground at that rate.

	 (a)	� Determine the position function s and the velocity func- 
tion v (for all times t). Sketch the graphs of s and v.

	 (b)	� At what time does the rocket reach its maximum height, 
and what is that height?

	 (c)	 At what time does the rocket land?

	79.	�� A high-speed bullet train accelerates and decelerates at the 
rate of 4 ftys2. Its maximum cruising speed is 90 miyh.

	 (a)	� What is the maximum distance the train can travel if it 
accelerates from rest until it reaches its cruising speed 
and then runs at that speed for 15 minutes?

	 (b)	� Suppose that the train starts from rest and must come to  
a complete stop in 15 minutes. What is the maximum 
distance it can travel under these conditions?

	 (c)	� Find the minimum time that the train takes to travel 
between two consecutive stations that are 45 miles 
apart.

	 (d)	� The trip from one station to the next takes 37.5 minutes. 
How far apart are the stations?

59–64 � A particle is moving with the given data. Find the position 
of the particle.

	59.	� vstd − sin t 2 cos t,    ss0d − 0

	60.	 vstd − t 2 2 3st  , ss4d − 8

	61.	� astd − 2t 1 1,    ss0d − 3,    vs0d − 22

	62.	� astd − 3 cos t 2 2 sin t,    ss0d − 0,    vs0d − 4

	63.	� astd − 10 sin t 1 3 cos t,    ss0d − 0,    ss2�d − 12

	64.	� astd − t 2 2 4t 1 6,    ss0d − 0,    ss1d − 20

	65.	�� A stone is dropped from the upper observation deck (the 
Space Deck) of the CN Tower, 450 m above the ground.

	 (a)	� Find the distance of the stone above ground level at time t.
	 (b)	 How long does it take the stone to reach the ground?
	 (c)	 With what velocity does it strike the ground?
	 (d)	� If the stone is thrown downward with a speed of 5 mys, 

how long does it take to reach the ground?

	66.	�� Show that for motion in a straight line with constant accelera-
tion a, initial velocity v0, and initial displacement s0, the 
displacement after time t is

s − 1
2 at 2 1 v0 t 1 s0

	67.	�� An object is projected upward with initial velocity v0 meters 
per second from a point s0 meters above the ground. Show that 

fvstdg2 − v0
2 2 19.6fsstd 2 s0 g

	68.	�� Two balls are thrown upward from the edge of the cliff in 
Example 7. The first is thrown with a speed of 48 ftys and the 
other is thrown a second later with a speed of 24 ftys. Do the 
balls ever pass each other?

	69.	�� A stone was dropped off a cliff and hit the ground with a 
speed of 120 ftys. What is the height of the cliff? 

	70.	�� If a diver of mass m stands at the end of a diving board with 
length L and linear density �, then the board takes on the 
shape of a curve y − f sxd, where

EIy 0 − mtsL 2 xd 1 1
2 �tsL 2 xd2

E and I are positive constants that depend on the material of 
the board and t s, 0d is the acceleration due to gravity.

	 (a)	� Find an expression for the shape of the curve.
	 (b)	� Use f sLd to estimate the distance below the horizontal at 

the end of the board.

y

x0

	71.	�� A company estimates that the marginal cost (in dollars per 
item) of producing x items is 1.92 2 0.002x. If the cost of Not For Sale
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358	 CHAPTER 4    Applications of Differentiation

	 (d)	� How can you use l’Hospital’s Rule if you have a power 
f f sxdgtsxd where f sxd l 0 and tsxd l 0 as x l a?

	 8.	�� State whether each of the following limit forms is 
indeterminate. Where possible, state the limit.

	 (a)	
0

0
	 (b)	

`

`
	 (c)	

0

`
	 (d)	

`

0

	 (e)	 ` 1 `	 (f )	 ` 2 `	 (g)	 ` ? `	 (h)	 ` ? 0

	 (i )	 00	 ( j )	 0`	 (k)	 `0	 ( l )	 1`

	 9.	�� If you have a graphing calculator or computer, why do you 
need calculus to graph a function?

	10.	� (a)	� Given an initial approximation x1 to a root of the equation 
f sxd − 0, explain geometrically, with a diagram, how the 
second approximation x2 in Newton’s method is obtained.

	 (b)	� Write an expression for x2 in terms of x1, f sx1d, and f 9sx1d.
	 (c)	� Write an expression for xn11 in terms of xn, f sxn d, and 

f 9sxnd.
	 (d)	� Under what circumstances is Newton’s method likely to 

fail or to work very slowly?

	11.	� (a)	 What is an antiderivative of a function f ?
	 (b)	� Suppose F1 and F2 are both antiderivatives of f  on an  

interval I. How are F1 and F2 related?

	 9.	� �There exists a function f  such that f sxd . 0, f 9sxd , 0,  
and f 0 sxd . 0 for all x.

	10.	� �There exists a function f  such that f sxd , 0, f 9sxd , 0, 
and f 0 sxd . 0 for all x.

	11.	� �If f  and t are increasing on an interval I, then f 1 t is  
increasing on I.

	12.	� �If f  and t are increasing on an interval I, then f 2 t is  
increasing on I.

	13.	� �If f  and t are increasing on an interval I, then ft is  
increasing on I.

	14.	� �If f  and t are positive increasing functions on an interval I, 
then ft is increasing on I.

	15.	� �If f  is increasing and f sxd . 0 on I, then tsxd − 1yf sxd is 
decreasing on I.

	16.	� If f  is even, then f 9 is even.

	17.	� If f  is periodic, then f 9 is periodic.

	 1.	�� Explain the difference between an absolute maximum and  
a local maximum. Illustrate with a sketch.

	 2.	� (a)	 What does the Extreme Value Theorem say?
	 (b)	 Explain how the Closed Interval Method works.

	 3.	� (a)	 State Fermat’s Theorem.
	 (b)	 Define a critical number of f.

	 4.	� (a)	 State Rolle’s Theorem.
	 (b)	� State the Mean Value Theorem and give a geometric  

interpretation.

	 5.	� (a)	 State the Increasing/Decreasing Test.
	 (b)	� What does it mean to say that f  is concave upward on an 

interval I?
	 (c)	 State the Concavity Test.
	 (d)	 What are inflection points? How do you find them?

	 6.	� (a)	 State the First Derivative Test.
	 (b)	 State the Second Derivative Test.
	 (c)	� What are the relative advantages and disadvantages of  

these tests?

	 7.	� (a)	 What does l’Hospital’s Rule say?
	 (b)	� How can you use l’Hospital’s Rule if you have a product 

f sxd tsxd where f sxd l 0 and tsxd l ` as x l a?
	 (c)	� How can you use l’Hospital’s Rule if you have a difference 

f sxd 2 tsxd where f sxd l ` and tsxd l ` as x l a?

Determine whether the statement is true or false. If it is true, explain 
why. If it is false, explain why or give an example that disproves the 
statement.

	 1.	� If f 9scd − 0, then f  has a local maximum or minimum at c.

	 2.	� If f  has an absolute minimum value at c, then f 9scd − 0.

	 3.	� �If f  is continuous on sa, bd, then f  attains an absolute 
maximum value f scd and an absolute minimum value f sd d at 
some numbers c and d in sa, bd.

	 4.	� �If f  is differentiable and f s21d − f s1d, then there is a number 
c such that | c | , 1 and f 9scd − 0.

	 5.	� �If f 9sxd , 0 for 1 , x , 6, then f  is decreasing on (1, 6).

	 6.	� �If f 0s2d − 0, then s2, f s2dd is an inflection point of the  
curve y − f sxd.

	 7.	� �If f 9sxd − t9sxd for 0 , x , 1, then f sxd − tsxd for 
0 , x , 1.

	 8.	� �There exists a function f  such that f s1d − 22, f s3d − 0,  
and f 9sxd . 1 for all x.

4	 REVIEW

CONCEPT CHECK	 Answers to the Concept Check can be found on the back endpapers.

TRUE–FALSE QUIZ

Not For Sale

©
 2

01
4 

C
en

ga
ge

 L
ea

rn
in

g.
 A

ll 
R

ig
ht

s R
es

er
ve

d.
 T

hi
s c

on
te

nt
 is

 n
ot

 y
et

 fi
na

l a
nd

 C
en

ga
ge

 L
ea

rn
in

g 
do

es
 n

ot
 g

ua
ra

nt
ee

 th
is

 p
ag

e 
w

ill
 c

on
ta

in
 c

ur
re

nt
 m

at
er

ia
l o

r m
at

ch
 th

e 
pu

bl
is

he
d 

pr
od

uc
t.



	 CHAPTER  4    Review	 359

	20.	� If lim
xl`

 f sxd − 1 and lim
xl`

 tsxd − `, then 

lim
xl`

 f f sxdg tsxd − 1

	21.	� lim
x l 0

 
x

e x − 1

	18.	� �The most general antiderivative of f sxd − x 22 is

Fsxd − 2
1

x
1 C

	19.	� If f 9sxd exists and is nonzero for all x, then f s1d ± f s0d.

1–6 � Find the local and absolute extreme values of the function 
on the given interval.

	 1.	� f sxd − x 3 2 9x 2 1 24x 2 2,    f0, 5g

	 2.	� f sxd − xs1 2 x  ,    f21, 1g

	 3.	� f sxd −
3x 2 4

x 2 1 1
,    f22, 2g

	 4.	� f sxd − sx 2 1 x 1 1 ,    f22, 1g

	 5.	� f sxd − x 1 2 cos x,    f2�, �g

	 6.	� f sxd − x2e2x,    f21, 3g

�

7–14 � Evaluate the limit.

	 7.	 lim
x l 0

e x 2 1

tan x
	   8.	 lim

xl 0
 

tan 4x

x 1 sin 2x

	 9.	 lim
xl 0

 
e2x 2 e22x

lnsx 1 1d
	 10.	 lim

xl `
 
e2x 2 e22x

lnsx 1 1d

	11.	 lim
x l 2`

 sx 2 2 x 3de 2x	 12.	 lim
xl

 

�2
 sx 2 �d csc x

	13.	 lim
x l 11

 S x

x 2 1
2

1

ln xD	 14.	 lim
x l

 

s�y2d 2
stan xdcos x

15–17 � Sketch the graph of a function that satisfies the given  
conditions.

	15.	� f s0d − 0, f 9s22d − f 9s1d − f 9s9d − 0,

lim
x l `

 f sxd − 0,    lim
x l

 

6
 f sxd − 2`,

f 9sxd , 0 on s2`, 22d, s1, 6d, and s9, `d,

f 9sxd . 0 on s22, 1d and s6, 9d,

f 0sxd . 0 on s2`, 0d and s12, `d, 

f 0sxd , 0 on s0, 6d and s6, 12d

	16.	�� f s0d − 0,    f  is continuous and even,  

f 9sxd − 2x if 0 , x , 1, f 9sxd − 21 if 1 , x , 3,

f 9sxd − 1 if x . 3

	17.	�� f  is odd,    f 9sxd , 0 for 0 , x , 2,  

f 9sxd . 0 for x . 2,    f 0sxd . 0 for 0 , x , 3,

f 0sxd , 0 for x . 3,    lim
x l `

 f sxd − 22

	18.	�� The figure shows the graph of the derivative f 9of a function f.
	 (a)	 On what intervals is f  increasing or decreasing?
	 (b)	� For what values of x does f  have a local maximum or  

minimum?
	 (c)	 Sketch the graph of f 0.
	 (d)	 Sketch a possible graph of f.

0 x

y

1 2 3 4 5 6 7_1

_2

y=f ª(x)

19–34 � Use the guidelines of Section 4.5 to sketch the curve.

	19.	 y − 2 2 2x 2 x 3

	20.	 y − 22x 3 2 3x 2 1 12x 1 5

	21.	 y − 3x 4 2 4x 3 1 2	 22.	 y −
x

1 2 x 2

	23.	 y −
1

xsx 2 3d2 	 24.	 y −
1

x 2 2
1

sx 2 2d2

	25.	 y −
sx 2 1d3

x 2 	 26.	 y − s1 2 x  1 s1 1 x  

	27.	 y − xs2 1 x  	 28.	 y − x 2y3sx 2 3d2
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360	 CHAPTER 4    Applications of Differentiation

	29.	� y − e x sin x,    2� < x < �

	30.	 y − 4x 2 tan x, 2�y2 , x , �y2

	31.	 y − sin21s1yxd	 32.	 y − e2x2x 2

	33.	 y − sx 2 2de2x	 34.	 y − x 1 lnsx 2 1 1d

35–38 � Produce graphs of f  that reveal all the important 
aspects of the curve. Use graphs of f 9 and f 0 to estimate the 
intervals of increase and decrease, extreme values, intervals of 
concavity, and inflection points. In Exercise 35 use calculus to 
find these quantities exactly.

	35.	 f sxd −
x 2 2 1

x 3

	36.	 f sxd −
x 3 1 1

x 6 1 1

	37.	 f sxd − 3x 6 2 5x 5 1 x 4 2 5x 3 2 2x 2 1 2

	38.	 f sxd − x 2 1 6.5 sin x,  25 < x < 5

	39.	�� Graph f sxd − e 21yx2

 in a viewing rectangle that shows all 
the main aspects of this function. Estimate the inflection 
points. Then use calculus to find them exactly.

	40.	�� (a)	 Graph the function f sxd − 1ys1 1 e 1yx d .
	 (b)	� Explain the shape of the graph by computing the 

limits of f sxd as x approaches `, 2`, 01, and 02.
	 (c)	� Use the graph of f  to estimate the coordinates of the 

inflection points.
	 (d)	 Use your CAS to compute and graph f 0.
	 (e)	� Use the graph in part (d) to estimate the inflection 

points more accurately.

41–42 � Use the graphs of f, f 9, and f 0 to estimate the  
x-coordinates of the maximum and minimum points and 
inflection points of f.

	41.	� f sxd −
cos2 x

sx 2 1 x 1 1 
,    2� < x < �

	42.	 f sxd − e20.1x lnsx 2 2 1d

	43.	�� Investigate the family of functions f sxd − lnssin x 1 C d. 
What features do the members of this family have in 
common? How do they differ? For which values of C is 
f  continuous on s2`, `d? For which values of C does f  
have no graph at all? What happens as C l `?

;

;

CAS

CAS

;

	44.	�� Investigate the family of functions f sxd − cxe2cx 2

.  
What happens to the maximum and minimum points and 
the inflection points as c changes? Illustrate your conclu-
sions by graphing several members of the family.

	45.	�� Show that the equation 3x 1 2 cos x 1 5 − 0 has exactly 
one real root.

	46.	�� Suppose that f  is continuous on f0, 4g, f s0d − 1, and 
2 < f 9sxd < 5 for all x in s0, 4d. Show that 9 < f s4d < 21.

	47.	�� By applying the Mean Value Theorem to the function 
f sxd − x 1y5 on the interval f32, 33g, show that

2 , s5 33 , 2.0125

	48.	�� For what values of the constants a and b is s1, 3d a point of 
inflection of the curve y − ax 3 1 bx 2?

	49.	�� Let tsxd − f sx 2 d, where f  is twice differentiable for all x, 
f 9sxd . 0 for all x ± 0, and f  is concave downward on 
s2`, 0d and concave upward on s0, `d.

	 (a)	 At what numbers does t have an extreme value?
	 (b)	 Discuss the concavity of t.

	50.	�� Find two positive integers such that the sum of the first 
number and four times the second number is 1000 and  
the product of the numbers is as large as possible.

	51.	�� Show that the shortest distance from the point sx1, y1d to the 
straight line Ax 1 By 1 C − 0 is

| Ax1 1 By1 1 C |
sA2 1 B2 

	52.	�� Find the point on the hyperbola xy − 8 that is closest to the 
point s3, 0d.

	53.	�� Find the smallest possible area of an isosceles triangle that 
is circumscribed about a circle of radius r.

	54.	�� Find the volume of the largest circular cone that can be 
inscribed in a sphere of radius r.

	55.	�� In DABC, D lies on AB, CD � AB, | AD | − | BD | − 4 cm, 
and | CD | − 5 cm. Where should a point P be chosen on 
CD so that the sum | PA | 1 | PB | 1 | PC | is a minimum?

	56.	� Solve Exercise 55 when | CD | − 2 cm.

	57.	� The velocity of a wave of length L in deep water is

v − KÎ L

C
1

C

L
 

where K and C are known positive constants. What is the 
length of the wave that gives the minimum velocity?

	58.	�� A metal storage tank with volume V is to be constructed 
in the shape of a right circular cylinder surmounted by a 

;
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	 CHAPTER  4    Review	 361

hemisphere. What dimensions will require the least amount 
of metal?

	59.	�� A hockey team plays in an arena with a seating capacity of 
15,000 spectators. With the ticket price set at $12, average 
attendance at a game has been 11,000. A market survey 
indicates that for each dollar the ticket price is lowered, 
average attendance will increase by 1000. How should the 
owners of the team set the ticket price to maximize their 
revenue from ticket sales?

	60.	�� A manufacturer determines that the cost of making  
x units of a commodity is

Csxd − 1800 1 25x 2 0.2x 2 1 0.001x 3

and the demand function is psxd − 48.2 2 0.03x.
	 (a)	� Graph the cost and revenue functions and use the 

graphs to estimate the production level for maximum 
profit.

	 (b)	� Use calculus to find the production level for maximum 
profit.

	 (c)	� Estimate the production level that minimizes the aver-
age cost.

	61.	�� Use Newton’s method to find the root of the equation 

x5 2 x4 1 3x2 2 3x 2 2 − 0 �

		�  in the interval f1, 2g correct to six decimal places.

	62.	�� Use Newton’s method to find all solutions of the equation 
sin x − x 2 2 3x 1 1 correct to six decimal places.

	63.	�� Use Newton’s method to find the absolute maximum 
value of the function f std − cos t 1 t 2 t 2 correct to eight 
decimal places.

	64.	�� Use the guidelines in Section 4.5 to sketch the curve 
y − x sin x, 0 < x < 2�. Use Newton’s method when  
necessary.

65–68 � Find the most general antiderivative of the function.

	65.	 f sxd − 4sx 2 6x 2 1 3

	66.	 tsxd −
1

x
1

1

x 2 1 1

	67.	 f std − 2 sin t 2 3e t

	68.	 f sxd − x23 1 cosh x

69–72 � Find f.

	69.	� f 9std − 2t 2 3 sin t,    f s0d − 5

	70.	� f 9sud −
u2 1 su  

u
,    f s1d − 3

;

	71.	� f 0sxd − 1 2 6x 1 48x 2,    f s0d − 1,    f 9s0d − 2

	72.	� f 0sxd − 5x 3 1 6x 2 1 2,    f s0d − 3,    f s1d − 22

73–74 � A particle is moving with the given data. Find the 
position of the particle.

	73.	� vstd − 2t 2 1ys1 1 t 2d,    ss0d − 1

	74.	� astd − sin t 1 3 cos t,    ss0d − 0,    vs0d − 2

	75.	� (a)	� If f sxd − 0.1e x 1 sin x, 24 < x < 4, use a graph of f  
to sketch a rough graph of the antiderivative F of f  that 
satisfies Fs0d − 0.

	 (b)	 Find an expression for Fsxd.
	 (c)	� Graph F using the expression in part (b). Compare with 

your sketch in part (a).

	76.	� �Investigate the family of curves given by

f sxd − x 4 1 x 3 1 cx 2

In particular you should determine the transitional value of 
c at which the number of critical numbers changes and the 
transitional value at which the number of inflection points 
changes. Illustrate the various possible shapes with graphs.

	77.	�� A canister is dropped from a helicopter 500 m above  
the ground. Its parachute does not open, but the canister 
has been designed to withstand an impact velocity of 100 
mys. Will it burst?

	78.	�� In an automobile race along a straight road, car A passed 
car B twice. Prove that at some time during the race their 
accelerations were equal. State the assumptions that you 
make.

	79.	�� A rectangular beam will be cut from a cylindrical log of 
radius 10 inches.

	 (a)	� Show that the beam of maximal cross-sectional area is 
a square.

	 (b)	� Four rectangular planks will be cut from the four  
sections of the log that remain after cutting the square

depth

width

10

;

;
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362	 CHAPTER 4    Applications of Differentiation

		�  beam. Determine the dimensions of the planks that will 
have maximal cross-sectional area.

	 (c)	� Suppose that the strength of a rectangular beam is 
proportional to the product of its width and the square of 
its depth. Find the dimensions of the strongest beam that 
can be cut from the cylindrical log.

	80.	�� If a projectile is fired with an initial velocity v at an angle 
of inclination � from the horizontal, then its trajectory, 
neglecting air resistance, is the parabola

y − stan �dx 2
t

2v2 cos2�
 x 2        0 , � ,

�

2

	 (a)	� Suppose the projectile is fired from the base of a plane 
that is inclined at an angle �, � . 0, from the horizontal, 
as shown in the figure. Show that the range of the projec-
tile, measured up the slope, is given by

Rs�d −
2v 2 cos � sins� 2 �d

t cos2�
 

	 (b)	 Determine � so that R is a maximum.
	 (c)	� Suppose the plane is at an angle � below the horizontal. 

Determine the range R in this case, and determine the 
angle at which the projectile should be fired to maxi-
mize R.

7et04rx80
09/09/09
MasterID: 00594

¨
å

x

y

0

R

	81.	�� If an electrostatic field E acts on a liquid or a gaseous polar 
dielectric, the net dipole moment P per unit volume is

PsEd −
e E 1 e2E

e E 2 e2E  2
1

E

�Show that lim E l
  

01  PsEd − 0.

	82.	�� If a metal ball with mass m is projected in water and the force 
of resistance is proportional to the square of the velocity, then 
the distance the ball travels in time t is

sstd −
m

c
 ln coshÎ tc

mt
 

where c is a positive constant. Find lim c
 
l  01  sstd.

	83.	� Show that, for x . 0,
x

1 1 x 2 , tan21x , x

	84.	�� Sketch the graph of a function f  such that f 9sxd , 0 for  
all x, f 0sxd . 0 for | x | . 1, f 0sxd , 0 for | x | , 1, and 
lim xl6` f f sxd 1 xg − 0.

	85.	�� A light is to be placed atop a pole of height h feet to 
illuminate a busy traffic circle, which has a radius of 40 ft. 
The intensity of illumination I at any point P on the circle 
is directly proportional to the cosine of the angle � (see the 
figure) and inversely proportional to the square of the distance 
d from the source.

	 (a)	 How tall should the light pole be to maximize I?
	 (b)	� Suppose that the light pole is h feet tall and that a 

woman is walking away from the base of the pole at the 
rate of 4 ftys. At what rate is the intensity of the light at 
the point on her back 4 ft above the ground decreasing 
when she reaches the outer edge of the traffic circle?

h

¨
d

40 P 

	86.	�� Water is flowing at a constant rate into a spherical tank. Let 
Vstd be the volume of water in the tank and Hstd be the height 
of the water in the tank at time t.

	 (a)	� What are the meanings of V9std and H9std? Are these 
derivatives positive, negative, or zero?

	 (b)	� Is V 0std positive, negative, or zero? Explain.
	 (c)	� Let t1, t2, and t3 be the times when the tank is one-quarter 

full, half full, and three-quarters full, respectively. 
Are the values H 0st1d, H 0st2d, and H 0st3d positive, 
negative, or zero? Why?
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Problems Plus 	1 .	� �If a rectangle has its base on the x-axis and two vertices on the curve y − e2x 2

, show that 
the rectangle has the largest possible area when the two vertices are at the points of inflec-
tion of the curve.

	2 .	� Show that | sin x 2 cos x | < s2  for all x.

	3 .	� �Does the function f sxd − e10 | x22 |2x 2

 have an absolute maximum? If so, find it. What about 
an absolute minimum?

	 4  .	� �Show that x 2y 2 s4 2 x 2 ds4 2 y 2 d < 16 for all numbers x and y such that | x | < 2 and 

| y | < 2.

	5 .	� �Show that the inflection points of the curve y − ssin xdyx lie on the curve y 2 sx 4 1 4d − 4.

	6 .	� �Find the point on the parabola y − 1 2 x 2 at which the tangent line cuts from the first 
quadrant the triangle with the smallest area.

	7 .	� �If a, b, c, and d are constants such that

lim
x l 0

 
ax 2 1 sin bx 1 sin cx 1 sin dx

3x 2 1 5x 4 1 7x 6 − 8

	 find the value of the sum a 1 b 1 c 1 d.

	 8.	� �Evaluate

lim
xl`

 
sx 1 2d1yx 2 x 1yx

sx 1 3d1yx 2 x1yx

	 9.	� �Find the highest and lowest points on the curve x 2 1 xy 1 y 2 − 12.

	1 0.	� Sketch the set of all points sx, yd such that | x 1 y | < e x.

	11 .	� �If Psa, a 2d is any point on the parabola y − x 2, except for the origin, let Q be the point 
where the normal line at P intersects the parabola again (see the figure).

	 (a)	 Show that the y-coordinate of Q is smallest when a − 1ys2 .
	 (b)	 Show that the line segment PQ has the shortest possible length when a − 1ys2 .

	12 .	� �For what values of c does the curve y − cx 3 1 e x have inflection points?

	13 .	� �An isosceles triangle is circumscribed about the unit circle so that the equal sides meet  
at the point s0, ad on the y-axis (see the figure). Find the value of a that minimizes the 
lengths of the equal sides. (You may be surprised that the result does not give an equi- 
lateral triangle.).

	14 .	� Sketch the region in the plane consisting of all points sx, yd such that

2xy < | x 2 y | < x 2 1 y 2

	 15.	� �The line y − mx 1 b intersects the parabola y − x 2 in points A and B. (See the fig- 
ure.) Find the point P on the arc AOB of the parabola that maximizes the area of the  
triangle PAB.

	16 .	� �ABCD is a square piece of paper with sides of length 1 m. A quarter-circle is drawn from  
B to D with center A. The piece of paper is folded along EF, with E on AB and F on AD,  
so that A falls on the quarter-circle. Determine the maximum and minimum areas that the 
triangle AEF can have.

	17 .	� For which positive numbers a does the curve y − a x intersect the line y − x?

	1 8.	� For what value of a is the following equation true?

lim
x l `

 S x 1 a

x 2 aDx

− e

0 x

y

P

Q

FIGURE FOR PROBLEM 11�   

FIGURE FOR PROBLEM 13�   

O

y

x

y=≈

y=mx+b

P

B

A

FIGURE FOR PROBLEM 15�   Not For Sale
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	1 9.	� �Let f sxd − a1 sin x 1 a2 sin 2x 1 ∙ ∙ ∙ 1 an sin nx, where a1, a2, . . . , an are real numbers 
and n is a positive integer. If it is given that | f sxd | < | sin x | for all x, show that

| a1 1 2a2 1 ∙ ∙ ∙ 1 nan | < 1

	2 0.	� �An arc PQ of a circle subtends a central angle � as in the figure. Let As�d be the area 
between the chord PQ and the arc PQ. Let Bs�d be the area between the tangent lines 
PR, QR, and the arc. Find

lim
� l 01

 
As�d
Bs�d

	 21.	� �The speeds of sound c1 in an upper layer and c2 in a lower layer of rock and the thickness 
h of the upper layer can be determined by seismic exploration if the speed of sound in the 
lower layer is greater than the speed in the upper layer. A dynamite charge is detonated at 
a point P and the transmitted signals are recorded at a point Q, which is a distance D from 
P. The first signal to arrive at Q travels along the surface and takes T1 seconds. The next 
signal travels from P to a point R, from R to S in the lower layer, and then to Q, taking T2 
seconds. The third signal is reflected off the lower layer at the midpoint O of RS and takes 
T3 seconds to reach Q. (See the figure.)

	 (a)	 Express T1, T2, and T3 in terms of D, h, c1, c2, and �.
	 (b)	� Show that T2 is a minimum when sin � − c1yc2.
	 (c)	� Suppose that D − 1 km, T1 − 0.26 s, T2 − 0.32 s, and T3 − 0.34 s. Find c1, c2, and h.

	 �Note:  Geophysicists use this technique when studying the structure of the earth’s crust, 
whether searching for oil or examining fault lines.

	22 .	� �For what values of c is there a straight line that intersects the curve 

y − x 4 1 cx 3 1 12x 2 2 5x 1 2

	 in four distinct points?

	 23.	� �One of the problems posed by the Marquis de l’Hospital in his calculus textbook Analyse 
des Infiniment Petits concerns a pulley that is attached to the ceiling of a room at a point 
C by a rope of length r. At another point B on the ceiling, at a distance d from C (where 
d . r), a rope of length , is attached and passed through the pulley at F and connected to a 
weight W. The weight is released and comes to rest at its equilibrium position D. (See the 
figure.) As l’Hospital argued, this happens when the distance | ED | is maximized. Show 
that when the system reaches equilibrium, the value of x is

r

4d
 (r 1 sr 2 1 8d 2 )

	 Notice that this expression is independent of both W and ,.

	24 .	� �Given a sphere with radius r, find the height of a pyramid of minimum volume whose base 
is a square and whose base and triangular faces are all tangent to the sphere. What if the 
base of the pyramid is a regular n-gon? (A regular n-gon is a polygon with n equal sides and 
angles.) (Use the fact that the volume of a pyramid is 13 Ah, where A is the area of the base.)

	25 .	� ��Assume that a snowball melts so that its volume decreases at a rate proportional to its 
surface area. If it takes three hours for the snowball to decrease to half its original volume, 
how much longer will it take for the snowball to melt completely?

	26 .	� �A hemispherical bubble is placed on a spherical bubble of radius 1. A smaller hemispher-
ical bubble is then placed on the first one. This process is continued until n chambers, 
including the sphere, are formed. (The figure shows the case n − 4.) Use mathematical 
induction to prove that the maximum height of any bubble tower with n chambers is 
1 1 sn .

FIGURE FOR PROBLEM 20�   

P

Q

B(̈ )A(̈ )¨ R

FIGURE FOR PROBLEM 21�   

D

h

R

¨

speed of sound=c™

Q

O S

¨

speed of sound=c¡
P

FIGURE FOR PROBLEM 23�   

r

C

F

D

d

xB E

FIGURE FOR PROBLEM 26�   
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