
First-Order Linear Differential Equations

1

A first-order linear differential equation is one that can be put into the form

dy

dx
1 Psxdy − Qsxd

where P and Q are continuous functions on a given interval. This type of equation occurs 
frequently in various sciences, as we will see.

An example of a linear equation is xy9 1 y − 2x because, for x ± 0, it can be written 
in the form

y9 1
1

x
 y − 2

Notice that this differential equation is not separable because it’s impossible to factor the 
expression for y9 as a function of x times a function of y. But we can still solve the equation 
by noticing, by the Product Rule, that

xy9 1 y − sxyd9

and so we can rewrite the equation as

sxyd9 − 2x

If we now integrate both sides of this equation, we get

xy − x 2 1 C        or        y − x 1
C

x

If we had been given the differential equation in the form of Equation 2, we would have had 
to take the preliminary step of multiplying each side of the equation by x.

It turns out that every first-order linear differential equation can be solved in a simi-
lar fashion by multiplying both sides of Equation 1 by a suitable function Isxd called an  
integrating factor. We try to find I so that the left side of Equation 1, when multiplied by 
Isxd, becomes the derivative of the product Isxdy:

Isxd(y9 1 Psxdy) − (Isxdy)9

If we can find such a function I, then Equation 1 becomes

(Isxdy)9 − Isxd Qsxd

Integrating both sides, we would have

Isxdy − y Isxd Qsxd dx 1 C

so the solution would be

ysxd −
1

Isxd
 Fy Isxd Qsxd dx 1 CG

To find such an I, we expand Equation 3 and cancel terms:

 Isxdy9 1 Isxd Psxdy − sIsxdyd9 − I9sxdy 1 Isxdy9

 Isxd Psxd − I9sxd

1

2

3

4
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2   ■   FIRST-ORDER LINEAR DIFFERENTIAL EQUATIONS

This is a separable differential equation for I, which we solve as follows:

 y dI

I
− y Psxd dx

 ln | I | − y Psxd dx

 I − Ae y Psxd dx

where A − 6eC. We are looking for a particular integrating factor, not the most general 
one, so we take A − 1 and use

Isxd − e y Psxd dx

Thus a formula for the general solution to Equation 1 is provided by Equation 4, where I is 
given by Equation 5. Instead of memorizing this formula, however, we just remember the 
form of the integrating factor.

To solve the linear differential equation y9 1 Psxdy − Qsxd, multiply both sides by 
the integrating factor Isxd − e y Psxd dx and integrate both sides.

EXAMPLE �1�  Solve the differential equation 
dy

dx
1 3x 2 y − 6x 2.

SOLUTION � The given equation is linear since it has the form of Equation 1 with 
Psxd − 3x 2 and Qsxd − 6x 2. An integrating factor is

Isxd − e y 3x 2 dx − ex 3

Multiplying both sides of the differential equation by ex 3

, we get

 ex 3
 
dy

dx
1 3x 2ex 3

y − 6x 2ex 3

or	  
d

dx
 sex 3

yd − 6x 2ex 3

Integrating both sides, we have

 ex 3

y − y 6x 2ex 3 dx − 2ex 3

1 C

	  y − 2 1 Ce2x 3

	 n

EXAMPLE �2�  Find the solution of the initial-value problem

x 2 y9 1 xy − 1            x . 0            ys1d − 2

SOLUTION � We must first divide both sides by the coefficient of y9 to put the differential 
equation into standard form:

y9 1
1

x
 y −

1

x 2         x . 0

5

6

_3

_1.5 1.8

C=2
C=1

C=_2

C=_1
C=0

Figure 1 shows the graphs of several 
members of the family of solutions 
in Example 1. Notice that they all 
approach 2 as x l `.

FIGURE 1� 

6
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	 FIRST-ORDER LINEAR DIFFERENTIAL EQUATIONS   ■   3

The integrating factor is

Isxd − e y s1yxd dx − e ln x − x

Multiplication of Equation 6 by x gives

xy9 1 y −
1

x
        or        sxyd9 −

1

x

Then	 xy − y 1

x
 dx − ln x 1 C

and so	 y −
ln x 1 C

x

Since ys1d − 2, we have

2 −
ln 1 1 C

1
− C

Therefore the solution to the initial-value problem is

	 y −
ln x 1 2

x
	 n

EXAMPLE �3�  Solve y9 1 2xy − 1.

SOLUTION � The given equation is in the standard form for a linear equation. Multiplying 
by the integrating factor

 e y 2x dx − ex 2

we get	  ex 2

y9 1 2xex 2

y − ex 2

	

or	  (ex 2

y)9 − ex 2

	

Therefore	  ex 2

y − y ex 2

 dx 1 C	

Recall from Section 5.7 that y ex 2 dx can’t be expressed in terms of elementary functions. 
Nonetheless, it’s a perfectly good function and we can leave the answer as 

y − e2x 2

 y ex 2 dx 1 Ce2x 2

Another way of writing the solution is

y − e2x 2

 y x

0
 e t 2 dt 1 Ce2x 2

(Any number can be chosen for the lower limit of integration.)	 n

(1, 2)

5

_5

0 4

The solution of the initial-value prob-
lem in Example 2 is shown in Figure 2.

FIGURE 2� 

C=2

C=_2

2.5

_2.5

_2.5 2.5

Even though the solutions of the dif-
ferential equation in Example 3 are 
expressed in terms of an integral, they 
can still be graphed by a computer 
algebra system (Figure 3).

FIGURE 3� 
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4   ■   FIRST-ORDER LINEAR DIFFERENTIAL EQUATIONS

Exercises

24–25  ■�  Use the method of Exercise 23 to solve the differential 
equation.

	24.	� xy9 1 y − 2xy 2

	25.	�� y9 1
2

x
 y −

 y 3

x 2

	26.	�� �Solve the second-order equation xy0 1 2y9 − 12x 2 by  
making the substitution u − y9.

	27.	�� �Let Pstd be the performance level of someone learning 
a skill as a function of the training time t. The graph of 
P is called a learning curve. We propose the differential 
equation

dP

dt
− kfM 2 Pstdg

as a reasonable model for learning, where k is a positive 
con-stant. Solve it as a linear differential equation and use 
your solution to graph the learning curve.

	28.	�� �Two new workers were hired for an assembly line. Jim pro-
cessed 25 units during the first hour and 45 units during the 
second hour. Mark processed 35 units during the first hour 
and 50 units the second hour. Using the model of Exercise 
31 and assuming that Ps0d − 0, estimate the maximum 
number of units per hour that each worker is capable of 
processing.

	29.	�� �In Section 7.4 we looked at mixing problems in which the 
volume of fluid remained constant and saw that such prob-
lems give rise to separable differentiable equations. (See 
Exercises 45–48 in that section.) If the rates of flow into 
and out of the system are different, then the volume is not 
constant and the resulting differential equation is linear but 
not separable. Exercise 7.4.44 is an example.

A tank contains 100 L of water. A solution with a salt 
concentration of 0.4 kgyL is added at a rate of 5 Lymin. The  
solution is kept mixed and is drained from the tank at a rate  
of 3 Lymin. If ystd is the amount of salt (in kilograms) after  
t minutes, show that y satisfies the differential equation

dy

dt
− 2 2

3y

100 1 2t

Solve this equation and find the concentration after  
20 minutes.

	30.	�� �A tank with a capacity of 400 L is full of a mixture of water 
and chlorine with a concentration of 0.05 g of chlorine per 
liter. In order to reduce the concentration of chlorine, fresh 
water is pumped into the tank at a rate of 4 Lys. The mixture 
is kept stirred and is pumped out at a rate of 10 Lys. Find 
the amount of chlorine in the tank as a function of time.

1–4  ■�  Determine whether the differential equation is linear.

	 1.	� x 2 y9 − xy	 2.	�� y9 1 xy 2 − sx 

	 3.	� y9 −
1

x
1

1

y
	 4.	�� y sin x − x 2y9 2 x

�5–14  ■�  Solve the differential equation.

	 5.	� y9 1 y − 1	 6.	�� y9 2 y − e x

	 7.	� y9 − x 2 y	 8.	�� 4x 3y 1 x 4y9 − sin3x

	 9.	� xy9 1 y − sx 	 10.	�� y9 1 y − sinse xd

	11.	� sin x 
dy

dx
1 scos xdy − sinsx 2d

	12.	�� x 
dy

dx
2 4y − x 4e x

	13.	� s1 1 td 
du

dt
1 u − 1 1 t,    t . 0

	14.	�� t ln t 
dr

dt
1 r − te t

15–20  ■�  Solve the initial-value problem.

	15.	�� x 2y9 1 2xy − ln x,    ys1d − 2

	16.	�� t 3 
dy

dt
1 3t 2y − cos t,    ys�d − 0

	17.	�� t 
du

dt
− t 2 1 3u,    t . 0,    us2d − 4

	18.	�� 2xy9 1 y − 6x,    x . 0,    ys4d − 20

	19.	�� xy9 − y 1 x 2 sin x,    ys�d − 0

	20.	�� sx 2 1 1d 
dy

dx
1 3xsy 2 1d − 0,    ys0d − 2

	21–22  ■�  Solve the differential equation and use a calculator to 
graph several members of the family of solutions. How does  
the solution curve change as C varies?

	21.	� xy9 1 2y − e x	 22.	�� xy9 − x 2 1 2y

	23.	�� �A Bernoulli differential equation (named after James Ber-
noulli) is of the form

dy

dx
1 Psxdy − Qsxdy n

Observe that, if n − 0 or 1, the Bernoulli equation is linear.  
For other values of n, show that the substitution u − y 12n 
transforms the Bernoulli equation into the linear equation

du

dx
1 s1 2 ndPsxdu − s1 2 ndQsxd

;
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	 FIRST-ORDER LINEAR DIFFERENTIAL EQUATIONS   ■   5

	34.	�� �To account for seasonal variation in the logistic differential 
equation, we could allow k and M to be functions of t:

dP

dt
− kstdPS1 2

P

MstdD
	 (a)	� Verify that the substitution z − 1yP transforms this 

equation into the linear equation

dz

dt
1 kstdz −

kstd
Mstd

	 (b)	� Write an expression for the solution of the linear equa-
tion in part (a) and use it to show that if the carrying 
capacity M is constant, then

Pstd −
M

1 1 CMe2y kstd dt

Deduce that if y`0  kstd dt − `, then lim t l ` Pstd − M. 
[This will be true if kstd − k0 1 a cos bt with k0 . 0, 
which describes a positive intrinsic growth rate with a 
periodic seasonal variation.]

	 (c)	� If k is constant but M varies, show that

zstd − e2kt y t

0
 

ke ks

Mssd
 ds 1 Ce2kt

and use l’Hospital’s Rule to deduce that if Mstd has a 
limit as tl`, then Pstd has the same limit.

	31.	�� �An object with mass m is dropped from rest and we assume 
that the air resistance is proportional to the speed of the 
object. If sstd is the distance dropped after t seconds, then 
the speed is v − s9std and the acceleration is a − v9std. If t 
is the acceleration due to gravity, then the downward force 
on the object is mt 2 cv, where c is a positive constant, and 
Newton’s Second Law gives

m 
dv

dt
− mt 2 cv

	 (a)	 Solve this as a linear equation to show that

v −
mt
c

 s1 2 e2ctym d

	 (b)	 What is the limiting velocity?
	 (c)	 Find the distance the object has fallen after t seconds.

	32.	�� �If we ignore air resistance, we can conclude that heavier 
objects fall no faster than lighter objects. But if we take 
air resistance into account, our conclusion changes. Use 
the expression for the velocity of a falling object in Exer-
cise 31(a) to find dvydm and show that heavier objects do fall 
faster than lighter ones.

	33.	�� (a)	� Show that the substitution z − 1yP transforms the logis-
tic differential equation P9 − kPs1 2 PyMd into the 
linear differential equation

z9 1 kz −
k

M

	 (b)	� Solve the linear differential equation in part (a) and  
thus obtain an expression for Pstd. Compare with Equa-
tion 9.4.7.
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6   ■   FIRST-ORDER LINEAR DIFFERENTIAL EQUATIONS

Answers

25.  y − 6SCx 4 1
2

5xD
21y2

      

27.  Pstd − M 1 Ce2kt	

  0

 M

 P(t)

t

 P(0)

29.  y − 2
5 s100 1 2td 2 40,000s100 1 2td23y2; 0.2275 kgyL

31.  (b)  mtyc      (c)  smtycdft 1 smycde2ctym g 2 m 2tyc 2

33.  (b)  Pstd −
M

1 1 MCe2kt

1.  Yes        3.  No        5.  y − 1 1 Ce2x      

7.  y − x 2 1 1 Ce2x        9.  y − 2
3sx

 

1 Cyx      

11.  y −
y sinsx 2d dx 1 C

sin x
        13.  u −

t 2 1 2t 1 2C

2st 1 1d
  

15.  y −
1

x
 ln x 2

1

x
1

3

x 2         17.  u − 2t 2 1 t 3

19.  y − 2x cos x 2 x      

21.  y −
sx 2 1de x 1 C

x 2 	

6et Ans. 9.5.21
12.07.06

5

_5

3_3

C=_1 C=_1C=_3 C=_3

C=1

C=3C=3
C=5C=5

C=7C=7

C=_5 C=_5
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	 FIRST-ORDER LINEAR DIFFERENTIAL EQUATIONS   ■   7

Solutions

1. − 0 =  ⇔ 0 +  =  is linear since it can be put into the standard linear form (1), 0 +  ()  = ().

3. 0 =
1


+
1


is not linear since it cannot be put into the standard linear form (1), 0 +  ()  = ().

5. Comparing the given equation, 0 +  = 1, with the general form, 0 +  ()  = (), we see that  () = 1 and the

integrating factor is () = 

 ()  = 


1  = . Multiplying the differential equation by () gives

0 +  =  ⇒ ()0 =  ⇒  =

  ⇒  =  +  ⇒  


=

 


+




⇒

 = 1 +−.

7. 0 = −  ⇒ 0 +  =  (). () = 

 ()  = 


1  = . Multiplying the differential equation () by () gives

0 +  =  ⇒ ()0 =  ⇒  =

  ⇒  =  −  +  [by parts] ⇒

 = − 1 +− [divide by ].

9. Since  () is the derivative of the coefficient of 0 [ () = 1 and the coefficient is ], we can write the differential equation

0 +  =
√
 in the easily integrable form ()0 =

√
 ⇒  = 2

3
32 +  ⇒  = 2

3

√
+ .

11. sin



+ (cos)  = sin(2) ⇒ [(sin) ]0 = sin(2) ⇒ (sin)  =


sin(2)  ⇒  =


sin(2) +

sin
.

13. (1 + )



+  = 1 + ,   0 [divide by 1 + ] ⇒ 


+

1

1 + 
 = 1 (), which has the

form 0 +  () = (). The integrating factor is () = 

 ()  = 


[1(1+)]  = ln(1+) = 1 + .

Multiplying () by () gives us our original equation back. We rewrite it as [(1 + )]0 = 1 + . Thus,

(1 + ) =

(1 + )  = + 1

2
2 + ⇒  =

+ 1
2
2 +

1 + 
or  =

2 + 2+ 2

2(+ 1)
.

15. 20 + 2 = ln ⇒ (2)0 = ln ⇒ 2 =

ln ⇒ 2 =  ln− +  [by parts]. Since (1) = 2,

12(2) = 1 ln 1− 1 + ⇒ 2 = −1 + ⇒  = 3 so 2 =  ln− + 3, or  =
1


ln− 1


+
3

2
.

17. 



= 2 + 3 ⇒ 0 − 3


 =  (). () = 

 −3  = −3 ln|| = (ln||)−3 = −3 [  0] =
1

3
. Multiplying ()

by () gives
1

3
0 − 3

4
 =

1

2
⇒


1

3


0
=
1

2
⇒ 1

3
 =


1

2
 ⇒ 1

3
 = −1


+ . Since (2) = 4,

1

23
(4) = −1

2
+  ⇒  = 1, so

1

3
 = −1


+ 1, or  = −2 + 3.

19. 0 =  + 2 sin ⇒ 0 − 1


 =  sin. () = 


(−1)  = − ln  = ln

−1
=
1


.

Multiplying by
1


gives

1


0 − 1

2
 = sin ⇒


1




0
= sin ⇒ 1


 = − cos+ ⇒  = − cos+ .

() = 0 ⇒ − · (−1) +  = 0 ⇒  = −1, so  = − cos− .
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8   ■   FIRST-ORDER LINEAR DIFFERENTIAL EQUATIONS

21. 0 + 2 =  ⇒ 0 +
2


 =




.

() = 

(2)  = 2 ln|| =


ln||

2
= ||2 = 2.

Multiplying by () gives 2 0 + 2 =  ⇒ (2)0 =  ⇒
2 =


  = (− 1) + [by parts] ⇒

 = [(− 1) + ]2. The graphs for  = −5, −3, −1, 1, 3, 5, and 7 are
shown.  = 1 is a transitional value. For   1, there is an inflection point and

for   1, there is a local minimum. As || gets larger, the “branches” get
further from the origin.

23. Setting  = 1−,



= (1− ) −




or




=



1− 




=

(1−)

1− 




. Then the Bernoulli differential equation

becomes
(1−)

1− 




+  ()1(1−) = ()(1−) or




+ (1− ) () = ()(1− ).

25. Here 0 +
2


 =

3

2
, so  = 3,  () =

2


and() =

1

2
. Setting  = −2,  satisfies 0 − 4


= − 2

2
.

Then () = 

(−4)  = −4 and  = 4


− 2

6
+ 


= 4


2

55
+ 


= 4 +

2

5
.

Thus,  = ±

4 +

2

5

−12
.




+  =  , so () = 


  = . Multiplying the differential equation

by () gives 



+  =  ⇒ ( )0 =  ⇒

 () = −


+

= + −,   0. Furthermore, it is

reasonable to assume that 0 ≤  (0) ≤ , so − ≤  ≤ 0.

27.

(0) = 0 kg. Salt is added at a rate of


04

kg
L


5
L
min


= 2

kg
min

 Since solution is drained from the tank at a rate of

3 Lmin, but salt solution is added at a rate of 5 Lmin, the tank, which starts out with 100 L of water, contains (100 + 2) L

of liquid after  min. Thus, the salt concentration at time  is
()

100 + 2

kg
L
. Salt therefore leaves the tank at a rate of


()

100 + 2

kg
L


3
L
min


=

3

100 + 2

kg
min

. Combining the rates at which salt enters and leaves the tank, we get




= 2− 3

100 + 2
. Rewriting this equation as




+


3

100 + 2


 = 2, we see that it is linear.

() = exp


3 

100 + 2


= exp


3
2
ln(100 + 2)


= (100 + 2)32

29.
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Multiplying the differential equation by () gives (100 + 2)32



+ 3(100 + 2)12 = 2(100 + 2)32 ⇒

[(100 + 2)32]0 = 2(100 + 2)32 ⇒ (100 + 2)32 = 2
5
(100 + 2)52 +  ⇒

 = 2
5
(100 + 2) + (100 + 2)−32. Now 0 = (0) = 2

5
(100) +  · 100−32 = 40 + 1

1000
 ⇒  = −40,000, so

 =

2
5
(100 + 2)− 40,000(100 + 2)−32


kg. From this solution (no pun intended), we calculate the salt concentration

at time  to be () =
()

100 + 2
=


−40,000

(100 + 2)
52

+
2

5


kg
L
. In particular, (20) =

−40,000
14052

+
2

5
≈ 02275 kg

L

and (20) = 2
5
(140)− 40,000(140)−32 ≈ 3185 kg.

31. (a)



+




 =  and () = 


()  = (), and multiplying the differential equation by

() gives ()



+

()


= () ⇒


()

0
= (). Hence,

() = −()


() +

= +−(). But the object is dropped from rest, so (0) = 0 and

 = −. Thus, the velocity at time  is () = ()[1− −()].

(b) lim
→∞

() = 

(c) () =

()  = ()[+ ()−()] + 1 where 1 = (0)−22.

(0) is the initial position, so (0) = 0 and () = ()[+ ()−()]−22.

33. (a)  =
1


⇒  =

1


⇒  0 = − 0

2
. Substituting into  0 =  (1− ) gives us − 0

2
= 

1




1− 1




⇒

0 = −

1− 1




⇒ 0 = − + 


⇒ 0 +  =




().

(b) The integrating factor is 

  = . Multiplying () by  gives 0 +  =




⇒ ()0 =




 ⇒

 =







 ⇒  =

1


 +  ⇒  =

1


+ −. Since  =

1


, we have

 =
1

1


+−

⇒  =


1 +−
, which agrees with Equation 9.4.7,  =



1 +−
, when = .
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