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ABSTRACT 

A mathematical method for evaluating indirect effects propagated through 
ecosystems consisting of multiple species is developed. The time-backward expansion 
of the sensitivity matrix of a system at steady state represents the tracking back of 
the total effects received by species. Aggregating those portions of the total effect 
between two species that travel through a common path with various schedules gives 
the path partitioning of the total effect. From this path partitioning, a chain rule is 
derived that expresses the indirect effect transmitted through an individual path as 
the products of direct effects associated with the links constituting the path. The 
evaluation of indirect effects by this chain rule is applied to example systems to 
reveal the entire structure of influence propagation through the systems. The results 
of this~ application suggest three basic mechanisms through which indirect effects 
contribute to the complexity and contingency of species interactions: (i) the global- 
ization of influence by bundles of long indirect paths, (ii) the amplification (or 
reduction) of effects by positive (or negative) cycles, and (iii) the alteration in sign of 
interactions between a pair of species due to the change in dominance among the 
effects carried by parallel paths connecting the species. 

1. INTRODUCTION 

What happens to each member species of an ecological system when 
a local disturbance occurs? Not only the species subject to the distur- 
bance and those directly connected to the disturbed species but also 
those with no direct connections to these species would possibly be 
affected in significant ways. One extreme case is when the removal of a 
species in a biotic community leads to the destruction of the whole 
community; such a species is called a keystone species [1]. These 
phenomena demonstrate the existence of indirect effects, that is, effects 
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(a) (b) (c) 

FIG. 1. (a) A hypothetical system for considering the problem of controlling a 
pest (species 2) that damages an agricultural crop (species 1) when a predator 
(species 3) and a competitor (species 4) for the pest coexist. Each node represents a 
species, a directed solid line represents the feeding of the donor node species by the 
recipient node species, and a dashed line with arrows at both ends represents the 
competition between the species connected by the line. The signs " + "  and " - "  at 
both ends of each line (both solid and dashed) indicate that the interactions between 
the species connected by the line bring positive and negative effects, respectively, to 
the aside species. (b) The bipartite graph and (c) the directed graph (digraph) that 
represent the structure of immediate effects on one species' abundance caused by an 
unit inflow added to another species, which is defined by the matrix (I  + A), for the 
hypothetical system of the pest control example. (d) The composition of two of the 
same bipartite graph depicted in Figure lb, which summarizes all the walks (tem- 
poral courses) of length 2, which carry the effects that constitute the third term of 
(8). (e) The graph that represents the structure of the direct effects from one species' 
abundance to another species', which is determined by direct effect matrix D, for 
the hypothetical system of the pest control example. 

propagated  f rom one species to another  through a third member ,  or  
more  generally through a chain o f  m e m b e r  species in the network 
system. 

Indirect  effects may play an important  role in generat ing the com- 
plexity and structural contingency of  species interactions in ecological 
networks. Many instances o f  unexpected consequences  when working 
with a network of  interacting species are known [2]. For  example, 
consider the problem of  controlling a pest (species 2) damaging an 
agricultural crop (species 1), both  of  which are members  o f  an interac- 
tion network (Figure la). A direct strike on the pest would not  reduce 
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FlG. 1. Continued. 
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its abundance overall as much as the initial response could lead one to 
expect; the initial reduction in abundance of the pest would cause a 
reduction in abundance of its predator (species 3) and, at the same 
time, an increase in abundance of its food (i.e., our objective crop, 
species 1 in this case), both of which would, in turn, help the pest 
recover, compensating the initial damage to the pest. Also, exactly the 
same "experiment" would lead to different and even opposite (from 
negative to positive, or vice versa) results if only a slight modification is 
made in the structure of the interaction network, because a small 
change in structure can greatly alter the propagation pattern of indirect 
effects. As a result, a pest that is originally troublesome can become 
either manageable, or conversely even more difficult to control. The 
difficulty in predicting consequences in such instances illustrates the 
potential practical and academic importance of indirect effects. 

The significance of indirect effects, even if the term is not used, has 
been recognized and emphasized by many authors, particularly in con- 
nection with complex interactions in ecological systems. Indirect effects 
have been shown to be important in empirical studies [see reference 3 
for a review] and also through theoretical investigations [4-16]. 

Bender et al. [17] distinguish two types of experimental perturbation 
to ecological systems: press perturbation, the type of perturbation 
introduced and maintained at a predetermined level for a period of 
time long enough for the system to attain a new steady state (i.e., the 
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step function, or Heaviside's function), and pulse perturbation, the type 
of perturbation introduced for a short interval At and immediately 
removed. Theories on the sensitivity in abundance of constituent species 
to a press perturbation introduced into an ecological system have been 
developed [17-19]. This concept of sensitivity represents the total (or 
ultimate) effect. Thus, its difference from the corresponding direct 
effect should signify the indirect effect [18]. The smaller difference, 
however, does not necessarily imply the less indirect effect, but it may 
be due to the cancellation between the positive and negative compo- 
nents of the indirect effect, which can both be great in magnitude. More 
generally, to gain insight into the causes of this difference requires the 
means to analyze how indirect effects are generated and transmitted 
throughout the interaction network, more specifically, which pathways 
in the network carry what and how much effect. Levins' [4,5] loop 
analysis provides a means of accounting for total effects not in terms of 
pathways but rather a certain type of network units, called loops. 
Theoretical analyses along paths of indirect effects have been more 
recently developed for several specific forms of model systems, reveal- 
ing novel features of interactions for those systems and demonstrating 
the importance of elucidating the propagation of indirect effects along 
individual paths [7-10]. 

Here we present a mathematical method, applicable to any ecological 
system of interacting species (the term "species" is here used to 
represent any constituent unit for an ecological system of concern, e.g., 
trophic guild or "trophic species" in a food web [20]), for revealing the 
entire structure of direct and indirect effects propagated through an 
interaction network under press perturbation [21,22]. Specifically, a 
chain rule that characterizes the nature of indirect effects occurring in 
interaction networks is derived. We then apply the method to hypotheti- 
cal systems and suggest the mechanisms through which indirect effects 
may contribute to generating the complexity and structural contingency 
of species interactions in ecological networks. 

2. REVEALING INDIRECT EFFECTS STRUCTURE: 
THE BASIC THEORY 

In this section, we derive a mathematical method for the analysis of 
indirect effects propagated from one species to another in an ecological 
network subject to press perturbation. In preparation, however, we have 
first to review some results on inflow and parameter sensitivity analyses 
[19], which evaluate the total (net) changes in the abundance of each 
member species of an ecological system caused, respectively, by a unit 
inflow added to (a unit increment in the growth rate of) a component 
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species and a unit increase in the value of a parameter involved in a 
local process of the ecological system. They are directly relevant to the 
present study. 

2.1. PRELIMINARIES: RELEVANT RESULTS OF SENSITIVITY ANALYSIS 

Consider an ecological network consisting of n species that interact 
with one another, such as the community considered in the pest control 
example (Figure la). Let x i denote the abundance of component 
species i. Assume that the growth rate of each species i is a function of 
the component species: f~(x l, x 2 . . . .  , x,) .  Suppose now that the system is 
in a steady state, (x 1 , x 2 . . . . .  x ,  ), which is determined by the following 
set of equations: 

f / ( x ~ , . ~ , . . .  * , x . )  = 0 ,  ( i  = 1 , 2  . . . . .  n).  (1) 

Suppose then that a small amount of inflow z~ is added to species i. 
This addition of inflows z = (z 1, z 2 . . . . .  z n) moves the system to a new 
steady state, (Xl(Z), Xz(Z) . . . . .  xn(z)), that is determined by the following 
set of equations: 

f / (x , ( z ) ,  x2( . ) , '" ,  x . ( . ) )  + ~, = 0, 

Let aq = Of~/Oxj evaluated at the original steady 
(Xl(Z), Xz(Z) . . . . .  xn(z)) with z = 0 or z i = 0 for all i], and let 

axi(zl,z2,'", z.) 
S i j  = ¢~Zj ' 

(i  = 1,2 . . . . .  n) .  (2) 

state [i.e., 

(3)  

which is evaluated at zj = 0 for all j, represent the inflow sensitivity of 
abundance x i due to the change in additional inflow zj (i.e., the change 
in the abundance of species i caused by a unit increment in the growth 
rate of species j).  Let A=[aq]  and S=[sq], where i , j = l , 2  . . . .  ,n. 
Then, by differentiating (2), we have the following relationship [18]: 

s = - A 1. (4)  

[See [19] for an alternative derivation of (4).] Matrix A is often referred 
to in the literature as "community matrix," and S is called "sensitivity 
matrix" [19]. 

Suppose now that some parameter  p is involved in the system 
dynamics, and that the steady state is determined as a function of p by 
the balance equations 

fi( xl( p) ,x2(  p) ..... xn( p)  ; p)  = O, (5) 
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for i = 1,2 . . . . .  n. Then, it follows [19] that 

• = - A '  " = S  " , ( 6 )  

L Op 

where the derivatives are evaluated at p = 0. This implies a chain rule: 

dx i n afj afj 
do j~=lSij-~ = ~ O~xi = ~ ~ .  (7) 

- j = l  

Equation (6) shows that the sensitivity of xi with respect to parameter p 
can be decomposed into the part represented by the elements of S and 
the part represented by Ofj /Op;  the former is global in nature, involv- 
ing the entire network (in the matrix inversion A-I ) ,  whereas the latter 
is local in nature, involving the direct dependency on p of the growth 
rate of each individual species. Thus, the indirect effect aspect of 
parameter sensitivity can be reduced to that of inflow sensitivity S. 
Therefore, we focus on inflow-sensitivity in the rest of this article. 

2.2. TEMPORAL UNFOLDING OF TOTAL EFFECTS 

Each element Si] of sensitivity matrix S represents the total effect on 
species i (in terms of change in steady state abundance of species i) due 
to a unit rate of continuous causes introduced in species j throughout 
the past time (in terms of a unit increment in growth rate of species j), 
which Bender et al. [17] called a press perturbation, in contrast to a 
pulse perturbation. This total effect on i's abundance caused by a unit 
inflow added to j can be viewed as the sum of the effects that propagate 
through all the paths connecting j to i with various time schedules; that 
is, one can imagine the age distribution as well as path distribution, 
within the total effect, sij. 

In a discrete time framework, which is easier for intuitive visualiza- 
tion, the temporal unfolding (i.e., the tracing back in time along alterna- 
tive paths), or age distribution, of total effects, sij, where i, j = 1,2 . . . . .  n, 
can be given in the form of matrix series expansion: 

S = - A -1 = I + ( I  + A )  + ( I +  A ) 2 +  "" 
o 

= E a - ' ,  (8) 
i =  - - ~  
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where B = I + A. The ( i , j )  element is given as 

sij = 6ij + bit + ~ b ikbk j  + . . .  (9) 
k = l  

where 6ii is Kronecker's delta and bij = 6ij + ai j  (i.e., B =[b/j]). The 
first term of the righthand side of (9) corresponds to the initial impact 
(a unit increment in growth rate of each species), and the second term 
bij represents the immediate effect on i from an impact introduced to j, 
that is, the effect arriving at i at present (t = 0) that is caused by an 
impact made on j at the immediately previous time (t = -  1). In 
particular, bij in the case of i = j  (i.e., bjj = 1 + ajj) represents the 
portion of the impact made on j at the previous time (t = -  1) that 
remains in j at present (t = 0). The bipartite graph and the directed 
graph (digraph) that represent the structure of these immediate effects 
on one species' abundance caused by a unit inflow added to another 
species for the hypothetical system of the pest control example is 
depicted in Figure 1, b and c, respectively. The third term is the sum of 
the effects, each of which, evaluated as bikbk j ,  originates in an impact 
made on j at two units of time before (t = -  2) and travels through 
alternative courses, j ~ k ~ i, where k may be identical with j or i, in 
two units of time, arriving at i at present (t = 0) (Figure ld). In general, 
the (m + 1)th term of the righthand side of (9) is the sum of the effects, 
each of which, evaluated as bik m ~ . . . b k 2 k b k ,  j ,  orginates in an impact 
made on j at m units of time before (t = - m) and follows a temporal 
course or "walk", j ~ k 1 ~ k 2 ~ . . .  ~ k m _  1 ~ i ,  in m units of time, 
arriving at i at present (t = 0). Note that, as is illustrated in Figure 2 
(left), a walk represents a cause-effect chain in which the ef fect  of a 
preceding cause becomes a cause  for subsequent effects. 

Within a sequence of species, such as j --* k I -~ k 2 ~ . . .  --9 k m _ 1 - - )  i ,  

representing a walk from species j to i, any sequence of consecutive 
positions occupied by an identical species implies that the effect after 
the walk stays in that species for the corresponding number of time 
units. Thus, the path taken by the effect is obtained by omitting from 
(the sequence representing) the walk any subsequence of identical 
species (which represents a retention of the effect). For example, in the 
hypothetical system of the pest control example, the effect after the 
walk, 1 ~ 1 ~ 2 ~ 2 ~ 2 ~ 3 ~ 3, stays at species 1 for one unit of time, 
then moves to 2, where it stays for two units of time, and further moves 
to 3, where it stays for one unit of time (Figure 2, left). The path this 
effect takes is represented by the subsequence 1 ~ 2 ~ 3 (Figure 2, 
right). The length of a walk represents the time period (the number of 
time units) that it takes for the effect to travel (6 for the example walk, 
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time 

r 

FIG. 2. A sample walk, 1 -o 1 ~ 2 --o 2 -o 2 -o 3 -o 3, in the hypothetical system of 
the pest control example, to illustrate a cause-effect chain in which an effect from 
preceding causes becomes a cause for subsequent effects (left), and its corresponding 
path, 1 ~ 2 --o 3 (right). 

1 ~ 1 -o 2 ~ 2 -o 3 ~ 3), whereas that of a path represents the number  
of interspecific transfers that the effect experiences (2 for the example 
path, 1 -o 2 ~ 3). 

Note that the matrix series in (8) converges if and only if the absolute 
values of all the eigenvalues of matrix ( I  + A) are < 1, under which the 
steady state of the system is locally stable. 

Similar developments can be made for the continuous time case. In 
the continuous time framework, the temporal  unfolding of total effects, 
sij, can be given as follows: 

S = - A -1 = [ o  e_Atdt" (10) 

Note that, like the discrete time case, the matrix integral in (10) 
converges only if the real parts of all the eigenvalues of matrix A are 
negative, under which the steady state of the system is locally stable in 
the continuous time framework. [This is because the integral on the 
righthand side of (10) is calculated as [ - - A - l e - A t ] ° _ ~ o = - A - 1 ( I  - 
lim t _o~eAt), which converges to - A-1 (because e At converges to 0) if 
and only if the real parts of all the eigenvalues of matrix A are 
negative.] The notion of age structure of total effects from one species 
to another is also valid in the continuous time case. Indeed, the age 
distribution of the total effects is expresses by density function e -m,  
that is, the ( i , j )  element of e -A td t  ( =  eArttdt, where t ~< 0) represents 
the sum of effects that originate in the impacts made on species j by a 
unit rate of continuous causes during the time period of [t, t + dt], and 
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have followed alternative paths from j to i, arriving at i at present 
(t = 0). [This is verified as follows: for the continuous time case, the 
dynamics of the system is governed by equation :~ = f(x), where x = 
(X1,X2,...,Xn) and f = ( f l , f 2  ....  ,fn)" Thus, the dynamics of a small 
deviation ~ from a steady state x* is determined by linear equation 

= A t ,  whose solution is given as ~ ( t )=  eAtS(O). T h e  ith element of 
this solution when ~(0) is a unit vector with one for the j th  element, i.e., 
the (i, j )  element of e -At, represents the sum of effects that originate in 
a unit impact initially made on j, and arrive at i after t units of time.] 

2.3. PATH PARTITIONING OF TOTAL EFFECTS: A CHAIN RULE FOR 
INDIRECT EFFECTS 

In the temporal unfolding of the total effect on i's abundance caused 
by a unit inflow added to j, aggregating those portions of the total effect 
that travel through an identical path connecting j to i with different 
time schedules gives the path partitioning of the total effect. 

In the first step of this aggregation procedure, we evaluate the 
portion of the total effect associated with the direct path (or link) 
connecting j to i, j ~ i, where j :~ i, by summing all those portions of 
the total effect that travel through this link with different time sched- 
ules, In the discrete time case, these portions are those that follow the 
walks of the form ( j  ~ )m0j ~ i( --> i) m,, where ( )m implies the repeti- 
tion of the content by m times. The effect after each walk, ( j  --> )moj _.> 
i( --> i) m', is evaluated as (1 + aii)mlaij(1 + ajj) m°, thus the portion of the 
total effect associated with the link, j ~ i, is given by the following 
summation: 

E E ( 1 +  ml m° a,D a j(l+ ajj) 
m l = O  m o = O  

o¢ oc 
m t m0 

= E ( l + a i i )  aij ~., ( l + a j j )  
m l = 0  mo=O 

_ ( 1 1 )  
- -  a i i  - -  a j j  

The continuous-time version of this calculation leads to the same result 
as follows: 

fo~dtlfo°~dtoe~,,t,aije~ss ~o 

=(So~ea"t'dti)aij(f;easst°dto) 
_ ai~ 1 . ( 1 2 )  

- aii - ajj 
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This quantity, a i j / ( a i i a j ) ,  represents the direct effect to i's abun- 
dance from j's inflow: 

direct effect from j 's  inflow to i's abundance ] 
for i 4:j ] 

a~y 1 
(13) 

- -  a i i  - -  a j j  

The part 1 / ( -  ajj) of this quantity corresponds to the sum of the effects 
(i.e., the ultimate impacts observed at present) on species j's abundance 
caused by a unit rate of inflow added to the same species j throughout 
the past time, which is referred to as the retention coefficient of j. On 
the other hand, the part - a i j / a ~  represents the sum of all the effects 
on i's abundance caused by a unit increase of j's abundance and 
transmitted through the link connecting j to i, that is, the direct effect 
from j's abundance to i's abundance (strictly, this interpretation of 
- -  a i j / a i i  requires a new mathematical framework, which will be given, 
together with the full justification of this interpretation, in a companion 
paper [23]): 

direct effect from j 's  abundance to i's abundance ] aij 
for i 4: j j = d i j  = - a i i  " 

(14) 

This direct effect from j's abundance to i's abundance can be said to 
equal the corresponding immediate effect, ai], multiplied by the recipi- 
ent's retention coefficient, - 1 / a  w Let d i j=0  for j= l ,2 , . - - ,n ,  and 
matrix D = [d~j], where i , j  = 1,2,...,n, is referred to as the direct effect 
matrix. The digraph that represents the structure of these direct effects 
on one species' abundance caused by a unit inflow added to another 
species for the hypothetical system of the pest control example is 
depicted in Figure le. 

The effect from j's inflow to i's abundance through a particular path, 
j ~ k 1 ~ k 2 --9 "'" ~ ki_ l ~ i, is given by summing all those pieces of 
the total effect on i's abundance caused by a unit inflow added to j that 
travel this path with different time schedules (i.e., that take the walks 
sharing this path): 

c~ ~¢ oc 

m p  

E "'" E E ( 1 +  aii) aik p , 

m p = O  m j = O  m o = O  

oc oo 

= E ( I +  m~ 
aii) ai G " '"  ~_~ 

m p =  0 rtl 1 = 0 

a i k p -  i a k j j  1 
= . . . . . .  

- -  a i i  - -  a k ~ k ~  - -  a j j  

• ..(1 + ml mo 
aklkl ) akd(1 + ajj) 

(1 + ~' mo 
a,., .) a,~ i E (X+ajj) 

m 0 ~ 0  

(15) 
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The continuous time version of this calculation leads to the same result: 

z c  ~ c  

fo d t ' " f o  p dtfol dtoe%JPaikp t ""eakf f l t lakl  ealjt°j 

=(fo~eaJJ','dtp)a,k,, , '"(fo~eak~klt'dtl)ak,J(fo~eajJ"dto) 

aikp L a k  tJ 1 

- a i i  - a k ~ k ~  - -  a j j  
(16) 

Therefore, the indirect effect from j's inflow to i's abundance through a 
particular path equals the retention coefficient of the donor j, 1 / ( -  ajj), 
multiplied by the product of the direct effects transmitted through those 
links that make up the path; thus, a chain rule follows: 

[ indirect effect from j 's  inflow to i's abundance ] 
t h r o u g h a p a t h j ~ k  l ~ k 2 ~ ... ~ k t 1 ~  i 

1 
= dik,-t"" dk2k,dkd -- ajj " (17) 

From chain rule (17), it follows that the sum of the effects from j's 
inflow to i's abundance through all the paths of length l connecting j to 
i is given as the ( i , j )  element of matrix DtR, where R is a diagonal 
matrix with retention coefficient - 1 / a j j .  Therefore, the sum of the 
effects from j's inflow to i's abundance through all the paths of all 
length connecting j to i, which equals sij, the total effect on i's 
abundance caused by a unit inflow added to j, is given as the ( i , j )  
element of the following matrix series: 

S = R + D R + D 2 R +  . . . .  ( I + D + D 2 +  . . . )R .  (18) 

Equation (18) gives an alternative matrix series expansion of S to the 
temporal expansion in (8). The matrix series expansion in (18) repre- 
sents the path partitioning of the total effects represented by S. That is, 
the ( i , j )  element of the matrix series in (18) indicates the partitioning 
of the total effect sq from j's inflow to i's abundance into the paths of 
different length connecting j to i. 

3. INDIRECT EFFECT MECHANISMS FOR GENERATING 
COMPLEX INTERACTIONS 

The general formulation of indirect effects developed above, when 
applied to specific systems, may provide a useful means for identifying 
and understanding the specific mechanisms that generate the complex- 
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ity and structural contingency of species interactions in those systems. 
We first illustrate the point with several examples of hypothetical 
systems. Motivated by those examples, we then identify three general 
mechanisms through which indirect effects contribute to generating the 
complexity and contingency of species interactions in an ecological 
network. 

The application of the mathematical method for indirect effect 
analysis developed above for the following example systems should also 
demonstrate that the method generates the same answers as previously 
studies did, but under a unified perspective, providing a more general 
and coherent understanding of the nature of indirect effects in ecologi- 
cal interaction networks. 

3.1. EXAMPLES 

Example 1. Consider a system consisting of two species (species 2 and 
4) with no direct interactions and their common predator (species 3) 
depicted in Figure 3a, which is identical in structure to a subsystem 
[consisting of the pest (species 2), its competitor (species 4) and their 
common predator (species 3)] of the system considered in the pest 
control example (Figure la). Holt [8] shows that the two species with no 
direct interactions may interact negatively with each other through their 
common predator and calls this indirect interaction apparent competi- 
tion. Assume that the community matrix A at a steady state of the 
system is given as 

A = 

--  0~22 - -  0~23 0 ] 

0'32 -- O/33 O~34 J ' 

0 -- O[43 -- O~44 

(19) 

where aq > 0 for any i and j. Then, matrix B = I + A summarizes the 
immediate effects between the member species of the system (Figure 
3b). The direct effects between pairs of species are then given by the 
corresponding direct effect matrix (Figure 3c): 

D - - [ d , j ]  = 

0 - az3 0 
OL22 

a32 0 O/34 
~33 O/33 

0 - a43 0 
OL44 

(20) 
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,) 
i. 

1-a33 

1-a44 --a 1 - a  22 

43 j j ~ _ ~  
) 
~a 32 

a 33 

FIG. 3. (a) A system consisting of two species with no direct interaction and their 
common predator. The digraphs represent (b) the immediate effect structure and (c) 
the direct effects structure of the system. 
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Although species 2 and 4 do not directly interact with each other, 
they do indirectly through their common predator (species 3), as we 
verify below. 

A unit increment in inflow to species 4 will have a negative effect on 
species 2's abundance through path 4 ~ 3 ~ 2: --(0/23/0/22X0/34 / 
0/33X1/0/44) < 0. But this is not the total effect from species 4 to 2. The 
sum of the effects carried by the paths from species 4 to 2 represented 
in the form, 4 --, 3( --, 4 ~ 3)* ~ 2, where ( )* represents the repetition 
of the contents in any number of times, is evaluated as 

o¢ k 
~ 0/___23 ~-~ / 0/34 ~ 0/43 ] 0/34 1 --0/23 1 0/34 1 

0/22 k _l~ ~ ) _  0 0/33 0/44 0/33 0/44 0/22 1 -~- 0/3.....~4 0/4____~3 0/33 0/44 
0/33 0/44 

_ 1 _ _ . ~ (  0/23 0/34 1 ), (21) 
1 -{- 343 0/22 0/33 0/44 

where 3ij = Icijl with cij representing the effect associated with cycle 
j ~ i ~ j (denoted by Cij) that is, cij = (aj i /a j j ) (ai j /a i i ) .  This sum (21) 
is still negative, but smaller in magnitude than the effect through path 
4 -~ 3 -~ 2 alone, which is evaluated as -(0/23/0/22)(0/34/0/33X1/0/44 ), 
due to the dwindling in passing through intermediate cycle C34 (associ- 
ated with negative effect, c43 = - 343) by the factor 1/(1 + 743)( < 1). 
This sum is still not the entire effect from species 4 to 2; it is only the 
total of the effects carried by the first-passage paths from species 4 to 2, 
the paths starting at species 4 and arriving at species 2 for the first time. 
The recycling effects, the effects carried by the subsequent-passage paths 
(i.e., the paths starting from species 4 and coming to species 2 once, 
then leaving and returning to species 2 several times, e.g., 4 ~ 3 ~ 2 
3 --, 2 -0 3 ~ 4 --, 3 --, 2) must also be taken into account to evaluate the 
total effect from species 4 to 2. The paths connecting species 4 to 2, 
including those that carry the recycling effects, are expressed in the 
general form 4 -~ 3( ~ 4 ~ 3)* -~ 2[ -~ 3( ~ 4 ~ 3)* -0 2]*, where 2[ 
3( - ,  4 - 3)* --, 2]* represents the cycles around the recipient species 2. 
Thus, the total effect from species 4's inflow increment on species 2's 
abundance is given as 

E -- 0/23 
k = 0 0/22 

l + m  

k 
1 0/32 0/23 1 - 0/34 1 

1 + 0/34 °/43 0/33 0/22 1 + °/3.----24 0/4.___.~3 0/33 0/44 
0/33 0/44 0/33 0/44 

1 1 ( 0/23 0/3,1 1 ) 
')/32 1 -+- ~43 0/22 0/33 0/44 ' 

1+ 743 

(22) 
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which is still negative but gets even smaller in magnitude than the sum 
of the first-passage effects from species 4 to 2. 

Therefore, a unit increase in inflow to species 4 indirectly has a 
negative effect on species 2's abundance, which corresponds to apparent 
competition, but the simple product -(O/23/0/22X0/34/0/33X1/0/44 ) 
would overestimate in magnitude the actual total effect. Note here that 
the numerical value for this total effect from species 4 to 2 can 
alternatively be calculated by the matrix inversion according to (4), 
which, however, does not provide any insight into the mechanisms for 
producing the total (i.e., ultimate) effects. 

We can make an exactly symmetric argument for the effects from 
species 2 to 4, by reversing the direction. Species 2 (the pest) has a 
negative effect on species 4 indirectly through their common predator, 
which is evaluated by the following expression obtained by exchanging 2 
and 4 in (22): 

1 1 ( 0 / 4 3  a32 1 ) ( 2 3 )  

1 + '~34 1 + '~23 0/44 0/33 a22 " 
1 + '~23 

Example 2. Consider a food chain of three trophic levels (Figure 4a), 
which is identical in structure to a subsystem (consisting of the crop, the 
pest, and its predator) of the system in the pest control example (Figure 
la). Assume that the community matrix A is given as 

- -  0/11 - -  0/12 0 ] 

A = [aij ] = 0/21 -- 0/22 -- 0/23 ], (24) 

0 0/32 -- 0/33 

where 0/ij > 0 for any i and j. The immediate and direct effects between 
species are then given by B = A + I (Figure 4b) and D (Figure 4c), 
respectively, where 

= 

0 -- 0/12 0 
0/11 

0/21 0 --  0/23 
0122 0/22 

0 O/32 0 
O/33 

(25) 

Although the top predator (species 3) and the primary producer 
(species 1) do not directly interact with each other, they do indirectly 
through the middle species in the food chain (species 2), just as species 
2 and 4 do through species 3 in Example 1. 
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FIG. 4. (a) A food chain. The digraphs represent (b) the immediate effect 
structure and (c) the direct effects structure of the system. 

A unit increment  in inflow to species i will have an impact  on species 
3's abundance  through pa th  1 ~ 2 ~ 3, which is evaluated as (0/32/  
0/33Xa21/a22)(1/0/11) > 0. But this is not the total  effect  f rom species 1 
to 3. The  sum of  the effects carr ied by the first-passage paths  f rom 
species 1 to 3 is evaluated as 

O/32 ~-'~ 0/21 O/12 0/21 1 0/3._.22 1 0/21 1 (26) 
0/33 k=0 0/22 0/11 0/22 0/11 0/33 1-t-)'12 0/22 0/11' 

which is still positive, but  smaller  than (0/32//0/33)(0/21//~22)(1/0/I1)° 
Fur the rmore ,  the total effect,  including recycling effect  carried by the 
subsequent-passage  paths,  f rom species 1 to 3 is given as 

y~ 0/32 1 -- 0/23 0/32 1 0/21 1 
k=0 0/33 l + T 1 2  0/22 0/33 1+T12 0/22 °/11 

1 0/32 1 °/21 ] 
= , (27) 

1 + 0/32 1 0/23 0/33 1 + )'12 0/22 0/11 
0/33 ] + )'12 0/22 
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which is still positive but even smaller than the sum of the first passage 
effects. 

Therefore, an increase in inflow to 1 indirectly has a positive effect 
on species 3's abundance, which corresponds to what is called bottom-up 
effect (e.g., [24]), but the simple product (0/32 /0!33)(0/21/0/22X1/0/11) 
would overestimate the actual total effect from species 1 to 3. Similarly, 
species 3 has an indirect effect on species 1 through species 2, a 
so-called top-down effect (e.g., [24]), evaluated as 

1 0/12 1 0/23 1 
a12 1 0/21 0/11 1+ Y32 0/22 0/33 

1 + - -  
0/11 1+ Y32 0/22 

(28) 

This effect from species 3 to 1 is positive but less than the simple 
product (a12/a11)(0/23/0/22X1/0/33). 

Example 3. Consider the pest control problem mentioned earlier (Fig- 
ure la). Assume that the dynamics of the pest control system is 
governed by the set of equations 

(29) 

where' i = 1,2, 3, 4, and that the removal or addition of species i is made 
in the rate proportional to the species' abundance, yixi. Thus the steady 
state of the system with these removals or additions is determined by 
the balance equations 

(4  ) 
X i E i -t- E r i k X k  q- Yi = 0. (30) 

k = l  

Then, according to formula (7), we have dx i/dy~ = sijx 7. Therefore, a 
modified version of the chain rule (17) follows for this case: 

indirect effect from the removal of j in a unit ratio (yj = - 1 ) ]  

to i 's abundance through a path j ~ k I ~ kz ~ .-- ~ k / 1 __,/i] 

1 , 
= --  d i k ,  1"'" dk2k,dk,J---~jjXj ' (31) 
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where d i j  = a i j  / (  - a i i )  = x ~  ri j  / (  - x ;  r i i )  = r i j  / (  - r i i )  and x * / (  - a i i )  
= x *  / ( -  x *  r i i )  = - 1 / r i i .  Thus it can also be expressed as 

indirect effect from the removal of j in a unit ratio (yj = - 1) ] 

to i ' s  abundance through a path j - o  k 1 - o  k 2 - o  . . .  ~ k t _  1 --* i ] 
rikl  1 rk2k 2 rklj 1 

--  ~ i  - -  rkzk2 --  rk ,k l  --  r j j  " 
(32) 

The latter expression shows that the indirect effect of a unit ratio of 
removal (Yi = -1 )  that is brought to the abundance of species i via a 
path (thus the total effect of the removal made on i ' s  abundance) does 
not depend on the steady state values x* (i = 1, 2, 3, 4). This fact allows 
comparison between different subsystems of the pest control system in 
terms of the influence propagation structure. Let 0/ij here denote the 
magnitude of the interaction coefficient rij, I r#l. 

First, consider a subsystem consisting of the crop (species 1) and pest 
(species 2) alone (model I in Figure 5). What happens if species 2 (the 
target pest in this example) is directly damaged due to its removal? The 
direct damage made on the pest (species 2) by its unit ratio of removal 
( Y 2 - - 1 )  is evaluated as - 1 / 0 / z 2 .  This damage, however, will be 
compensated by the boomerang effects that are repeatedly brought 
back to species 2 via the cycle C12 (i.e., 2-o 1-o 2). The boomerang 
effect of first return via simple cycle C12 is evaluated as c12(-1/0/22)= 
(3/12/0/22)>0. This simple cycle is the only first-passage path from 
species 2 back to itself. The second-passage path from species 2 back to 
itself (i.e., the path that starts from species 2, passes through species 2 
once, and then ends up with species 2) is given by concatenating two of 
the same cycle, C~z, that is, C12C12 = (C12)2. Thus, the boomerang effect 
from a unit ratio of removal of species 2 back to itself via this 
second-passage path amounts t o  (c12)2(  - 1//0/22 ). In general, the kth- 
passage path from species 2 back to itself is given by concatenating k of 
the cycle, (C12) k, and the boomerang effect from a unit ratio of removal 
of species 2 back to itself via this kth-passage path amounts to 
(Cl2)k(  - 1 / 0 / 2 2 ) .  Thus, the total effects from a unit ratio of removal of 
species 2 back to itself are given as 

-__~1 + y,  (c,2)k --1 - 1  + ~ 3/12 (33) 
0/22 k = 1 0/22 0/22 1 + 3/12 O/22 " 

From this, it can be seen that the damage on the pest directly made by a 
unit ratio of removal [the first term of (33)] is in fact moderated by the 
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FIG. 5. A summary of the comparison, in terms of the effectiveness of a unit 
"press" removal of pest in controlling the pest, of alternative subsystem models of 
the hypothetical pest control system depicted in Fig. la. Model I consists of the crop 
(species 1) and its pest (species 2), model II adds a predator (species 3) for the pest, 
model III has a competitor (species 4), instead of the predator, for the pest, and 
model IV has both a predator and competitor. Model V is the full system depicted in 
Fig. la, in which the predator preys on both the pest and its competitor. 
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positive boomerang effects brought back to the pest via the sequence of 
cycles (C12)k, k = 1, 2,'", [the second term of (33)], though this positive 
effect is smaller by the factor of 1/(1+y12) than the one via the 
first-passage cycle alone. 

Second, consider the same system (model I) but with predator 
(species 3) for the pest (species 2) added (model II in Figure 5). The 
direct damage made on the pest (species 2) by its unit ratio of removal, 
-1/a22, will be compensated by the boomerang effects repeatedly 
brought back to species 2 via the two cycles, C12(2 ~ 1 ~ 2) and C32(2 

3 --+ 2). The boomerang effects of first return via simple cycles C12 
and C32 are evaluated as (c12 + c32X-1/0/22) =(')/12 ÷ '}/32)/0/22 > 0. 
These two simple cycles are the only first-passage paths from species 2 
back to itself. The second-passage paths from species 2 back to itself are 
given by concatenating two cycles, each of which is either C12 or C32, 
with all (four in this case) possible combinations, that is, C12C12 , 
C12C32,C32C12, and C32C32, which can be summarized in the form 
(C12 v C32)(C12 v C32 ) or (C12 v C32 )2, where the symbol " v "  repre- 
sents the choice between the alternative paths on both sides. Thus, the 
boomerang effects from a unit ratio of removal of species 2 back to 
itself via these second-passage paths amount to (¢12 ÷ c32 ) 2 ( -  1/0/22)" 
In general, the kth-passage paths from species 2 back to itself are given 
by concatenating k cycles, each of which is either C12 or C32 , with all 
(2 k in this case) possible combinations, which can be summarized as 
(C12 v C32) k, and the boomerang effects from a unit ratio of removal of 
a species 2 back to itself via these kth-passage paths amount to 
(C12÷¢32)k(--1/0/22). Thus, the total effects from a unit ratio of 
removal of species 2 back to itself are given as 

zc 
-__1_1 + ~ (c12 _ c32)k - 1 - 1  + 1 Y12 + 3'32 (34) 
0/22 k = l  0:22 0:22 1 ÷ ('Y12 ÷ 3/32) 0/22 

From this, the compensation of the direct damage on the pest [the first 
term of (34)] by the positive boomerang effects brought back to the pest 
via the sequence of cycles, (C12 V C32 )k, k = 1,2, ".. [the second term of 
(34)], is more than the case without the predator. Thus, the pest control 
by a constant rate of removal of the pest is less effective in the setting 
of model II than in model I (Figure 5). Furthermore, (34) implies that 
the stronger the feeding interactions (Cx2 + c32) are in magnitude, the 
less effective is the control of the pest by direct removal. 

Third, consider model I with the competitor (species 4), instead of 
the predator (species 3), for the pest added (model III in Figure 5). The 
direct damage made on the pest by its unit ratio of removal, -1//0/22, 
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will be moderated by the boomerang effects repeatedly brought back to 
species 2 via C12 but enhanced by those via C42- The boomerang effects 
of first return via simple cycles C12 and C42 are evaluated as (c12 + 
C 4 2 X - - 1 / 0 / 2 2 ) = ( ' Y t 2 -  3 '42) /0 /22  . These two simple cycles are the only 
first-passage paths from species 2 back to itself. Thus, just as in the case 
of model II, the total effects from a unit ratio of removal of species 2 
back to itself are given as 

__-1 + ~ (C12 q_C42)k  - 1  
0/22 k = 1 0/22 

-- 1 1 3'12 --  3'42 
- -  -~ 

0'22 1+(3"12 --3'42) O122 
(35) 

From this, the compensation of the damage on the pest directly made 
by a unit ratio of removal [the first term of Equation (35)] by the 
boomerang effects to the pest via the sequence of cycles, (C12 v C42) k, 
k = 1, 2 .... [the second term of (35)], is less than in the case without the 
pest's competitor. Furthermore, if the boomerang effects via the com- 
petitor are greater in magnitude than those via the crop, that is, 
3'42 > 3"12, then the direct damage on the pest is enhanced rather than 
moderated, and these total (negative) boomerang effects are greater in 
magnitude by the factor of 1/(1 +(3'12 -3'42)) than those via the first- 
passage paths alone. Therefore, the pest control by a constant rate of 
removal of the pest is more effective in the setting of model III than in 
model I (Figure 5). 

Fourth, consider the first system with the competitor (species 4) and 
predator (species 3) for the pest both added (model IV in Figure 5). The 
direct damage made on the pest by its unit ratio of removal, -1/0/22, 
will be moderated by the boomerang effects repeatedly brought back to 
species 2 via C12 and C32 but enhanced by those via C42. The boomerang 
effects of first return via simple cycles C12, C32,  and C42 are evaluated 
as  (C12 'It- C32 q- C42 X -  1 / a 2 2 )  = (3"12 -t- 3"32 - -  3 '42) /0 /22  • These three sim- 
ple cycles are the only first-passage paths from species 2 back to itself. 
Thus, following the same logic as has been used in the preceding cases 
(models I-III), the total effects from a unit ratio of removal of species 2 
back to itself are given as 

--  1 -1- E (C12 -1- ¢32 "l- ¢42)  k --  1 
0/22 k = 1 0/22 

__ - - 1  -] 1 3'12 q- 3'32 --  3'42 (36) 
0/22 1 + ( 3 " 1 2 + 3 ' 3 2 - - 3 " 4 2 )  0/22 
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From this, it can be seen that the effectiveness of the pest control with 
model IV, measured by the total (ultimate) damage on the pest made by 
a unit ratio of removal of the pest, should be between those in models 
II and III (Figure 5). 

Finally, consider the full picture of the pest control example depicted 
in Figure la, that is, the system consisting of the same members as 
model IV but in which the predator of the pest also preys on the pest's 
competitor (model V in Figure 5). The direct damage made on the pest 
by its unit ratio of removal, -1/c~22, will be moderated by the 
boomerang effects repeatedly brought back to species 2 via C12 and the 
group of cycles of the form 2 --* 3( --, 4 ~ 3)* ~ 2, which are C32 with 
(C43)k added in the middle (Figure 6). But, it will be enhanced by the 
boomerang effects vial three groups of cycles, 2 ~ 4( ~ 3 ~ 4)* ~ 2, 
2 --- 3( --, 4 --. 3)* ~ 4 ~ 2, and 2 ~ 4 ( ~ 3 ~ 4 ) * ~ 3 - - - 2 ,  which are, 
respectively, C42, C432, and C342 with (C43) k added in the middle, where 
Cij k denotes cycle k ~ j ~ i--* k (Figure 6). The boomerang effects of 
first return via these cycles are evaluated as 

( l 1 1 1__1C34 ) - 1  
Cl2 + 1 -1~43  C32 + 1"~'~34 C42 + 1 " ] ~ 4 3  C432 + C342 O/22 

[ 1 1 1 1 I 1 
= 3/12 q- 1---~43 "y32 1 -+- y 4 ~  ")/42 1 qt_ Y4~ Y432 1 q- "~4~ Y342 0/22" 

(37) 

where ~/ijk = [cijk[ with ciik representing the effect associated with Cijk, 
that is, cij ~ =(ak i /akk ) (a i j /a i i ) (a jk /ay j ) .  These cycles are the only 
first-passage paths from species 2 back to itself. Thus, from the same 
reasoning as in the previous cases (model I-IV),  it follows that the total 
effects from a unit ratio of removal of species 2 back to itself are given 
as 

c~ 
- 1 + ~  2 
0,22 k = 1 

- 1  
x - -  

0,22 
- 1  
0'22 

+ 

1 1 1 1 c )k 
C12 "1"- 1--"-~43 C32 -1- 1--"-~34 C42 -t- 1"]--~43 C432 -'1-- ~ 342 

1 1 1 1 
Yl2 + -v--:------ Y32 )42 - -  Y432 I d- 3/43 1 + Y43 1 "-1- '~43 1 -'1-" Y43 - -  Y342 

1 1 1 1 ) 
1 + "~/12 + ~ 732 1 + "/4-""~ Yaz 1 + Y4-""~3 Y432 1 + T43 Y342 

1 
× - - .  (38) 0'22 
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FIG. 6. The alternative first-passage paths (cycles) connecting the pest back to 
itself for model V in Figure 5. These paths (cycles) consists of a primary cycle 
(formed by those links that are represented in the figure with thick lines) connecting 
the pest back to itself, together with secondary cycles added in any number in the 
middle of the primary cycle. 
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Note that the addition of the links between species 3 and 4 produces 
a pair of cycles of length three in both directions, C432 and C342, which 
bring about positive feedbacks with the magnitude of 3'432 and 3'432, 
respectively. From (38), it can be shown that with these key links, it is 
possible for the total (ultimate) damage on the pest due to a unit ratio 
of removal of the pest in the setting of model V to exceed even that of 
model III (Figure 5), unless "~432 = 3"432, that is, the two cycles C432 and 
C342 in the opposite directions carry exactly the same magnitude of 
effects (see Appendix for a proof). Alternatively, the necessary and 
sufficient condition for the pest control in the setting of model V to be 
more effective than that of model III is given as follows: either two 
inequalities [dz4d43[ < Id231 and [d34d42[ > Id32[ both hold, or the oppo- 
site inequalities [d24d43[ > [d231 and [d24d431 < 1d231 both hold (see Ap- 
pendix for a proof). This condition can be interpreted as follows: for the 
direct versus indirect effects (via species 4) between species 2 and 3, 
their relative dominance in magnitude is reversed in the two opposite 
directions (i.e., if direct effects dominate over indirect ones in one 
direction, then the opposite is the case for the reversed direction). 

Example 4. Suppose a system consisting of three competitors (Figure 
7a). Assume that the community matrix A is given as 

I 

i 0/11 --  0/12 --  0/13 ] 

A=[%1 = 0/2~ 0/22 0/~/' 
0/31 0/32 0/33 J 

(39) 

where 0/i~ > 0 for any i and j. The immediate and direct effects between 
species are then given by B = A + I (Figure To) and D (Figure 7c), 
respectively, where 

= 

0 --  0/12 --  0/13 
0/11 0/11 

--  0/21 0 --  0/23 
0/22 0/22 

--  O/31 --  0/32 0 
0/33 0/33 

(40) 

Although the direct effect of a unit increment in inflow to species 1 
made on species 3's abundance is negative, (-0/31/0/33X1//0/11 ) <  0, 
the indirect effects make a difference. The indirect effects carried by 
the first-passage paths from species 1 to 3 are evaluated as 

--~ 0/..__32 E 0/21 Ol12 --  Ol21 . - - 1  = --Ol32 1 0/21 1 , (41) 
0/33 k = 0  0/22 0/11 0/22 0/11 0/33 ] - -3"12  0/22 0/11 
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FIG. 7. (a) A hypothetical system consisting of three competitors. The digraphs 
represent (b) the immediate effect structure and (c) the direct effects structure of 
the system. (d) If the competition between species 2 and 3 increases, then competi- 
tive negative interactions between species 1 and 3 may be transformed into positive 
mutualistic ones. 

which is positive. The total (net) effects from species 1 to 3 are the sum 
of these positive indirect effects and negative direct ones, multiplied by 
the cycling coefficient, 1/(1 + 0/33 ), where 0/33 denotes the first-passage 
effects from 3 to itself. Thus, if the indirect effect given by (41) is 
greater in magnitude than the direct effect, species 1 gives in net a 
positive influence on species 3, in spite of its apparent (direct) negative 
interactions with species 3. For example, if the competition between 
species 2 and 3 increases for some reason, then competitive negative 
interactions between species 1 and 3 may be transformed into positive 
mutualistic ones (Figure 7d). 
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3.2. THREE BASIC MECHANISMS 

These examples suggest the following three basic mechanisms through 
which indirect effects contribute to generating complex and contingent 
interactions among species in an ecological network. 

(1) Inf luence globalization and  diffusing. It is clearly demonstrated, 
particularly in Example 3, that as the size of a system grows, the number 
and length of paths available to transmit influences among constituent 
species drastically increase. The influence of local events should spread 
out through the system over these paths. Thus, longer paths, branching 
and intersecting with one another, provide a mechanism for making 
global influence of local causality. Among a bundle of parallel paths 
connecting two species, no single path (causal chain) is solely responsi- 
ble for their interactions but rather any path is responsible, making 
diffusive the "controlling" of one species by another. 

(2) Effect  amplif ication and  reduction by cycles. A point, repeatedly 
appearing throughout the above examples, can be captured in its most 
general form by a simple mathematical relationship (Figure 8): 

1 effeCtin ' (42) effeCto, , = (1 + c + c 2 + ... )e f fect i ,  = 1 - c 

where effecti,  denotes an effect that is coming into a cycle (more 
strictly, a group of parallel cycles, which are here described as a cycle 
for simplicity), effeCtou t is the accumulated sum of effects originating in 

effeCtout 

1 
1 - c  

effectin 

FIG. 8. An illustration of the effect of amplification and reduction by cycles in 
the most general form. An effect coming into a cycle, effecti,, generates (is trans- 
formed into) the accumulated sum of effects coming out of the cycle, effecto,t, which 
is effecti, multiplied by 1/(1 - c), where c is the first return effect associated with 
the cycle. The cycle amplifies an effect coming in if 1 > c > 0, while reducing it if 
0 > c >  -1. 
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effecti, and coming out of the cycle, and c is the first return effect 
associated with the cycle, which equals the product of the direct effects 
(dij = -  aij/a~i) associated with the direct links constituting the cycle 
(for example, for a cycle 3 ~ 4 ~ 3, c = d 3 4 d 4 3  , and for a group of 
cycles, c equals the sum of the products associated with the cycles). 
Relation (42) indicates that a cycle does not change the sign but only 
the magnitude of any effect passing through it, and that a positive cycle 
(i.e., a cycle with a positive value for its first return effect c) amplifies, 
while a negative cycle dampens (reduces), the effect. 

(3) Interaction sign switching by competitive parallel paths. As demon- 
strated in Example 4, the net effect from one species to another can be 
changed even qualitatively, that is, in its sign, when the dominance in 
magnitude between the positive and negative effects carried by parallel 
paths connecting these species is altered. That is, if the sum of the 
effects carried by positive paths connecting one species to another 
(where a positive path is such that the product of the direct effects 
associated with the direct links constituting it is positive) is greater than 
that for negative paths connecting those species, then the net effect 
between these species is positive; in the opposite cause, the net effect is 
negative. Thus, one can imagine that an increase only in the magnitude 
of a direct link between two species involved in one of the positive paths 
connecting species A to B may well change the net (total) effect from 
species A to B, from a negative one into a positive one. 

4. CONCLUDING REMARKS 

The theory of indirect effects developed above may also be used to 
design interaction networks for management problems, such as pest 
control and fishery, because it allows one to not only prevent negative 
(undesirable) results, specifically by identifying key paths responsible for 
such results [e.g., the predation cycle, C32(2 ~ 3 ~ 2), in the pest control 
example, i.e., Example 3 in Section 3], but to also more actively discover 
new paths, possibly a bundle of long (distant) indirect effect paths 
through which more effective control can be exerted. 

In identifying or discovering such effective paths, both in negative 
and positive ways, the key task is clearly to assess the nature of each 
individual path, in terms of the changes in magnitude and sign that any 
given effect should experience while it passes along the path. The chain 
rule derived above provides a useful means for this task, which can be 
applied to any form of interactive network, however complex the struc- 
ture. Furthermore, the three basic mechanisms for generating complex 
interactions that have been identified above may provide a general 
guide in this assessment. 
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APPENDIX 

From (38), the total effects on the pest made by a unit ratio of 
removal in the setting of model V of Example 3 exceeds (toward the 
negative direction) that of model III if and only if 

1 1 1 1 
'/~2 - "/42 > "Y~e + 7=- - - -  3'32 - -  '/42 1 + 3'432 

1 + "/43 1 + '/43 '/43 1 "~ "/43 
- -  '~342, 

(A.1) 

that is, '/43'/42 q- "/32 "( "/432 q- '/342" T h i s  m a y  b e  rewritten as  

0/24 0/43 0/32 0/44 -{- 0/23 0/34 0/42 0/44 - 0/23 0/32 0/44 0/44 - 0/24 0/42 0/34 0/43 

= (0/24 0 / 4 3 -  0/230/44) 0/32 0/44 -~- ( 0/23 0/44 - 0/24 0/43) 0/42 0/34 

= ( 0/24 0/43 - 0/23 0/44)( 0/32 0/44 - 0/42 0/34) > 0, ( m . 2 )  

This implies either 

0/24 0/43 - 0/23 0/44 > 0 a n d  0/32 0/44 - 0/42 0/34 > 0 (A.3) 

o r  

0/24 0/43-- 0/23 0/44 < 0 a n d  0/32 0/44 - 0/42 0/34 < 0. (A.4) 

Condition (A.3) is rewritten as 

0/24 0/43 O/42 0/34 
- -  > 0/44 > - -  

O/23 0/32 
(A.5) 

whereas (A.4) is rewritten as 

0/24 0/43 0/42 0/34 
- -  < 0/44 < -  (A.6) 

0/23 0/32 

Now, (A.5) implies 0/24 0/43 / 0/23 > 0/42 0/34 / 0/32, that is, 0/24 °~43 0/32 > 
0/23 0/340/42, thus, "/432 ~> "/342" Similarly, (A.6) implies 3'432 < "/342- There- 
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fore,  (A.5) or  (A.6) implies "Y432 5/= "]/342" Inversely, if 3'432 ~: Y342, thus 
0/24 0/43//0/23 :# 0/42 0/34//0/32; then  choosing 0/44 be tween  the two sides of  
this inequality, we have e i ther  (A.5) or  (A.6). There fore ,  ~432 ~: ")'342 is 
necessary and sufficient condit ion that  it is possible for  the total  effects 
on the pest  in the case of  mode l  V to exceed ( toward the negat ive 
direct ion) that  of  mode l  III .  

Alternatively,  (A.5) can be rewri t ten as 

0/24 0/43 0/42 0/34 
0/22 0/44 0/44 0/33 

0/2------S--- > 1 > - - 0 / 3 2  ' (A.7)  

0/22 0/33 

which  implies (a24/ot '22X0/43//0/44 ) > 0t23/0/22 and  0/32/0/33 > (0/42// 
0/44X0/34//0/33 ), that  is, [d24d431 > ]d231 and [d24d431 > [d23[. Similarly, 
(A.6) implies [d24d431 > Id231 and ]d24d43[ > Id231. There fo re ,  the neces- 
sary and sufficient condi t ion for  the pest  control  in the setting of  mode l  
V to be m o r e  effective than  in that  of  mode l  I I I  is given as follows: 
e i ther  two inequali t ies [d24d431 < Id231 and [d34d42 ] > Id321 bo th  hold, or  
the oppos i te  inequali t ies Id24d431 > 1d23[ and ]d24d431 > [d23[ both  hold. 
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