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CHAPTER 3

1. (a) Find the domain of the function .
(b) Find .

; (c) Check your work in parts (a) and (b) by graphing and on  the same screen.

CHAPTER 4

1. Find the absolute maximum value of the function

2. (a) Let be a triangle with right angle and hypotenuse . (See the 
figure.) If the inscribed circle touches the hypotenuse at , show that

(b) If , express the radius of the inscribed circle in terms of and .
(c) If is fixed and varies, find the maximum value of .

3. A triangle with sides , and varies with time , but its area never changes. Let be the
angle opposite the side of length and suppose always remains acute.
(a) Express in terms of , , , , and .
(b) Express in terms of the quantities in part (a).

4. Let and be positive numbers. Show that not both of the numbers and 
can be greater than .

5. Let be a triangle with and .
(a) Express the length of the angle bisector in terms of .
(b) Find the largest possible value of .

CHAPTER 5

1. Show that .

2. Suppose the curve passes through the origin and the point . Find the value of
the integral .

3. In Sections 5.1 and 5.2 we used the formulas for the sums of the th powers of the first 
integers when and 3. (These formulas are proved in Appendix E.) In this problem we
derive formulas for any . These formulas were first published in 1713 by the Swiss mathe-
matician James Bernoulli in his book Ars Conjectandi.
(a) The Bernoulli polynomials are defined by , , and

for . Find for and .
(b) Use the Fundamental Theorem of Calculus to show that for .n � 2Bn�0� � Bn�1�

4n � 1, 2, 3,Bn�x�n � 1, 2, 3, . . .x1
0  Bn�x� dx � 0

Bn��x� � Bn�1�x�B0�x� � 1Bn

k
k � 1, 2,

nk

x1
0  f ��x� dx

�1, 1�y � f �x�

1

17
� y

2

1
 

1

1 � x 4  dx �
7

24

� AD �
x � � AB �AD

� AB � � � AC � � 1�BAC � 120�ABC

1
4

b�1 � a�a�1 � b�ba

da�dt
dc�dtdb�dt�cbd��dt

�a
�tca, b

r�a
�ar� � 1

2 �C

� CD � � 1
2 (� BC � � � AC � � � AB �)

D
a � � BC �AABC

f �x� �
1

1 � � x � �
1

1 � � x � 2 �

f �f
f ��x�

f �x� � s1 � s2 � s3 � x  
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(c) If we introduce the Bernoulli numbers , then we can write

and, in general,

where

[The numbers are the binomial coefficients.] Use part (b) to show that, for ,

and therefore

This gives an efficient way of computing the Bernoulli numbers and therefore the
Bernoulli polynomials.

(d) Show that and deduce that for .
(e) Use parts (c) and (d) to calculate and . Then calculate the polynomials , , ,

, and .
; (f) Graph the Bernoulli polynomials for . What pattern do you

notice in the graphs?
(g) Use mathematical induction to prove that .
(h) By putting in part (g), prove that

(i) Use part (h) with and the formula for in part (a) to confirm the formula for
the sum of the first cubes in Section 5.2.

(j) Show that the formula in part (h) can be written symbolically as

where the expression is to be expanded formally using the Binomial 
Theorem and each power is to be replaced by the Bernoulli number .

(k) Use part ( j) to find a formula for .equator that have exactly
the same temperature.

CHAPTER 6

1. A solid is generated by rotating about the -axis the region under the curve , where
is a positive function and . The volume generated by the part of the curve from

to is for all . Find the function .fb 	 0b2x � bx � 0
x � 0f

y � f �x�x

15 � 25 � 35 � 
 
 
 � n 5
bib i

�n � 1 � b�k�1

1k � 2k � 3k � 
 
 
 � n k �
1

k � 1
 ��n � 1 � b�k�1 � b k�1 �

n
B4k � 3

1k � 2k � 3k � 
 
 
 � n k � k! �Bk�1�n � 1� � Bk�1�0�� � k! y
n�1

0
 Bk�x� dx

x � 0, 1, 2, . . . , n
Bk�1�x � 1� � Bk�1�x� � x k�k!

0 � x � 1B1, B2, . . . , B9

B9B8

B7B6B5b8b6

n 	 0b2n�1 � 0Bn�1 � x� � ��1�nBn�x�

bn�1 � �
1

n
 �	n

0
b0 � 	n

1
b1 � 	n

2
b2 � 
 
 
 � 	 n

n � 2
bn�2�

bn � �
n

k�0
 	n

k
bk

n � 2( n
k )

	n

k
 �
n!

k! �n � k�!
Bn�x� �

1

n!
 �

n

k�0
 	n

k
bk x n�k

 B3�x� �
x 3

3!
�

b1

1!
 
x 2

2!
�

b2

2!
 

x

1!
�
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3!
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x 2

2!
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CHAPTER 

; 1. The Chebyshev polynomials are defined by , , , , , . . . .
(a) What are the domain and range of these functions?
(b) We know that and . Express explicitly as a quadratic polynomial

and as a cubic polynomial.
(c) Show that, for , .
(d) Use part (c) to show that is a polynomial of degree .
(e) Use parts (b) and (c) to express and explicitly as polynomials.
(f) What are the zeros of ? At what numbers does have local maximum and minimum

values?
(g) Graph , , , and on a common screen.
(h) Graph , , and on a common screen.
(i) Based on your observations from parts (g) and (h), how are the zeros of related to the

zeros of ? What about the -coordinates of the maximum and minimum values?
(j) Based on your graphs in parts (g) and (h), what can you say about when is

odd and when is even?
(k) Use the substitution to evaluate the integral in part ( j).
(l) The family of functions are defined even when is not an integer

(but then is not a polynomial). Describe how the graph of changes as increases.

CHAPTER 

1. A circle of radius has its center at the origin. A circle of radius rolls without slipping in
the counterclockwise direction around . A point is located on a fixed radius of the rolling
circle at a distance from its center, . [See parts (i) and (ii) of the figure.] Let be
the line from the center of to the center of the rolling circle and let be the angle that 
makes with the positive -axis.
(a) Using as a parameter, show that parametric equations of the path traced out by are

, . Note: If , the path is a circle of
radius ; if , the path is an epicycloid. The path traced out by for is
called an epitrochoid.

; (b) Graph the curve for various values of between and .
(c) Show that an equilateral triangle can be inscribed in the epitrochoid and that its centroid is

on the circle of radius centered at the origin.

Note: This is the principle of the Wankel rotary engine. When the equilateral triangle
rotates with its vertices on the epitrochoid, its centroid sweeps out a circle whose center is
at the center of the curve.

(d) In most rotary engines the sides of the equilateral triangles are replaced by arcs of circles
centered at the opposite vertices as in part (iii) of the figure. (Then the diameter of the
rotor is constant.) Show that the rotor will fit in the epitrochoid if .

(ii)

y

xP¸

¨

P

y

x

r

b

P=P¸

2r

(i) (iii)

FIGURE FOR PROBLEM 1

b � 3(2 � s3)r�2

b

r0b

0 � b � rPb � r3r
b � 0y � b sin 3� � 3r sin �x � b cos 3� � 3r cos �

P�
x

L�C
L0 � b � rb

PC
r2rC

cff
cf �x� � cos�c arccos x�

u � arccos x
n

nx1
�1 Tn�x� dx

xTn�1

Tn

T7T6T5

T5T4T3T2

TnTn

T7T5, T6,T4,
nTn

Tn�1�x� � 2xTn�x� � Tn�1�x�n � 1
T3

T2T1�x� � xT0�x� � 1

321n � 0Tn�x� � cos�n arccos x�Tn
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CHAPTER 

1. (a) Show that, for 

(b) Deduce that

The meaning of this infinite product is that we take the product of the first factors and
then we take the limit of these partial products as .

(c) Show that

This infinite product is due to the French mathematician Franc�ois Viète (1540–1603).
Notice that it expresses in terms of just the number 2 and repeated square roots.

2. Suppose that , , , and

Use Problem 1 to show that

lim 
n l �

 an � lim 
n l �

 bn �
sin �

�

an�1 � 1
2 �an � bn � bn�1 � sbnan�1

 

b1 � 1�
�2 � � � 
�2a1 � cos �




2



�

s2

2
 
s2 � s2

2
 
s2 � s2 � s2

2
 
 
 


n l �
n

sin �

�
� cos 

�

2
 cos 

�

4
 cos 

�

8

 
 


sin � � 2n sin 
�

2n  cos 
�

2
 cos 

�

4
 cos 

�

8

 
 
 cos 

�

2n

n � 1, 2, 3, . . . ,
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ANSWERS
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Chapter 5
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SolutionsS

SolutionsS

SolutionsS

SolutionsS

SolutionsS

1. (a) [−1, 2] (b) − 1

8

t
1−

s
2−√3− x

s
2−√3− x

√
3− x

1. 4
3

3. (a) tan θ
�
1

c

dc

dt
+
1

b

db

dt

�
(b)

b
db

dt
+ c

dc

dt
−
�
b
dc

dt
+ c

db

dt

�
sec θ

√
b2 + c2 − 2bc cos θ

5. (a) y = x

x2 + 1
, x > 0 (b) 1

2

3. (a) B1 (x) = x− 1
2 , B2(x) =

1
2x

2 − 1
2x+

1
12 , B3(x) =

1
6x

3 − 1
4x

2 + 1
12x, B4(x) =

1
24x

4 − 1
12x

3 + 1
24x

2 − 1
720

(e) b6 = 1
42
, b8 = − 1

30
;

B5 (x) =
1
120

�
x5 − 5

2
x4 + 5

3
x3 − 1

6
x
�
, B6 (x) =

1
720

�
x6 − 3x5 + 5

2
x4 − 1

2
x2 + 1

42

�
,

B7 (x) =
1

5040

�
x7 − 7

2
x6 + 7

2
x5 − 7

6
x3 + 1

6
x
�
, B8 (x) =

1
40,320

�
x8 − 4x7 + 14

3
x6 − 7

3
x4 + 2

3
x2 − 1

30

�
,

B9 (x) =
1

362,880

�
x9 − 9

2x
8 + 6x7 − 21

5 x
5 + 2x3 − 3

10x
�

(f ) There are four basic shapes for the graphs of Bn (excluding B1), and as n increases, they repeat in a cycle of four.

For n = 4m, the shape resembles that of the graph of − cos 2πx; for n = 4m+ 1, that of − sin 2πx;
for n = 4m+ 2, that of cos 2πx; and for n = 4m+ 3, that of sin 2πx.

(k) 1
12n

2(n+ 1)2(2n2 + 2n− 1)

1. f(x) =
s
2x/π

1. (a) [−1, 1]; [−1, 1] for n > 0

(b) T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x

(e) T4(x) = 8x4 − 8x2 + 1, T5(x) = 16x5 − 20x3 + 5x,
T6(x) = 32x

6 − 48x4 + 18x2 − 1, T7(x) = 64x7 − 112x5 + 56x3 − 7x

(f ) x = cos
kπ + π

2

n
, k an integer with 0 ≤ k < n; x = cos(kπ/n), k an integer with 0 < k < n

7
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(g) (h)

(i) The zeros of Tn and Tn+1 alternate; the extrema also alternate

( j) When n is odd, and so
U 1
−1 Tn(x) dx = 0; when n is even, the integral is negative, but decreases in absolute value

as n gets larger.

(k)
] π

0

cos(nu) sinudu =

⎧⎨⎩ − 2

n2 − 1 if n is even

0 if n is odd

(l ) As c increases through an integer, the graph of f gains a local extremum, which starts at x = −1 and moves
rightward, compressing the graph of f as c continues to increase.

1. (b)

b = 1
5r b = 2

5
r b = 3

5
r b = 4

5
r

Chapter SolutionsS10
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ExercisesE

ExercisesE

1. (a) f(x) =
t
1−

s
2−√3− x ⇒

D=
q
x | 3− x ≥ 0, 2−√3− x ≥ 0, 1−

s
2−√3− x ≥ 0

r
=
q
x | 3 ≥ x, 2 ≥ √3− x, 1 ≥

s
2−√3− x

r
=
�
x | 3 ≥ x, 4 ≥ 3− x, 1 ≥ 2−√3− x

�
=
�
x | x ≤ 3, x ≥ −1, 1 ≤ √3− x

�
= {x | x ≤ 3, x ≥ −1, 1 ≤ 3− x } = {x | x ≤ 3, x ≥ −1, x ≤ 2 }
= {x | −1 ≤ x ≤ 2 } = [−1, 2]

(b) f(x) =
t
1−

s
2−√3− x ⇒

f 0(x) =
1t

1−
s
2−√3− x

d

dx

�
1−

s
2−√3− x

�

=
1

2

t
1−

s
2−√3− x

· −1
2
s
2−√3− x

d

dx

�
2−√3− x

�

= − 1

8

t
1−

s
2−√3− x

s
2−√3− x

√
3− x

(c) Note that f is always decreasing and f 0 is always negative.

1. f(x) = 1

1 + |x| +
1

1 + |x− 2|

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1

1− x
+

1

1− (x− 2) if x < 0

1

1 + x
+

1

1− (x− 2) if 0 ≤ x < 2

1

1 + x
+

1

1 + (x− 2) if x ≥ 2

⇒ f 0 (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1

(1− x)2
+

1

(3− x)2
if x < 0

−1
(1 + x)2

+
1

(3− x)2
if 0 < x < 2

−1
(1 + x)2

− 1

(x− 1)2 if x > 2

We see that f 0(x) > 0 for x < 0 and f 0(x) < 0 for x > 2. For 0 < x < 2, we have

f 0(x) =
1

(3− x)2
− 1

(x+ 1)2
=

�
x2 + 2x+ 1

�− �x2 − 6x+ 9�
(3− x)2(x+ 1)2

=
8 (x− 1)

(3− x)2(x+ 1)2
, so f 0(x) < 0 for

0 < x < 1, f 0(1) = 0 and f 0(x) > 0 for 1 < x < 2. We have shown that f 0(x) > 0 for x < 0; f 0(x) < 0 for

0 < x < 1; f 0(x) > 0 for 1 < x < 2; and f 0(x) < 0 for x > 2. Therefore, by the First Derivative Test, the local

maxima of f are at x = 0 and x = 2, where f takes the value 4
3
. Therefore, 4

3
is the absolute maximum value of f .



8 ■ CHALLENGE  PROBLEMS

St
ew

ar
t: 

Ca
lc

ul
us

,S
ix

th
 E

di
tio

n.
 IS

BN
:0

49
50

11
60

6.
 ©

 2
00

8 
Br

oo
ks

/C
ol

e.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

3. (a) A = 1
2
bh with sin θ = h/c, so A = 1

2
bc sin θ. But A is a

constant, so differentiating this equation with respect to t, we get

dA

dt
= 0 =

1

2

�
bc cos θ

dθ

dt
+ b

dc

dt
sin θ +

db

dt
c sin θ

�
⇒

bc cos θ
dθ

dt
= − sin θ

�
b
dc

dt
+ c

db

dt

�
⇒ dθ

dt
= − tan θ

�
1

c

dc

dt
+
1

b

db

dt

�
.

(b) We use the Law of Cosines to get the length of side a in terms of those of b and c, and then we differentiate

implicitly with respect to t: a2 = b2 + c2 − 2bc cos θ ⇒

2a
da

dt
= 2b

db

dt
+ 2c

dc

dt
− 2

�
bc(− sin θ) dθ

dt
+ b

dc

dt
cos θ +

db

dt
c cos θ

�
⇒

da

dt
=
1

a

�
b
db

dt
+ c

dc

dt
+ bc sin θ

dθ

dt
− b

dc

dt
cos θ − c

db

dt
cos θ

�
. Now we substitute our value of a from the Law

of Cosines and the value of dθ/dt from part (a), and simplify (primes signify differentiation by t):

da

dt
=

bb0 + cc0 + bc sin θ [− tan θ(c0/c+ b0/b)]− (bc0 + cb0)(cos θ)√
b2 + c2 − 2bc cos θ

=
bb0 + cc0 − [sin2 θ(bc0 + cb0) + cos2 θ(bc0 + cb0)]/ cos θ√

b2 + c2 − 2bc cos θ =
bb0 + cc0 − (bc0 + cb0)sec θ√

b2 + c2 − 2bc cos θ

5. (a) Let y = |AD|, x = |AB|, and 1/x = |AC|, so that |AB| · |AC| = 1.
We compute the areaA of4ABC in two ways. First,

A = 1
2 |AB| |AC| sin 2π

3 = 1
2 · 1 ·

√
3
2 =

√
3
4 . Second,

A = (area of4ABD) + (area of4ACD)

= 1
2 |AB| |AD| sin π

3 +
1
2 |AD| |AC| sin π

3 =
1
2xy

√
3
2 + 1

2y(1/x)
√
3
2 =

√
3
4 y(x+ 1/x)

Equating the two expressions for the area, we get
√
3
4
y

�
x+

1

x

�
=
√
3
4

⇔ y =
1

x+ 1/x
=

x

x2 + 1
, x > 0.

Another method: Use the Law of Sines on the triangles ABD and ABC. In4ABD, we have

∠A+ ∠B + ∠D = 180◦ ⇔ 60◦ + α+ ∠D = 180◦ ⇔ ∠D = 120◦ − α. Thus,

x

y
=
sin(120◦ − α)

sinα
=
sin 120◦ cosα− cos 120◦ sinα

sinα
=

√
3
2
cosα+ 1

2
sinα

sinα
⇒ x

y
=
√
3
2
cotα+ 1

2
, and

by a similar argument with4ABC,
√
3
2
cotα = x2 + 1

2
. Eliminating cotα gives x

y
=
�
x2 + 1

2

�
+ 1

2
⇒

y =
x

x2 + 1
, x > 0.

(b) We differentiate our expression for y with respect to x to find the maximum:

dy

dx
=

�
x2 + 1

�− x(2x)

(x2 + 1)2
=

1− x2

(x2 + 1)2
= 0 when x = 1. This indicates a maximum by the First Derivative Test,

since y0(x) > 0 for 0 < x < 1 and y0(x) < 0 for x > 1, so the maximum value of y is y(1) = 1
2
.
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3. (a) To find B1(x), we use the fact that B0
1(x) = B0(x) ⇒ B1(x) =

U
B0(x) dx =

U
1 dx = x+ C. Now we

impose the condition that
U 1
0
B1 (x) dx = 0 ⇒ 0 =

U 1
0
(x+ C) dx =

�
1
2
x2
�1
0
+
k
Cx
l1
0
= 1

2
+ C ⇒

C = − 1
2
. So B1 (x) = x− 1

2
. Similarly B2(x) =

U
B1(x) dx =

U �
x− 1

2

�
dx = 1

2
x2 − 1

2
x+D. ButU 1

0
B2(x) dx = 0 ⇒ 0 =

U 1
0

�
1
2x

2 − 1
2x+D

�
dx = 1

6 − 1
4 +D ⇒ D = 1

12 , so

B2(x) =
1
2
x2 − 1

2
x+ 1

12
. B3(x) =

U
B2 (x) dx =

U �
1
2
x2 − 1

2
x+ 1

12

�
dx = 1

6
x3 − 1

4
x2 + 1

12
x+E. ButU 1

0
B3(x) dx = 0 ⇒ 0 =

U 1
0

�
1
6
x3 − 1

4
x2 + 1

12
x+E

�
dx = 1

24
− 1

12
+ 1

24
+E ⇒ E = 0. So

B3(x) =
1
6
x3 − 1

4
x2 + 1

12
x. B4(x) =

U
B3(x) dx =

U �
1
6
x3 − 1

4
x2 + 1

12
x
�
dx = 1

24
x4 − 1

12
x3 + 1

24
x2 + F .

But
U 1
0
B4(x) dx = 0 ⇒ 0 =

U 1
0

�
1
24
x4 − 1

12
x3 + 1

24
x2 + F

�
dx = 1

120
− 1

48
+ 1

72
+ F ⇒ F = − 1

720
.

So B4(x) =
1
24x

4 − 1
12x

3 + 1
24x

2 − 1
720 .

(b) By FTC2, Bn (1)−Bn (0) =
U 1
0
B0
n(x) dx =

U 1
0
Bn−1(x) dx = 0 for n− 1 ≥ 1, by definition. Thus,

Bn(0) = Bn(1) for n ≥ 2.

(c) We know that Bn (x) =
1

n!

nS
k=0

�
n
k

�
bkx

n−k. If we set x = 1 in this expression, and use the fact that

Bn(1) = Bn(0) =
bn
n!
for n ≥ 2, we get bn =

nS
k=0

�
n
k

�
bk. Now if we expand the right-hand side, we get

bn =
�
n
0

�
b0 +

�
n
1

�
b1 + · · ·+

�
n

n−2
�
bn−2 +

�
n

n−1
�
bn−1 +

�
n
n

�
bn. We cancel the bn terms, move the bn−1 term to

the LHS and divide by −� n
n−1

�
= −n: bn−1 = − 1

n

k�
n
0

�
b0 +

�
n
1

�
b1 + · · ·+

�
n

n−2
�
bn−2

l
for n ≥ 2, as required.

(d) We use mathematical induction. For n = 0: B0(1− x) = 1 and (−1)0B0 (x) = 1, so the

equation holds for n = 0 since b0 = 1. Now if Bk(1− x) = (−1)kBk(x), then

since d
dxBk+1(1 − x) = B0

k+1(1 − x) d
dx (1 − x) = −Bk(1 − x), we have

d
dxBk+1(1− x) = (−1)(−1)kBk (x) = (−1)k+1Bk (x). Integrating, we get

Bk+1(1− x) = (−1)k+1Bk+1 (x) + C. But the constant of integration must be 0, since if we substitute x = 0 in

the equation, we get Bk+1(1) = (−1)k+1Bk+1(0) + C, and if we substitute x = 1 we get

Bk+1 (0) = (−1)k+1Bk+1(1) + C, and these two equations together imply that

Bk+1(0) = (−1)k+1
�
(−1)k+1Bk+1(0) + C

�
+ C = Bk+1(0) + 2C ⇔ C = 0.

So the equation holds for all n, by induction. Now if the power of −1 is odd, then we have

1. For 1 ≤ x ≤ 2, we have x4 ≤ 24 = 16, so 1 + x4 ≤ 17 and 1

1 + x4
≥ 1

17
. Thus,] 2

1

1

1 + x4
dx ≥

] 2

1

1

17
dx =

1

17
. Also 1 + x4 > x4 for 1 ≤ x ≤ 2, so 1

1 + x4
<

1

x4
and] 2

1

1

1 + x4
dx <

] 2

1

x−4 dx =
�
x−3

−3
�2
1

= − 1

24
+
1

3
=
7

24
. Thus, we have the estimate

1

17
≤
] 2

1

1

1 + x4
dx ≤ 7

24
.

Chapter 5ExercisesE
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(e) From part (a), we know that b0 = 0!B0 (0) = 1, and similarly b1 = − 1
2 , b2 =

1
6 , b3 = 0 and b4 = − 1

30 .

We use the formula to find

b6 = b7−1 = −1
7

%#
7

0

$
b0 +

#
7

1

$
b1 +

#
7

2

$
b2 +

#
7

3

$
b3 +

#
7

4

$
b4 +

#
7

5

$
b5

&

The b3 and b5 terms are 0, so this is equal to

−1
7

�
1 + 7

�
−1
2

�
+
7 · 6
2 · 1

�
1

6

�
+
7 · 6 · 5
3 · 2 · 1

�
− 1

30

��
= −1

7

�
1− 7

2
+
7

2
− 7

6

�
=
1

42

Similarly,
b8 = −1

9

%#
9

0

$
b0 +

#
9

1

$
b1 +

#
9

2

$
b2 +

#
9

4

$
b4 +

#
9

6

$
b6

&

= −1
9

�
1 + 9

�
−1
2

�
+
9 · 8
2 · 1

�
1

6

�
+
9 · 8 · 7 · 6
4 · 3 · 2 · 1

�
− 1

30

�
+
9 · 8 · 7
3 · 2 · 1

�
1

42

��
= −1

9

�
1− 9

2
+ 6− 21

5
+ 2

�
= − 1

30

Now we can calculate

B5 (x) =
1

5!

5S
k=0

#
5

k

$
bkx

5−k

=
1

120

�
x5 + 5

�
−1
2

�
x4 +

5 · 4
2 · 1

�
1

6

�
x3 + 5

�
− 1

30

�
x

�
= 1

120

�
x5 − 5

2
x4 + 5

3
x3 − 1

6
x
�

B6 (x) =
1

720

�
x6 + 6

�
−1
2

�
x5 +

6 · 5
2 · 1

�
1

6

�
x4 +

6 · 5
2 · 1

�
− 1

30

�
x2 +

1

42

�
= 1

720

�
x6 − 3x5 + 5

2x
4 − 1

2x
2 + 1

42

�
B7 (x) =

1

5040

�
x7 + 7

�
−1
2

�
x6 +

7 · 6
2 · 1

�
1

6

�
x5 +

7 · 6 · 5
3 · 2 · 1

�
− 1

30

�
x3 + 7

�
1

42

�
x

�
= 1

5040

�
x7 − 7

2
x6 + 7

2
x5 − 7

6
x3 + 1

6
x
�

B8 (x) =
1

40,320

�
x8 + 8

�
−1
2

�
x7 +

8 · 7
2 · 1

�
1

6

�
x6 +

8 · 7 · 6 · 5
4 · 3 · 2 · 1

�
− 1

30

�
x4 +

8 · 7
2 · 1

�
1

42

�
x2 +

�
− 1

30

��
= 1

40,320

�
x8 − 4x7 + 14

3 x
6 − 7

3x
4 + 2

3x
2 − 1

30

�
B9 (x) =

1

362,880

�
x9 + 9

�
−1
2

�
x8 +

9 · 8
2 · 1

�
1

6

�
x7 +

9 · 8 · 7 · 6
4 · 3 · 2 · 1

�
− 1

30

�
x5

+
9 · 8 · 7
3 · 2 · 1

�
1

42

�
x3 + 9

�
− 1

30

�
x

�
= 1

362,880

�
x9 − 9

2x
8 + 6x7 − 21

5 x
5 + 2x3 − 3

10x
�

B2n+1 (1− x) = −B2n+1(x). In particular, B2n+1(1) = −B2n+1(0). But from part (b), we know that

Bk(1) = Bk(0) for k > 1. The only possibility is that B2n+1 (0) = B2n+1(1) = 0 for all n > 0, and this implies

that b2n+1 = (2n+ 1)!B2n+1(0) = 0 for n > 0.
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(f )

n = 1 n = 2 n = 3

n = 4 n = 5 n = 6

n = 7 n = 8 n = 9

There are four basic shapes for the graphs of Bn (excluding B1), and as n increases, they repeat in a cycle of four.

For n = 4m, the shape resembles that of the graph of − cos 2πx; For n = 4m+ 1, that of − sin 2πx; for

n = 4m+ 2, that of cos 2πx; and for n = 4m+ 3, that of sin 2πx.

(g) For k = 0: B1(x+ 1)−B1(x) = x+ 1− 1
2
− �x− 1

2

�
= 1, and x

0

0!
= 1, so the equation holds for k = 0. We

now assume that Bn(x+ 1)−Bn (x) =
xn−1

(n− 1)! . We integrate this equation with respect to x:]
[Bn(x+ 1)−Bn(x)] dx =

]
xn−1

(n− 1)! dx. But we can evaluate the LHS using the definition

Bn+1(x) =
U
Bn(x) dx, and the RHS is a simple integral. The equation becomes

Bn+1(x+ 1)−Bn+1 (x) =
1

(n− 1)!
�
1

n
xn
�
=
1

n!
xn, since by part (b) Bn+1(1)−Bn+1(0) = 0, and so the

constant of integration must vanish. So the equation holds for all k, by induction.

(h) The result from part (g) implies that pk = k! [Bk+1(p+ 1)−Bk+1(p)]. If we sum both sides of this equation from

p = 0 to p = n (note that k is fixed in this process), we get
nS

p=0

pk = k!
nS

p=0

[Bk+1(p+ 1)−Bk+1(p)]. But the



12 ■ CHALLENGE  PROBLEMS

St
ew

ar
t: 

Ca
lc

ul
us

,S
ix

th
 E

di
tio

n.
 IS

BN
:0

49
50

11
60

6.
 ©

 2
00

8 
Br

oo
ks

/C
ol

e.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

RHS is just a telescoping sum, so the equation becomes 1k + 2k + 3k + · · ·+ nk = k! [Bk+1(n+ 1)−Bk+1(0)].

But from the definition of Bernoulli polynomials (and using the Fundamental Theorem of Calculus), the RHS is

equal to k!
U n+1
0

Bk(x) dx.

(i) If we let k = 3 and then substitute from part (a), the formula in part (h) becomes

13 + 23 + · · ·+ n3 = 3! [B4 (n+ 1)−B4 (0)]

= 6
�
1
24
(n+ 1)4 − 1

12
(n+ 1)3 + 1

24
(n+ 1)2 − 1

720
− � 1

24
− 1

12
+ 1

24
− 1

720

��
=
(n+ 1)2[1 + (n+ 1)2 − 2(n+ 1)]

4
=
(n+ 1)2[1− (n+ 1)]2

4
=

�
n(n+ 1)

2

�2

(j) 1k + 2k + 3k + · · ·+ nk = k!

] n+1

0

Bk(x) dx [by part (h)]

= k!

] n+1

0

1

k!

kS
j=0

#
k

j

$
bjx

k−j dx =
] n+1

0

kS
j=0

#
k

j

$
bjx

k−j dx

Now view
kS

j=0

#
k

j

$
bjx

k−j as (x+ b)k, as explained in the problem. Then

1k + 2k + 3k + · · ·+ nk “=”
U n+1
0

(x+ b)k dx =

�
(x+ b)k+1

k + 1

�n+1
0

=
(n+ 1 + b)k+1 − bk+1

k + 1

(k) We expand the RHS of the formula in (j), turning the bi into bi, and remembering that b2i+1 = 0 for i > 0:

15 + 25 + · · ·+ n5 = 1
6

�
(n+ 1)6 − b6

�
= 1

6

�
(n+ 1)6 + 6(n+ 1)5b1 +

6 · 5
2 · 1 (n+ 1)

4b2 +
6 · 5
2 · 1 (n+ 1)

2b4
�

= 1
6

�
(n+ 1)6 − 3(n+ 1)5 + 5

2
(n+ 1)4 − 1

2
(n+ 1)2

�
= 1

12 (n+ 1)
2
�
2(n+ 1)4 − 6(n+ 1)3 + 5(n+ 1)2 − 1�

= 1
12
(n+ 1)2 [(n+ 1)− 1]2 �2(n+ 1)2 − 2(n+ 1)− 1�

= 1
12
n2(n+ 1)2(2n2 + 2n− 1)

1. The volume generated from x = 0 to x = b is
U b
0
π[f(x)]2 dx. Hence, we are given that b2 =

U b
0
π[f(x)]2 dx

for all b > 0. Differentiating both sides of this equation using the Fundamental Theorem of Calculus gives

2b = π[f(b)]2 ⇒ f(b) =
s
2b/π, since f is positive. Therefore, f(x) =

s
2x/π.

1. (a) Tn(x) = cos(n arccosx). The domain of arccos is [−1, 1], and the domain of cos is R, so the domain of Tn(x)
is [−1, 1]. As for the range, T0(x) = cos 0 = 1, so the range of T0(x) is {1}. But since the range of n arccosx is
at least [0, π] for n > 0, and since cos y takes on all values in [−1, 1] for y ∈ [0, π], the range of Tn(x) is [−1, 1]
for n > 0.

Chapter 6ExercisesE
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(b) Using the usual trigonometric identities, T2(x) = cos(2 arccosx) = 2 [cos(arccos x)]2 − 1 = 2x2 − 1, and
T3(x) = cos(3 arccosx) = cos(arccosx+ 2arccosx)

= cos(arccosx) cos(2 arccosx)− sin(arccosx) sin(2 arccosx)
= x

�
2x2 − 1�− sin(arccosx) [2 sin(arccosx) cos(arccosx)]

= 2x3 − x− 2�sin2(arccosx)�x = 2x3 − x− 2x�1− cos2(arccosx)�
= 2x3 − x− 2x�1− x2

�
= 4x3 − 3x

(c) Let y = arccosx. Then

Tn+1(x) = cos[(n+ 1)y] = cos(y + ny) = cos y cosny − sin y sinny
= 2 cos y cosny − (cos y cosny + sin y sinny) = 2xTn(x)− cos(ny − y)

= 2xTn(x)− Tn−1(x)

(d) Here we use induction. T0(x) = 1, a polynomial of degree 0. Now assume that Tk(x) is a polynomial of degree k.

Then Tk+1(x) = 2xTk(x)− Tk−1(x). By assumption, the leading term of Tk is akxk, say, so the leading term of

Tk+1 is 2xakxk = 2akxk+1, and so Tk+1 has degree k + 1.

(e) T4(x) = 2xT3(x) − T2(x) = 2x
�
4x3 − 3x�− �2x2 − 1� = 8x4 − 8x2 + 1,

T5(x) = 2xT4(x)− T3(x) = 2x
�
8x4 − 8x2 + 1�− �4x3 − 3x� = 16x5 − 20x3 + 5x,

T6(x) = 2xT5(x)− T4(x) = 2x
�
16x5 − 20x3 + 5x�− �8x4 − 8x2 + 1� = 32x6 − 48x4 + 18x2 − 1,

T7(x) = 2xT6(x)− T5(x) = 2x
�
32x6 − 48x4 + 18x2 − 1�− �16x5 − 20x3 + 5x�

= 64x7 − 112x5 + 56x3 − 7x

(f ) The zeros of Tn(x) = cos(n arccosx) occur where n arccosx = kπ + π
2
for some integer k, since then

cos(n arccosx) = cos
�
kπ + π

2

�
= 0. Note that there will be restrictions on k, since 0 ≤ arccosx ≤ π. We

continue: n arccosx = kπ + π
2 ⇔ arccosx =

kπ + π
2

n
. This only has solutions for 0 ≤ kπ + π

2

n
≤ π ⇔

0 < kπ+ π
2
< nπ ⇔ 0 ≤ k < n. [This makes sense, because then Tn(x) has n zeros, and it is a polynomial of

degree n.] So, taking cosines of both sides of the last equation, we find that the zeros of Tn(x) occur at

x = cos
kπ + π

2

n
, k an integer with 0 ≤ k < n. To find the values of x at which Tn(x) has local extrema, we set

0 = T 0n(x) = − sin(n arccosx) −n√
1− x2

=
n sin(n arccosx)√

1− x2
⇔ sin(n arccosx) = 0 ⇔

n arccosx = kπ, k some integer ⇔ arccosx = kπ/n. This has solutions for 0 ≤ k ≤ n, but we disallow the

cases k = 0 and k = n, since these give x = 1 and x = −1 respectively. So the local extrema of Tn(x) occur at
x = cos(kπ/n), k an integer with 0 < k < n. [Again, this seems reasonable, since a polynomial of degree n has at



St
ew

ar
t: 

Ca
lc

ul
us

,S
ix

th
 E

di
tio

n.
 IS

BN
:0

49
50

11
60

6.
 ©

 2
00

8 
Br

oo
ks

/C
ol

e.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

most (n− 1) extrema.] By the First Derivative Test, the cases where k is even give maxima of Tn(x), since then
n arccos [cos(kπ/n)] = kπ is an even multiple of π, so sin (n arccosx) goes from negative to positive at

x = cos(kπ/n). Similarly, the cases where k is odd represent minima of Tn(x).

(g) (h)

(i) From the graphs, it seems that the zeros of Tn and Tn+1 alternate; that is, between two adjacent zeros of Tn, there

is a zero of Tn+1, and vice versa. The same is true of the x-coordinates of the extrema of Tn and Tn+1: between the

x-coordinates of any two adjacent extrema of one, there is the x-coordinate of an extremum of the other.

( j) When n is odd, the function Tn(x) is odd, since all of its terms have odd degree, and so
U 1
−1 Tn(x) dx = 0. When

n is even, Tn(x) is even, and it appears that the integral is negative, but decreases in absolute value as n gets larger.

(k)
U 1
−1 Tn(x) dx =

U 1
−1 cos(n arccosx) dx. We substitute u = arccosx ⇒ x = cosu ⇒ dx = − sinudu,

x = −1 ⇒ u = π, and x = 1 ⇒ u = 0. So the integral becomes] π

0

cos(nu) sinudu=

] π

0

1
2
[sin(u− nu) + sin(u+ nu)] du

=
1

2

�
cos[(1− n)u]

n− 1 − cos[(1 + n)u]

n+ 1

�π
0

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

2

�� −1
n− 1 −

−1
n+ 1

�
−
�

1

n− 1 −
1

n+ 1

��
if n is even

1

2

��
1

n− 1 −
1

n+ 1

�
−
�

1

n− 1 −
1

n+ 1

��
if n is odd

=

⎧⎨⎩ − 2

n2 − 1 if n is even

0 if n is odd

(l ) From the graph, we see that as c increases through an

integer, the graph of f gains a local extremum, which

starts at x = −1 and moves rightward, compressing the
graph of f as c continues to increase.

14 ■ CHALLENGE  PROBLEMS
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1. (a) Since the smaller circle rolls without slipping around C, the amount of

arc traversed on C (2rθ in the figure) must equal the amount of arc of

the smaller circle that has been in contact with C. Since the smaller

circle has radius r, it must have turned through an angle of 2rθ/r = 2θ.

In addition to turning through an angle 2θ, the little circle has rolled

through an angle θ against C. Thus, P has turned through an angle of

3θ as shown in the figure. (If the little circle had turned through an angle

of 2θ with its center pinned to the x-axis, then P would have turned only 2θ instead of 3θ. The movement of the

little circle around C adds θ to the angle.) From the figure, we see that the center of the small circle has coordinates

(3r cos θ, 3r sin θ). Thus, P has coordinates (x, y), where x = 3r cos θ + b cos 3θ and y = 3r sin θ + b sin 3θ.

(b)

b = 1
5r b = 2

5
r b = 3

5
r b = 4

5
r

(c) The diagram gives an alternate description of point P on the epitrochoid.

Q moves around a circle of radius b, and P rotates one-third as fast with

respect toQ at a distance of 3r. Place an equilateral triangle with sides of

length 3
√
3r so that its centroid is at Q and one vertex is atP . (The

distance from the centroid to a vertex is 1√
3
times the length of a side of

the equilateral triangle.)

As θ increases by 2π
3 , the point Q travels once around the circle of radius

b, returning to its original position. At the same time, P (and the rest of the

triangle) rotate through an angle of 2π
3
about Q, so P ’s position is

occupied by another vertex. In this way, we see that the epitrochoid traced

out by P is simultaneously traced out by the other two vertices as well.

The whole equilateral triangle sits inside the epitrochoid (touching it only with its vertices) and each vertex traces

out the curve once while the centroid moves around the circle three times.

(d) We view the epitrochoid as being traced out in the same way as in part (c), by a rotor for which the distance from its

center to each vertex is 3r, so it has radius 6r. To show that the rotor fits inside the epitrochoid, it suffices to show

that for any position of the tracing point P , there are no points on the opposite side of the rotor which are outside

the epitrochoid. But the most likely case of intersection is when P is on the y-axis, so as long as the diameter of the

rotor (which is 3
√
3r) is less than the distance between the y-intercepts, the rotor will fit. The y-intercepts occur
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when θ = π
2 or θ =

3π
2 ⇒ y = ±(3r − b), so the distance between the intercepts is 6r − 2b, and the rotor will

fit if 3
√
3r ≤ 6r − 2b ⇔ b ≤ 3 (2−

√
3 )

2 r.

1. (a) sin θ = 2 sin θ
2
cos

θ

2
= 2

�
2 sin

θ

4
cos

θ

4

�
cos

θ

2
= 2

�
2

�
2 sin

θ

8
cos

θ

8

�
cos

θ

4

�
cos

θ

2

= · · · = 2
�
2

�
2

�
· · ·
�
2

�
2 sin

θ

2n
cos

θ

2n

�
cos

θ

2n−1

�
· · ·
�
cos

θ

8

�
cos

θ

4

�
cos

θ

2

= 2n sin
θ

2n
cos

θ

2
cos

θ

4
cos

θ

8
· · · cos θ

2n

(b) sin θ = 2n sin θ

2n
cos

θ

2
cos

θ

4
cos

θ

8
· · · cos θ

2n
⇔ sin θ

θ
· θ/2n

sin (θ/2n)
= cos

θ

2
cos

θ

4
cos

θ

8
· · · cos θ

2n
.

Now we let n → ∞, using lim
x→0

sinx

x
= 1 with x = θ

2n
:

lim
n→∞

�
sin θ

θ
· θ/2n

sin (θ/2n)

�
= lim

n→∞

�
cos

θ

2
cos

θ

4
cos

θ

8
· · · cos θ

2n

�
⇔ sin θ

θ
= cos

θ

2
cos

θ

4
cos

θ

8
· · · .

(c) If we take θ = π
2 in the result from part (b) and use the half-angle formula cosx =

t
1
2 (1 + cos 2x)

(see Formula 17a in Appendix D), we get

sinπ/2

π/2
= cos π

4

u
cos π4 + 1

2

yxxxw
u
cos π4 + 1

2
+ 1

2

yxxxxxxw
yxxxw
u
cos π

4
+ 1

2
+ 1

2
+ 1

2
· · · ⇒

2

π
=

√
2

2

v √
2
2 + 1

2

yxxxxw
v √

2
2 + 1

2
+ 1

2
· · · =

√
2

2

s
2 +

√
2

2

yxxws
2 +

√
2

2
+ 1

2
· · ·

=

√
2

2

s
2 +

√
2

2

t
2 +

s
2 +

√
2

2
· · ·

Chapter ExercisesE 12

16 ■ CHALLENGE  PROBLEMS




