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| | CHAPTER 11

6.

[A] Click here for answers. [s] Click here for solutions.

A rectangle with length L and width W is cut into four smaller rectangles by two lines parallel to
the sides. Find the maximum and minimum values of the sum of the squares of the areas of the
smaller rectangles.

. Marine biologists have determined that when a shark detects the presence of blood in the water, it

will swim in the direction in which the concentration of the blood increases most rapidly. Based on
certain tests, the concentration of blood (in parts per million) at a point P(x, y) on the surface of
seawater is approximated by

C(x y) _ e—(fﬂyz)/lo4

where x and y are measured in meters in a rectangular coordinate system with the blood source at

the origin.

(a) Identify the level curves of the concentration function and sketch several members of this
family together with a path that a shark will follow to the source.

(b) Suppose a shark is at the point (xo, yo) when it first detects the presence of blood in the water.
Find an equation of the shark’s path by setting up and solving a differential equation.

. A long piece of galvanized sheet metal w inches wide is to be bent into a symmetric form with

three straight sides to make a rain gutter. A cross-section is shown in the figure.

(a) Determine the dimensions that allow the maximum possible flow; that is, find the dimensions
that give the maximum possible cross-sectional area.

(b) Would it be better to bend the metal into a gutter with a semicircular cross-section than a three-
sided cross-section?

For what values of the number r is the function

(x+y+2
fly,z) = x> +y>+2°
0 if (x,y,z2)=0

if (x,y,2z)#0

continuous on R*?

. Suppose f is a differentiable function of one variable. Show that all tangent planes to the surface

z = xf(y/x) intersect in a common point.

(a) Newton’s method for approximating a root of an equation f(x) = 0 (see Section 3.6) can be
adapted to approximating a solution of a system of equations f(x, y) = 0 and g(x, y) = 0. The
surfaces z = f(x, y) and z = g(x, y) intersect in a curve that intersects the xy-plane at the point
(r, 5), which is the solution of the system. If an initial approximation (x;, y;) is close to this
point, then the tangent planes to the surfaces at (x;, y;) intersect in a straight line that intersects
the xy-plane in a point (x», y,), which should be closer to (r, s). (Compare with Figure 2 in
Section 3.6.) Show that

fo — fig f:g — f9x

Xo =Xy — and =

Sy = 19 feg = f19x

where f, g, and their partial derivatives are evaluated at (x,, y;). If we continue this procedure,
we obtain successive approximations (x,, y,).
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(b) It was Thomas Simpson (1710-1761) who formulated Newton’s method as we know it today
and who extended it to functions of two variables as in part (a). (See the biography of Simpson
on page 342.) The example that he gave to illustrate the method was to solve the system of
equations

X+ y) = 1000 X+ yt =100

In other words, he found the points of intersection of the curves in the figure. Use the method
of part (a) to find the coordinates of the points of intersection correct to six decimal places.

y
X"+ y? = 1000
4+
Xyt =100
24
0 2 4 x

7. (a) Show that when Laplace’s equation

’u u ﬂ -0
ax> ay> 0z*

is written in cylindrical coordinates, it becomes

0’u 1 Ju 1 0°u ’u
—S+t——+5—5+—5=0
ar r or r- 06 Jdz

(b) Show that when Laplace’s equation is written in spherical coordinates, it becomes

Pu 2 du  cotd du 1 ou 1 0*u
FyCIRry, R e e B BN Sy
p-  pdp p° 0  p” dp”  p sind 96

=0
8. Among all planes that are tangent to the surface xy?z> = 1, find the ones that are farthest from the
origin.

9. If the ellipse x*/a* + y*/b* = 1 is to enclose the circle x*> + y* = 2y, what values of a and b
minimize the area of the ellipse?



Thomson Brooks-Cole copyright 2007

| ANSWERS

CHALLENGE PROBLEMS

3

. LW W2 3. (a) x = w/3, base = w/3

(b) Yes

9. 6/2,3/2/2
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’ ‘ SOLUTIONS
1. The areas of the smaller rectangles are A; = zy, A2 = (L — z)y, I L I
As=(L—2)(W —y), Ay =ax(W —y). For0 <z < L, Y T
w
0<y<W,let ey l
fla,y) = AT 4+ A3 + A3 + Al

="y + (L —2)%y* + (L —2)*(W —y)* +2° (W —y)*

= [2* + (L —2)]ly* + (W —p)?]
Then we need to find the maximum and minimum values of f(z,y). Here
fo(z,y) =22 -2(L—2)]y" + W —-y)’) =0 = 4z—2L=0orz = 3L, and
fy@y) =[2* + (L —2)’|2y —2(W —y)] =0 = 4y—2W =0ory = W/2.
Also for = 4[y2 + (W —9)?], fyy = 4[z® + (L — x)?], and f,, = (4z — 2L)(4y — 2W). Then
D =16[y* + (W —y)?][z® + (L — z)?] — (4o — 2L)*(4y —2W)?. Thus whenz = 1 Landy = W, D > 0 and
frz = 2W? > 0. Thus a minimum of f occurs at (%L, %W) and this minimum value is f(%L, %W) = iL2 w2,
There are no other critical points, so the maximum must occur on the boundary. Now along the width of the
rectangle let g(y) = f(0,y) = f(L,y) = L*[y* + (W —y)?],0 < y < W. Then
g ) =Ly —2W —y)]=0 & y=3zW.
And g(3) = 2L*W?. Checking the endpoints, we get g(0) = g(W) = L?W?>. Along the length of the rectangle
let h(z) = f(2,0) = f(z,W) = W?[z® + (L — 2)?],0 < 2 < L. By symmetry '(z) =0 < x = +Land
h(3L) = $L>W?. At the endpoints we have h(0) = h(L) = L*W?. Therefore L*W? is the maximum value of f.

This maximum value of f occurs when the “cutting” lines correspond to sides of the rectangle.

3. (a) The area of a trapezoid is %h(bl + b2), where h is the height (the distance between the two parallel sides) and

b1, be are the lengths of the bases (the parallel sides). From the figure in the text, we see that h = x sin 6,

b1 = w — 2z, and by = w — 2z + 2z cos 6. Therefore the cross-sectional area of the rain gutter is
A(z,0) = 1zsind [(w — 2z) + (w — 2z + 2z cos 0)] = (zsinb)(w — 2z + z cos §)
=wzsind — 222 sinf + z%sinfcosh, 0 < z < %w,O <0< 3

We look for the critical points of A: 9A/Jz = wsinf — 4z sinf + 2z sin 6 cos  and

OA/08 = wx cos O — 222 cos O + 2 (cos® @ — sin® 0),50 0A/0r =0 < sinf (w — 4z +2xc0s0) =0

4‘”2; Y9 % (0<0<Z = sind>0).If inaddition, 9A/96 = 0, then

& cosb =

0 = wz cos — 2z° cos § + z*(2cos” § — 1)

:wm(Qf %) 72172(27 %) +x2{2(27%)271}

1,2 2 2 dw w? 2
=2wr — zw” —42” +wr+2x {8—?4—@—1} = —wz + 3z" = z(3z — w)
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Since x > 0, we must have z = %w, in which case cos 0 = %, sof) = Z,sinf = @, k= %w, by = %w,
by = w and A = w . As in Example 11.7.5, we can argue from the physical nature of this problem that

we have found a local maximum of A. Now checking the boundary of A, let
9(0) = A(w/2,0) = 3w?sind — 1w’ sin + 2w’ sinfcosd = 2w?sin20,0 < 6 < Z. Clearly g is
maximized when sin 20 = 1 in which case A = gw Also along the line 0 = 7, let
hz)=A(z, %) =wzr—22°, 0<z<iw = h(@)=w—-40=0 & z=1iwand
h(jw) =w(zw) — 2(%10) = 1w”. Since fw” < ‘/_ w?, we conclude that the local maximum found earlier
was an absolute maximum.

(b) If the metal were bent into a semi-circular gutter of radius 7, we would have w = 7r and

7T’I"2:

w\2  w? . w? 3w? | . .
A= T (—) = —. Since — > V3 , it would be better to bend the metal into a gutter with a

T 2 21 12

D=
D=

semicircular cross-section.

2 T T

5 Letg(z,y) == (%) Then g, (z,y) = f(%) +mf’(%) (_i) — f(ﬁ) _ Ef/(%) and
y

1 .
gy(z,y) =z f ( ) (—) = f’(%). Thus the tangent plane at (o, Yo, z0) on the surface has equation

() = () s (e (o =

{f <@) - yoxglf' (%)} x4+ {f’ <ﬂ>]y — z = 0. But any plane whose equation is of the form
0

Zo To

ax + by + cz = 0 passes through the origin. Thus the origin is the common point of intersection.

B . _ Ou _Oudr Oudy  Oudz _ % du .
1. @) x =rcosf,y =rsinb, z = z. Then — = 2o + — 3y ar + — 52 9r — B2 cosf + 3y sin 6 and

Pu_ [Pude | Fuoy 0w o] L (oFuoy | 0uor  ou o
or2 0x2 Or  Oydx dr  9z0x Or oy? Or  Ox Oy Or  0z0y Or

0%u 0%u 0%u .
= 8—cos 0+ Wsm 0+2—— By 0z cos 6sin 0
- ou ou ou
Similarly %= 5" sinf + — ay r cos 0 and
*u  O%u .2 0%u 0%u

sin 9—1—%7" cos? 0 — 28y ﬁUTZSinﬁcosé’—%TCOSG—g—ZTSin@. So

20° ~ 9z2 "

Pu 10w, 10h 0
or2  ror  r2060° 022

—icos 0+a—s1n 0+2 o cos@sm@—&—%ﬂ Ju sinf
T 022 oy? Oy Ox or r oy r
Du . Pu 0%u ducosf Ousind O*u
— 0+ — 0—2 fcosh — ——— — — —
+ az2 o + oy? €os Oy Ox sin cos or r oy r + 0z2

o o o
T ox2  Oy? | 022
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(b) x = psingcosl, y = psingsinb, z = pcos¢p. Then

Ou Oudx  Oudy Judz _Ou . du . . Ju
6_/) = 9z 9p + — ay 6p 9:0p oz sin ¢ cos 6 + ay sin ¢ sin 0 + EP cos ¢, and

2

u .
(‘3_p2 =sin¢cosf {

Fudr | Pu dy | Ou 0
0x2 0p Oydxdp 0z0x dp

Fudy | O or | w0z
0y20p Oxdydp 0z0ydp

+ sin¢sin @ {

+ COS(]5 &% + 82u % 62u @
022 0p 0x0z0p Oydzdp
2 2 2
=2 O’u sin2¢>sin9c036’+2 0w sin ¢ cos ¢ cos 6 + 2 O’u sin ¢ cos ¢ sin 6

Oy Ox 0z 0x Oy 0z

2

—I—%sm ¢ cos® 0+%sm $sin® 0—!—%0% 10}

Similarly g—; = % pcospcosf + Ou pcos¢sinf — gu psin ¢, and

dy 0z
0%u 0%u 0%u
87{)2 28 B p? cos? qﬁsm@cos@—Za 5. % sin ¢ cos ¢ cos 0
82 ¢cospsind + — O 2pcos’ 0+ — O 2 0
8 % p° sin ¢ cos ¢ sin 92 p° cos® ¢ cos 52 p° cos® ¢ sin®
2
+%p%in%&—%psinqﬁcos@—%psinq&sin@—%pcomﬁ
ou Oou . . ou . .
And%ff%psmgzbsmeJr8—ypsm¢>cos6’,whlle
2 2
%:72 8‘2(;; p2sin2¢>c036’sin6’+g 2p sin® ¢ sin® 0
0%u ou ou
—l—a—p sin® ¢ cos® 0—a—psm¢>cos(9—a—ypsm¢sm9
Therefore
82u+2@ cot ¢ du i@ 1 @
9p2 T pdp | p* 06 p2ag®  p?sin’ ¢ 96°
a2u ) 2 2 2 2
=0 [(sin? ¢ cos® §) + (cos® ¢ cos? B) + sin® ]
z
Pu in20 2 heinZ @ 29 P u 2 2
+ el [(sin? ¢ sin? §) + (cos® Ppsin® H) + cos }—&—@ [cos® ¢ + sin® §]

n @ 25in? ¢ cos § + cos? ¢ cos § — sin? ¢ cos§ — cos 6
Ox psin ¢

@ 2sin? ¢sin § + cos? ¢sin§ — sin® ¢sin§ — sin 4
Ay psin ¢

But 2sin? ¢ cos § + cos® ¢ cos § — sin® ¢ cos § — cos @ = (sin® ¢ + cos® ¢ — 1) cos§ = 0 and similarly the
coefficient of du/dy is 0. Also sin? ¢ cos? 6 + cos? ¢ cos? § 4 sin® § = cos? @ (sin® ¢ + cos? ¢) + sin? 0 = 1,

and similarly the coefficient of 9%u/dy? is 1. So Laplace’s Equation in spherical coordinates is as stated.



Thomson Brooks-Cole copyright 2007

CHALLENGE PROBLEMS

9. Since we are minimizing the area of the ellipse, and the circle lies above the Y b
x-axis, the ellipse will intersect the circle for only one value of y. This y-value
must satisfy both the equation of the circle and the equation of the ellipse. Now +yi=2y
2?2 a2 0 a x
S +5=1 = z? = — (b2 - y2), Substituting into the equation of the
a b? b2

a? B2 — g2
circlegivesb—2(b2fy2)+y2f2y:0 = ( 7 )y272y+a2:0.

In order for there to be only one solution to this quadratic equation, the discriminant must be 0, so

=0 = b®—a®b®+a* = 0. The area of the ellipse is A(a, b) = mab, and we minimize this

function subject to the constraint g(a, b) = b*> — a®b*> + a* = 0. Now VA = \Vg < 7b = A(4a® — 2ab?),

_ _ 2 _ b _ a 2 272 4 _ :
ma = A(2b—2ba®) = (1) A =30 — 1)’ 2) A= 01— az)’(3) b* — a*b* 4+ a® = 0. Comparing (1)
and (2) gives b = a = 2mb® =4ma® < a® = L b. Substitute this into (3) to get
BIVES Sa2aZ —02) ~ 2b(1 — a2) - A g





