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CHAPTER 11

1. A rectangle with length and width is cut into four smaller rectangles by two lines parallel to
the sides. Find the maximum and minimum values of the sum of the squares of the areas of the
smaller rectangles.

2. Marine biologists have determined that when a shark detects the presence of blood in the water, it
will swim in the direction in which the concentration of the blood increases most rapidly. Based on
certain tests, the concentration of blood (in parts per million) at a point on the surface of
seawater is approximated by

where and are measured in meters in a rectangular coordinate system with the blood source at
the origin.
(a) Identify the level curves of the concentration function and sketch several members of this

family together with a path that a shark will follow to the source.
(b) Suppose a shark is at the point when it first detects the presence of blood in the water.

Find an equation of the shark’s path by setting up and solving a differential equation.

3. A long piece of galvanized sheet metal inches wide is to be bent into a symmetric form with
three straight sides to make a rain gutter. A cross-section is shown in the figure.
(a) Determine the dimensions that allow the maximum possible flow; that is, find the dimensions

that give the maximum possible cross-sectional area.
(b) Would it be better to bend the metal into a gutter with a semicircular cross-section than a three-

sided cross-section?

4. For what values of the number is the function

continuous on ?

5. Suppose is a differentiable function of one variable. Show that all tangent planes to the surface
intersect in a common point.

6. (a)
adapted to approximating a solution of a system of equations and . The
surfaces and intersect in a curve that intersects the -plane at the point

, which is the solution of the system. If an initial approximation is close to this
point, then the tangent planes to the surfaces at intersect in a straight line that intersects
the -plane in a point , which should be closer to . (Compare with Figure 2 in

where , , and their partial derivatives are evaluated at . If we continue this procedure,
we obtain successive approximations .�xn, yn �
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CHALLENGE PROBLEMS:

Newton’s method for approximating a root of an equation f �x� � 0 (see Section 3.6) can be

Section 3.6.) Show that
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(b) It was Thomas Simpson (1710–1761) who formulated Newton’s method as we know it today
and who extended it to functions of two variables as in part (a). (See the biography of Simpson

equations

In other words, he found the points of intersection of the curves in the figure. Use the method
of part (a) to find the coordinates of the points of intersection correct to six decimal places.

7. (a) Show that when Laplace’s equation

is written in cylindrical coordinates, it becomes

(b) Show that when Laplace’s equation is written in spherical coordinates, it becomes

8. Among all planes that are tangent to the surface , find the ones that are farthest from the
origin.

9. If the ellipse is to enclose the circle , what values of and 
minimize the area of the ellipse?
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on page 342.) The example that he gave to illustrate the method was to solve the system of
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3. (a) (b) Yes 9. s6�2, 3s2�2x � w�3, base � w�3

ANSWERS

SolutionsS
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1. L2W 2, 14 L2W 2
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SOLUTIONS

ExercisesE
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1. The areas of the smaller rectangles are A1 = xy, A2 = (L− x)y,

A3 = (L− x)(W − y), A4 = x(W − y). For 0 ≤ x ≤ L,

0 ≤ y ≤W , let

f(x, y) = A2
1 +A2

2 +A2
3 +A2

4

= x2y2 + (L− x)2y2 + (L− x)2(W − y)2 + x2(W − y)2

= [x2 + (L− x)2][y2 + (W − y)2]

Then we need to find the maximum and minimum values of f(x, y). Here

fx(x, y) = [2x− 2(L− x)][y2 + (W − y)2] = 0 ⇒ 4x− 2L = 0 or x = 1
2L, and

fy(x, y) = [x
2 + (L− x)2][2y − 2(W − y)] = 0 ⇒ 4y − 2W = 0 or y = W/2.

Also fxx = 4[y2 + (W − y)2], fyy = 4[x2 + (L− x)2], and fxy = (4x− 2L)(4y − 2W ). Then

D = 16[y2 + (W − y)2][x2+ (L− x)2]− (4x− 2L)2(4y− 2W )2. Thus when x = 1
2
L and y = 1

2
W ,D > 0 and

fxx = 2W
2 > 0. Thus a minimum of f occurs at 1

2
L, 1

2
W and this minimum value is f 1

2
L, 1

2
W = 1

4
L2W 2.

There are no other critical points, so the maximum must occur on the boundary. Now along the width of the

rectangle let g(y) = f(0, y) = f(L, y) = L2[y2 + (W − y)2], 0 ≤ y ≤ W . Then

g0(y) = L2[2y − 2(W − y)] = 0 ⇔ y = 1
2
W .

And g 1
2
= 1

2L
2W 2. Checking the endpoints, we get g(0) = g(W ) = L2W 2. Along the length of the rectangle

let h(x) = f(x, 0) = f(x,W ) =W 2[x2 + (L− x)2], 0 ≤ x ≤ L. By symmetry h0(x) = 0 ⇔ x = 1
2
L and

h 1
2
L = 1

2
L2W 2. At the endpoints we have h(0) = h(L) = L2W 2. Therefore L2W 2 is the maximum value of f .

This maximum value of f occurs when the “cutting” lines correspond to sides of the rectangle.

3. (a) The area of a trapezoid is 1
2
h(b1 + b2), where h is the height (the distance between the two parallel sides) and

b1, b2 are the lengths of the bases (the parallel sides). From the figure in the text, we see that h = x sin θ,

b1 = w − 2x, and b2 = w − 2x+ 2x cos θ. Therefore the cross-sectional area of the rain gutter is

A(x, θ) = 1
2x sin θ [(w − 2x) + (w − 2x+ 2x cos θ)] = (x sin θ)(w − 2x+ x cos θ)

=wx sin θ − 2x2 sin θ + x2 sin θ cos θ, 0 < x ≤ 1
2
w, 0 < θ ≤ π

2

We look for the critical points of A: ∂A/∂x = w sin θ − 4x sin θ + 2x sin θ cos θ and
∂A/∂θ = wx cos θ − 2x2 cos θ + x2(cos2 θ − sin2 θ), so ∂A/∂x = 0 ⇔ sin θ (w − 4x+ 2x cos θ) = 0

⇔ cos θ =
4x−w

2x
= 2− w

2x
(0 < θ ≤ π

2
⇒ sin θ > 0). If, in addition, ∂A/∂θ = 0, then

0 =wx cos θ − 2x2 cos θ + x2(2 cos2 θ − 1)

=wx 2− w

2x
− 2x2 2− w

2x
+ x2 2 2− w

2x

2

− 1

= 2wx− 1
2
w2 − 4x2 +wx+ x2 8− 4w

x
+

w2

2x2
− 1 = −wx+ 3x2 = x(3x− w)
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Since x > 0, we must have x = 1
3w, in which case cos θ =

1
2 , so θ =

π
3 , sin θ =

√
3
2 , k =

√
3
6 w, b1 = 1

3w,

b2 =
2
3
w, and A =

√
3

12
w2. As in Example 11.7.5, we can argue from the physical nature of this problem that

we have found a local maximum of A. Now checking the boundary of A, let

g(θ) = A(w/2, θ) = 1
2w

2 sin θ − 1
2w

2 sin θ + 1
4w

2 sin θ cos θ = 1
8w

2 sin 2θ, 0 < θ ≤ π
2 . Clearly g is

maximized when sin 2θ = 1 in which case A = 1
8
w2. Also along the line θ = π

2
, let

h(x) = A x, π
2
= wx− 2x2, 0 < x < 1

2
w ⇒ h0(x) = w − 4x = 0 ⇔ x = 1

4
w, and

h 1
4
w = w 1

4
w − 2 1

4
w

2
= 1

8
w2. Since 1

8
w2 <

√
3

12
w2, we conclude that the local maximum found earlier

was an absolute maximum.

(b) If the metal were bent into a semi-circular gutter of radius r, we would have w = πr and

A = 1
2
πr2 = 1

2
π

w

π

2

=
w2

2π
. Since w

2

2π
>

√
3w2

12
, it would be better to bend the metal into a gutter with a

semicircular cross-section.

5. Let g(x, y) = xf
y

x
. Then gx(x, y) = f

y

x
+ xf 0

y

x
− y

x2
= f

y

x
− y

x
f 0

y

x
and

gy(x, y) = xf 0
y

x

1

x
= f 0

y

x
. Thus the tangent plane at (x0, y0, z0) on the surface has equation

z − x0f
y0
x0

= f
y0
x0

− y0x
−1
0 f 0

y0
x0

(x− x0) + f 0
y0
x0

(y − y0) ⇒

f
y0
x0

− y0x
−1
0 f 0

y0
x0

x+ f 0
y0
x0

y − z = 0. But any plane whose equation is of the form

ax+ by + cz = 0 passes through the origin. Thus the origin is the common point of intersection.

7. (a) x = r cos θ, y = r sin θ, z = z. Then ∂u
∂r

=
∂u

∂x

∂x

∂r
+

∂u

∂y

∂y

∂r
+

∂u

∂z

∂z

∂r
=

∂u

∂x
cos θ +

∂u

∂y
sin θ and

∂2u

∂r2
= cos θ

∂2u

∂x2
∂x

∂r
+

∂2u

∂y ∂x

∂y

∂r
+

∂2u

∂z ∂x

∂z

∂r
+ sin θ

∂2u

∂y2
∂y

∂r
+

∂2u

∂x∂y

∂x

∂r
+

∂2u

∂z ∂y

∂z

∂r

=
∂2u

∂x2
cos2 θ +

∂2u

∂y2
sin2 θ + 2

∂2u

∂y ∂x
cos θ sin θ

Similarly ∂u
∂θ

= −∂u

∂x
r sin θ +

∂u

∂y
r cos θ and

∂2u

∂θ2
=

∂2u

∂x2
r2 sin2 θ +

∂2u

∂y2
r2 cos2 θ − 2 ∂2u

∂y ∂x
r2 sin θ cos θ − ∂u

∂x
r cos θ − ∂u

∂y
r sin θ. So

∂2u

∂r2
+
1

r

∂u

∂r
+
1

r2
∂2u

∂θ2
+

∂2u

∂z2

=
∂2u

∂x2
cos2 θ +

∂2u

∂y2
sin2 θ + 2

∂2u

∂y ∂x
cos θ sin θ +

∂u

∂x

cos θ

r
+

∂u

∂y

sin θ

r

+
∂2u

∂x2
sin2 θ +

∂2u

∂y2
cos2 θ − 2 ∂2u

∂y ∂x
sin θ cos θ − ∂u

∂x

cos θ

r
− ∂u

∂y

sin θ

r
+

∂2u

∂z2

=
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
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(b) x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ. Then

∂u

∂ρ
=

∂u

∂x

∂x

∂ρ
+

∂u

∂y

∂y

∂ρ
+

∂u

∂z

∂z

∂ρ
=

∂u

∂x
sinφ cos θ +

∂u

∂y
sinφ sin θ +

∂u

∂z
cosφ, and

∂2u

∂ρ2
= sinφ cos θ

∂2u

∂x2
∂x

∂ρ
+

∂2u

∂y ∂x

∂y

∂ρ
+

∂2u

∂z ∂x

∂z

∂ρ

+ sinφ sin θ
∂2u

∂y2
∂y

∂ρ
+

∂2u

∂x∂y

∂x

∂ρ
+

∂2u

∂z ∂y

∂z

∂ρ

+ cosφ
∂2u

∂z2
∂z

∂ρ
+

∂2u

∂x∂z

∂x

∂ρ
+

∂2u

∂y ∂z

∂y

∂ρ

= 2
∂2u

∂y ∂x
sin2 φ sin θ cos θ + 2

∂2u

∂z ∂x
sinφ cosφ cos θ + 2

∂2u

∂y ∂z
sinφ cosφ sin θ

+
∂2u

∂x2
sin2 φ cos2 θ +

∂2u

∂y2
sin2 φ sin2 θ +

∂2u

∂z2
cos2 φ

Similarly ∂u
∂φ

=
∂u

∂x
ρ cosφ cos θ +

∂u

∂y
ρ cosφ sin θ − ∂u

∂z
ρ sinφ, and

∂2u

∂φ2
= 2

∂2u

∂y ∂x
ρ2 cos2 φ sin θ cos θ − 2 ∂2u

∂x∂z
ρ2 sinφ cosφ cos θ

− 2 ∂2u

∂y ∂z
ρ2 sinφ cosφ sin θ +

∂2u

∂x2
ρ2 cos2 φ cos2 θ +

∂2u

∂y2
ρ2 cos2 φ sin2 θ

+
∂2u

∂z2
ρ2 sin2 φ− ∂u

∂x
ρ sinφ cos θ − ∂u

∂y
ρ sinφ sin θ − ∂u

∂z
ρ cosφ

And ∂u
∂θ

= −∂u

∂x
ρ sinφ sin θ +

∂u

∂y
ρ sinφ cos θ, while

∂2u

∂θ2
=−2 ∂2u

∂y ∂x
ρ2 sin2 φ cos θ sin θ +

∂2u

∂x2
ρ2 sin2 φ sin2 θ

+
∂2u

∂y2
ρ2 sin2 φ cos2 θ − ∂u

∂x
ρ sinφ cos θ − ∂u

∂y
ρ sinφ sin θ

Therefore

∂2u

∂ρ2
+
2

ρ

∂u

∂ρ
+
cotφ

ρ2
∂u

∂φ
+
1

ρ2
∂2u

∂φ2
+

1

ρ2 sin2 φ

∂2u

∂θ2

=
∂2u

∂x2
(sin2 φ cos2 θ) + (cos2 φ cos2 θ) + sin2 θ

+
∂2u

∂y2
(sin2 φ sin2 θ) + (cos2 φ sin2 θ) + cos2 θ +

∂2u

∂z2
cos2 φ+ sin2 φ

+
∂u

∂x

2 sin2 φ cos θ + cos2 φ cos θ − sin2 φ cos θ − cos θ
ρ sinφ

+
∂u

∂y

2 sin2 φ sin θ + cos2 φ sin θ − sin2 φ sin θ − sin θ
ρ sinφ

But 2 sin2 φ cos θ + cos2 φ cos θ − sin2 φ cos θ − cos θ = (sin2 φ+ cos2 φ− 1) cos θ = 0 and similarly the

coefficient of ∂u/∂y is 0. Also sin2 φ cos2 θ + cos2 φ cos2 θ + sin2 θ = cos2 θ (sin2 φ+ cos2 φ) + sin2 θ = 1,

and similarly the coefficient of ∂2u/∂y2 is 1. So Laplace’s Equation in spherical coordinates is as stated.
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9. Since we are minimizing the area of the ellipse, and the circle lies above the

x-axis, the ellipse will intersect the circle for only one value of y. This y-value

must satisfy both the equation of the circle and the equation of the ellipse. Now

x2

a2
+

y2

b2
= 1 ⇒ x2 =

a2

b2
b2 − y2 . Substituting into the equation of the

circle gives a
2

b2
(b2 − y2) + y2 − 2y = 0 ⇒ b2 − a2

b2
y2 − 2y + a2 = 0.

In order for there to be only one solution to this quadratic equation, the discriminant must be 0, so

4− 4a2 b
2 − a2

b2
= 0 ⇒ b2 − a2b2 + a4 = 0. The area of the ellipse is A(a, b) = πab, and we minimize this

function subject to the constraint g(a, b) = b2 − a2b2 + a4 = 0. Now∇A = λ∇g ⇔ πb = λ(4a3 − 2ab2),

πa = λ(2b− 2ba2) ⇒ (1) λ = πb

2a(2a2 − b2)
, (2) λ = πa

2b(1− a2)
, (3) b2 − a2b2 + a4 = 0. Comparing (1)

and (2) gives πb

2a(2a2 − b2)
=

πa

2b(1− a2)
⇒ 2πb2 = 4πa4 ⇔ a2 = 1√

2
b. Substitute this into (3) to get

b = 3√
2
⇒ a = 3

2
.




