1.1 FUNCTIONS AND THEIR REPRESENTATONS

EXAMPLE A Sketch the graph and find the domain and range of each function.

(a)
$$f(x) = 2x - 1$$
 (b) $g(x) = x^2$

SOLUTION

(a) The equation of the graph is y = 2x - 1, and we recognize this as being the equation of a line with slope 2 and y-intercept -1. (Recall the slope-intercept form of the equation of a line: y = mx + b.) This enables us to sketch the graph of f in Figure 1. The expression 2x - 1 is defined for all real numbers, so the domain of f is the set of all real numbers, which we denote by \mathbb{R} . The graph shows that the range is also \mathbb{R} .

(b) Since $g(2) = 2^2 = 4$ and $g(-1) = (-1)^2 = 1$, we could plot the points (2, 4) and (-1, 1), together with a few other points on the graph, and join them to produce the graph (Figure 2). The equation of the graph is $y = x^2$, which represents a parabola. The domain of g is \mathbb{R} . The range of g consists of all values of g(x), that is, all numbers of the form x^2 . But $x^2 \ge 0$ for all numbers x and any positive number y is a square. So the range of g is $\{y \mid y \ge 0\} = [0, \infty)$. This can also be seen from Figure 2.

EXAMPLE B If
$$f(x) = 2x^2 - 5x + 1$$
 and $h \neq 0$, evaluate $\frac{f(a+h) - f(a)}{h}$

SOLUTION We first evaluate f(a + h) by replacing x by a + h in the expression for f(x):

$$f(a + h) = 2(a + h)^{2} - 5(a + h) + 1$$
$$= 2(a^{2} + 2ah + h^{2}) - 5(a + h) + 1$$
$$= 2a^{2} + 4ah + 2h^{2} - 5a - 5h + 1$$

Then we substitute into the given expression and simplify:

$$\frac{f(a+h) - f(a)}{h} = \frac{(2a^2 + 4ah + 2h^2 - 5a - 5h + 1) - (2a^2 - 5a + 1)}{h}$$
$$= \frac{2a^2 + 4ah + 2h^2 - 5a - 5h + 1 - 2a^2 + 5a - 1}{h}$$
$$= \frac{4ah + 2h^2 - 5h}{h} = 4a + 2h - 5$$

t	C(t)
0	0.0800
2	0.0570
4	0.0408
6	0.0295
8	0.0210
0	0.0210

EXAMPLE C The data shown at the left come from an experiment on the lactonization of hydroxyvaleric acid at 25°C. They give the concentration C(t) of this acid (in moles per liter) after t minutes. Use these data to draw an approximation to the graph of the concentration function. Then use this graph to estimate the concentration after 5 minutes.

SOLUTION We plot the five points corresponding to the data from the table in Figure 3. The data points look quite well behaved, so we simply draw a smooth curve through them by hand as in Figure 4.

Then we use the graph to estimate that the concentration after 5 minutes is

$$C(5) \approx 0.035 \text{ mole/liter.}$$

V Play the Video

EXAMPLE D A rectangular storage container with an open top has a volume of 10 m³. The length of its base is twice its width. Material for the base costs \$10 per square meter; material for the sides costs \$6 per square meter. Express the cost of materials as a function of the width of the base.

SOLUTION We draw a diagram as in Figure 5 and introduce notation by letting w and 2w be the width and length of the base, respectively, and h be the height.

The area of the base is $(2w)w = 2w^2$, so the cost, in dollars, of the material for the base is $10(2w^2)$. Two of the sides have area wh and the other two have area 2wh, so the cost of the material for the sides is 6[2(wh) + 2(2wh)]. The total cost is therefore

$$C = 10(2w^2) + 6[2(wh) + 2(2wh)] = 20w^2 + 36wh$$

To express C as a function of w alone, we need to eliminate h and we do so by using the fact that the volume is 10 m³. Thus

$$w(2w)h = 10$$

which gives

$$h = \frac{10}{2w^2} = \frac{5}{w^2}$$

Substituting this into the expression for C, we have

$$C = 20w^2 + 36w\left(\frac{5}{w^2}\right) = 20w^2 + \frac{180}{w}$$

Therefore, the equation

$$C(w) = 20w^2 + \frac{180}{w} \qquad w > 0$$

expresses C as a function of w.

FIGURE 5

EXAMPLE E Find a formula for the function f graphed in Figure 6.

FIGURE 6

SOLUTION The line through (0, 0) and (1, 1) has slope m = 1 and y-intercept b = 0, so its equation is y = x. Thus, for the part of the graph of f that joins (0, 0) to (1, 1), we have

$$f(x) = x \qquad \text{if } 0 \le x \le 1$$

The line through (1, 1) and (2, 0) has slope m = -1, so its point-slope form is

• Point-slope form of the equation of a line:

 $y - y_1 = m(x - x_1)$

$$y - 0 = (-1)(x - 2)$$
 or $y = 2 - x$

So we have

$$f(x) = 2 - x \qquad \text{if } 1 < x \le 2$$

We also see that the graph of f coincides with the *x*-axis for x > 2. Putting this information together, we have the following three-piece formula for f:

$$f(x) = \begin{cases} x & \text{if } 0 \le x \le 1\\ 2 - x & \text{if } 1 < x \le 2\\ 0 & \text{if } x > 2 \end{cases}$$