
A CATALOG OF ESSENTIAL FUNCTIONS

EXAMPLE A Table 1 lists the average carbon dioxide level in the atmosphere,
measured in parts per million at Mauna Loa Observatory from 1980 to 2002. Use
the data in Table 1 to find a model for the carbon dioxide level.

SOLUTION We use the data in Table 1 to make the scatter plot in Figure 1, where t
represents time (in years) and C represents the level (in parts per million, ppm).

Notice that the data points appear to lie close to a straight line, so it’s natural to
choose a linear model in this case. But there are many possible lines that approxi-
mate these data points, so which one should we use? From the graph, it appears that
one possibility is the line that passes through the first and last data points. The slope
of this line is

and its equation is

or

Equation 1 gives one possible linear model for the carbon dioxide level; it is
graphed in Figure 2.
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FIGURE 1 Scatter plot for the average CO™ level
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TABLE 1

level level
Year (in ppm) Year (in ppm)

1980 338.7 1992 356.4
1982 341.1 1994 358.9
1984 344.4 1996 362.6
1986 347.2 1998 366.6
1988 351.5 2000 369.4
1990 354.2 2002 372.9
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Although our model fits the data reasonably well, it gives values higher than most
of the actual levels. A better linear model is obtained by a procedure from sta-
tistics called linear regression. If we use a graphing calculator, we enter the data
from Table 1 into the data editor and choose the linear regression command. (With
Maple we use the fit[leastsquare] command in the stats package; with Mathematica
we use the Fit command.) The machine gives the slope and y-intercept of the regres-
sion line as

So our least squares model for the level is

In Figure 3 we graph the regression line as well as the data points. Comparing
with Figure 2, we see that it gives a better fit than our previous linear model.

■

EXAMPLE B Use the linear model given by Equation 2 to estimate the average
level for 1987 and to predict the level for the year 2010. According to this

model, when will the level exceed 400 parts per million?

SOLUTION Using Equation 2 with t � 1987, we estimate that the average level
in 1987 was

This is an example of interpolation because we have estimated a value between
observed values. (In fact, the Mauna Loa Observatory reported that the average 
level in 1987 was 348.93 ppm, so our estimate is quite accurate.)

With , we get

So we predict that the average level in the year 2010 will be 384.8 ppm. This 
is an example of extrapolation because we have predicted a value outside the region
of observations. Consequently, we are far less certain about the accuracy of our
prediction.

Using Equation 2, we see that the level exceeds 400 ppm when

1.55192t � 2734.55 � 400

CO2

CO2

C�2010� � �1.55192��2010� � 2734.55 � 384.81

t � 2010

CO2

C�1987� � �1.55192��1987� � 2734.55 � 349.12
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FIGURE 3
The regression line

C � 1.55192t � 2734.552
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■ A computer or graphing calculator
finds the regression line by the method
of least squares, which is to minimize
the sum of the squares of the vertical
distances between the data points and
the line.
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Solving this inequality, we get

We therefore predict that the level will exceed 400 ppm by the year 2019. 
This prediction is somewhat risky because it involves a time quite remote from our
observations. ■

EXAMPLE C A ball is dropped from the upper observation deck of the CN Tower,
450 m above the ground, and its height h above the ground is recorded at 1-second
intervals in Table 2. Find a model to fit the data and use the model to predict the
time at which the ball hits the ground.

SOLUTION We draw a scatter plot of the data in Figure 4 and observe that a linear
model is inappropriate. But it looks as if the data points might lie on a parabola, so
we try a quadratic model instead. Using a graphing calculator or computer algebra
system (which uses the least squares method), we obtain the following quadratic
model:

In Figure 5 we plot the graph of Equation 3 together with the data points and see
that the quadratic model gives a very good fit.

The ball hits the ground when , so we solve the quadratic equation

The quadratic formula gives

The positive root is , so we predict that the ball will hit the ground after
about 9.7 seconds. ■

EXAMPLE D Sketch the graph of the function .

SOLUTION Completing the square, we write the equation of the graph as

y � x 2 � 6x � 10 � �x � 3�2 � 1

f (x) � x 2 � 6x � 10

t � 9.67

t �
�0.96 � s�0.96�2 � 4��4.90��449.36�

2��4.90�

�4.90t 2 � 0.96t � 449.36 � 0

h � 0

FIGURE 5
Quadratic model for a falling ball
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TABLE 2

Time Height
(seconds) (meters)

0 450
1 445
2 431
3 408
4 375
5 332
6 279
7 216
8 143
9 61
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This means we obtain the desired graph by starting with the parabola and
shifting 3 units to the left and then 1 unit upward (see Figure 6).

■

EXAMPLE E Sketch the graph of the function .

SOLUTION We obtain the graph of from that of by compress-
ing horizontally by a factor of 2 (see Figures 7 and 8). Thus, whereas the period of

is , the period of is .

■

EXAMPLE F Figure 9 shows graphs of the number of hours of daylight as functions 
of the time of the year at several latitudes. Given that Philadelphia is located at
approximately latitude, find a function that models the length of daylight at
Philadelphia.

FIGURE 9
Graph of the length of daylight

from March 21 through December 21
at various latitudes
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SOLUTION Notice that each curve resembles a shifted and stretched sine function.
By looking at the blue curve we see that, at the latitude of Philadelphia, daylight
lasts about 14.8 hours on June 21 and 9.2 hours on December 21, so the amplitude
of the curve (the factor by which we have to stretch the sine curve vertically) is

.
By what factor do we need to stretch the sine curve horizontally if we measure

the time t in days? Because there are about 365 days in a year, the period of our
model should be 365. But the period of is , so the horizontal stretching
factor is .

We also notice that the curve begins its cycle on March 21, the 80th day of the
year, so we have to shift the curve 80 units to the right. In addition, we shift it
12 units upward. Therefore, we model the length of daylight in Philadelphia on the
t th day of the year by the function

■

EXAMPLE G If and , find the functions , , , 
and .

SOLUTION The domain of is . The domain of 
consists of all numbers such that , that is, . Taking square roots
of both sides, we get , or , so the domain of is the interval

. The intersection of the domains of and is

Thus, according to the definitions, we have

Notice that the domain of is the interval ; we have to exclude 
because . ■

EXAMPLE H Find if , and .

SOLUTION

■ � f ��x � 3�10 � �
�x � 3�10

�x � 3�10 � 1

 � f � t � h��x� � f �t�h�x��� � f �t�x � 3��

h�x� � x � 3f �x� � x��x � 1�, t�x� � x 10f � t � h

t�2� � 0
x � 2�0, 2�f�t

 �  f

t
��x� �

sx

s4 � x 2
� 	 x

4 � x 2  0 � x 	 2

 � ft��x� � sx s4 � x 2 � s4x � x 3 0 � x � 2

 � f � t��x� � sx � s4 � x 2  0 � x � 2

 � f � t��x� � sx � s4 � x 2  0 � x � 2

�0, 
� � ��2, 2
 � �0, 2


tf��2, 2

t�2 � x � 2� x � � 2

x 2 � 44 � x 2 � 0x
t�x� � s4 � x 2�0, 
�f �x� � sx

f�t

ftf � tf � tt�x� � s4 � x 2f �x� � sx

L�t� � 12 � 2.8 sin� 2�

365
�t � 80�


c � 2��365
2�y � sin t

1
2 �14.8 � 9.2� � 2.8
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■ Another way to solve 

_2 2

- -+

�2 � x��2 � x� � 0

4 � x 2 � 0:
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