1.4 CALCULATING LIMITS

x

EXAMPLE A If

 $f(x) = \begin{cases} \sqrt{x-4} & \text{if } x > 4\\ 8-2x & \text{if } x < 4 \end{cases}$

determine whether $\lim_{x\to 4} f(x)$ exists.

SOLUTION Since
$$f(x) = \sqrt{x - 4}$$
 for $x > 4$, we have

$$\lim_{x \to 4^+} f(x) = \lim_{x \to 4^+} \sqrt{x - 4} = \sqrt{4 - 4} = 0$$

Since f(x) = 8 - 2x for x < 4, we have

$$\lim_{x \to 4^{-}} f(x) = \lim_{x \to 4^{-}} (8 - 2x) = 8 - 2 \cdot 4 = 0$$

The right- and left-hand limits are equal. Thus, the limit exists and

$$\lim_{x \to 4} f(x) = 0$$

4

0

The graph of f is shown in Figure 1.