
DIFFERENTIAL EQUATIONS

EXAMPLE A Solve the initial-value problem , , .

SOLUTION We write the differential equation as

Therefore

where is a constant. To determine we put and in this
equation:

The solution of the initial-value problem is

Figure 1 shows the family of solutions for several values of (equilateral
hyperbolas) and, in particular, the solution that satisfies [the hyperbola that
passes through the point . ■

EXAMPLE B Solve and graph the solution.

SOLUTION At first glance this does not look like a separable equation, but notice
that it is possible to factor the right side as the product of a function of and a func-
tion of as follows:

Putting and , we get , so
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To graph this equation we notice that it is equivalent to

provided that . Solving these inequalities using the quadratic
formula, we find that

This enables us to graph the solution in Figure 2. ■
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