Thomson Brooks-Cole copyright 2007

SECTION 8.7 TAYLOR AND MACLAURIN SERIES = |

8.7 | TAYLOR AND MACLAURIN SERIES

= We have obtained two different series
representations for sin x, the Maclaurin
series in Example 4 and the Taylor
series in Example A. It is best to use the
Maclaurin series for values of x near 0
and the Taylor series for x near /3.
Notice that the third Taylor polynomial
Ts in Figure 1 is a good approximation
to sin x near 77/3 but not as good near
0. Compare it with the third Maclaurin
polynomial 75 in Figure 2, where the
opposite is true.

EXAMPLE A Represent f(x) = sin x as the sum of its Taylor series centered at /3.

SOLUTION Arranging our work in columns, we have

f(x) = sin x

f'(x) = cos x

£7(x) = —sin x f<%> - —g
fw(x) = —COS X f’”<%> — _%

and this pattern repeats indefinitely. Therefore, the Taylor series at /3 is
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The proof that this series represents sin x for all x is very similar to that in Example 4.
[Just replace x by x — 7/3 in (15).] We can write the series in sigma notation if we
separate the terms that contain V3¢
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A7 Play the Video| K EXAMPLE B Expand m as a power series.
X

(1 + x)?

SOLUTION We use the binomial series with kK = —2. The binomial coefficient is

<—2> _()ENA (2 —n k)
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and so, when | x| < 1,
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