EXAMPLE A Investigate the family of curves with parametric equations

 $x = a + \cos t$ $y = a \tan t + \sin t$

What do these curves have in common? How does the shape change as *a* increases?

SOLUTION We use a graphing device to produce the graphs for the cases a = -2, -1, -0.5, -0.2, 0, 0.5, 1, and 2 shown in Figure 1. Notice that all of these curves (except the case a = 0) have two branches, and both branches approach the vertical asymptote x = a as x approaches a from the left or right.

FIGURE 1 Members of the family $x = a + \cos t$, $y = a \tan t + \sin t$, all graphed in the viewing rectangle [-4, 4] by [-4, 4]

When a < -1, both branches are smooth; but when *a* reaches -1, the right branch acquires a sharp point, called a *cusp*. For *a* between -1 and 0 the cusp turns into a loop, which becomes larger as *a* approaches 0. When a = 0, both branches come together and form a circle (see Example 2). For *a* between 0 and 1, the left branch has a loop, which shrinks to become a cusp when a = 1. For a > 1, the branches become smooth again, and as *a* increases further, they become less curved. Notice that the curves with *a* positive are reflections about the *y*-axis of the corresponding curves with *a* negative.

These curves are called **conchoids of Nicomedes** after the ancient Greek scholar Nicomedes. He called them conchoids because the shape of their outer branches resembles that of a conch shell or mussel shell.