
Rainbows are created when raindrops scatter sunlight. They have fascinated mankind since
ancient times and have inspired attempts at scientific explanation since the time of Aristotle.
In this project we use the ideas of Descartes and Newton to explain the shape, location, and
colors of rainbows. 

1. The figure shows a ray of sunlight entering a spherical raindrop at . Some of the light is
reflected, but the line shows the path of the part that enters the drop. Notice that the
light is refracted toward the normal line and in fact Snell’s Law says that

, where is the angle of incidence, is the angle of refraction, and 
is the index of refraction for water. 

At some of the light passes through the drop and is refracted into the air, but the line
shows the part that is reflected. (The angle of incidence equals the angle of reflection.)

When the ray reaches , part of it is reflected, but for the time being we are more inter-
ested in the part that leaves the raindrop at . (Notice that it is refracted away from the
normal line.) The angle of deviation is the amount of clockwise rotation that the ray
has undergone during this three-stage process. Thus

Show that the minimum value of the deviation is and occurs when
.

The significance of the minimum deviation is that when we have ,
so . This means that many rays with become deviated by approxi-
mately the same amount. It is the concentration of rays coming from near the direction of
minimum deviation that creates the brightness of the primary rainbow. The following
figure shows that the angle of elevation from the observer up to the highest point on the
rainbow is . (This angle is called the rainbow angle.)

2. Problem 1 explains the location of the primary rainbow but how do we explain the colors?
Sunlight comprises a range of wavelengths, from the red range through orange, yellow,
green, blue, indigo, and violet. As Newton discovered in his prism experiments of 1666, the
index of refraction is different for each color. (The effect is called dispersion.) For red
light the refractive index is whereas for violet light it is . By
repeating the calculation of Problem 1 for these values of , show that the rainbow anglek

k � 1.3435k � 1.3318
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This project can be completed 
anytime after you have studied
Section 3.1 in the textbook.
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is about for the red bow and for the violet bow. So the rainbow really consists
of seven individual bows corresponding to the seven colors.

3. Perhaps you have seen a fainter secondary rainbow above the primary bow. That results
from the part of a ray that enters a raindrop and is refracted at , reflected twice (at and

), and refracted as it leaves the drop at . (See the figure at the left.) This time the devi-
ation angle is the total amount of counterclockwise rotation that the ray undergoes in
this four-stage process. Show that

and has a minimum value when

Taking , show that the minimum deviation is about and so the rainbow angle
for the secondary rainbow is about , as shown in the following figure.

4. Show that the colors in the secondary rainbow appear in the opposite order from those in
the primary rainbow.
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SOLUTIONS

1. From Snell’s Law, we have sinα = k sinβ ≈ 4
3 sinβ ⇔ β ≈ arcsin 3

4 sinα . We substitute this into
D(α) = π + 2α− 4β = π + 2α− 4 arcsin 3

4
sinα , and then differentiate to find the minimum:

D0(α) = 2− 4 1− 3
4 sinα

2 −1/2
3
4 cosα = 2− 3 cosα

1− 9
16
sin2 α

. This is 0 when 3 cosα

1− 9
16
sin2 α

= 2 ⇔

9
4
cos2 α = 1− 9

16
sin2 α ⇔ 9

4
cos2 α = 1− 9

16
1− cos2 α ⇔ 27

16
cos2 α = 7

16
⇔ cosα = 7

27
⇔

α = arccos 7
27
≈ 59.4◦, and so the local minimum isD(59.4◦) ≈ 2.4 radians ≈ 138◦.

To see that this is an absolute minimum, we check the endpoints, which in this case are α = 0 and α = π
2 :

D(0) = π radians = 180◦, andD π
2
≈ 166◦.

Another method: We first calculate dβ
dα
: sinα = 4

3
sinβ ⇔ cosα = 4

3
cosβ

dβ

dα
⇔ dβ

dα
=
3

4

cosα

cosβ
, so since

D0(α) = 2− 4 dβ
dα

= 0 ⇔ dβ

dα
=
1

2
, the minimum occurs when 3 cosα = 2cosβ. Now we square both sides

and substitute sinα = 4
3
sinβ, leading to the same result.

2. If we repeat Problem 1 with k in place of 4
3
, we get D(α) = π + 2α− 4 arcsin 1

k
sinα ⇒

D0(α) = 2− 4 cosα

k 1− [(sinα)/k]2
, which is 0 when 2 cosα

k
= 1− sinα

k

2

⇔

2 cosα

k

2

= 1− sinα

k

2

⇔ 4 cos2 α = k2 − sin2 α ⇔ 3 cos2 α = k2 − 1 ⇔

α = arccos
k2 − 1
3

. So for k ≈ 1.3318 (red light) the minimum occurs at α1 ≈ 1.038 radians, and so the
rainbow angle is about π −D(α1) ≈ 42.3◦. For k ≈ 1.3435 (violet light) the minimum occurs at
α2 ≈ 1.026 radians, and so the rainbow angle is about π −D(α2) ≈ 40.6◦.
Another method: As in Problem 1, we can instead findD0(α) in terms of dβ

dα
, and then substitute dβ

dα
=

cosα

k cosβ
.

3. At each reflection or refraction, the light is bent in a counterclockwise direction: the bend at A is α− β, the bend
at B is π − 2β, the bend at C is again π − 2β, and the bend at D is α− β. So the total bend is

D(α) = 2(α− β) + 2(π− 2β) = 2α− 6β+2π, as required. We substitute β = arcsin sinα

k
and differentiate,

to get D0(α) = 2− 6 cosα

k 1− [(sinα)/k]2
, which is 0 when 3 cosα

k
= 1− sinα

k

2

⇔

9 cos2 α = k2 − sin2 α ⇔
8 cos2 α = k2 − 1 ⇔ cosα = 1

8
(k2 − 1). If k = 4

3
, then the minimum occurs at

α1 = arccos
(4/3)2 − 1

8
≈ 1.254 radians. Thus, the minimum

counterclockwise rotation isD(α1) ≈ 231◦, which is equivalent to a
clockwise rotation of 360◦ − 231◦ = 129◦ (see the figure). So the rainbow
angle for the secondary rainbow is about 180◦ − 129◦ = 51◦, as required.
In general, the rainbow angle for the secondary rainbow is

π − [2π −D(α)] = D(α)− π.
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4 ■ APPLIED PROJECT THE CALCULUS OF RAINBOWS

4. In the primary rainbow, the rainbow angle gets smaller as k gets larger, as we found in Problem 2, so the colors

appear from top to bottom in order of increasing k. But in the secondary rainbow, the rainbow angle gets larger as k

gets larger. To see this, we find the minimum deviations for red light and for violet light in the secondary

rainbow. For k ≈ 1.3318 (red light) the minimum occurs at α1 ≈ arccos 1.33182 − 1
8

≈ 1.255 radians, and so

the rainbow angle is D(α1)− π ≈ 50.6◦. For k ≈ 1.3435 (violet light) the minimum occurs at

α2 ≈ arccos 1.34352 − 1
8

≈ 1.248 radians, and so the rainbow angle isD(α2)− π ≈ 53.6◦. Consequently, the

rainbow angle is larger for colors with higher indices of refraction, and the colors appear from bottom to top in order

of increasing k, the reverse of their order in the primary rainbow.

Note that our calculations above also explain why the secondary rainbow is more spread out than the primary

rainbow: in the primary rainbow, the difference between rainbow angles for red and violet light is about 1.7◦,

whereas in the secondary rainbow it is about 3◦.
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