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4.3 | DERIVATIVES AND THE SHAPES OF GRAPHS

FIGURE 1

In Module 4.3 you can practice
using graphical information
about /' to determine the
shape of the graph of f.

EXAMPLE A Figure 1 shows a population graph for Cyprian honeybees raised in an
apiary. How does the rate of population increase change over time? When is this rate
highest? Over what intervals is P concave upward or concave downward?
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SOLUTION By looking at the slope of the curve as ¢ increases, we see that the rate
of increase of the population is initially very small, then gets larger until it reaches a
maximum at about + = 12 weeks, and decreases as the population begins to level
off. As the population approaches its maximum value of about 75,000 (called the
carrying capacity), the rate of increase, P'(t), approaches 0. The curve appears to be
concave upward on (0, 12) and concave downward on (12, 18). |

EXAMPLE B Use the first and second derivatives of f(x) = e'/*, together with
asymptotes, to sketch its graph.

SOLUTION Notice that the domain of f is {x|x # 0}, so we check for vertical
asymptotes by computing the left and right limits as x — 0. As x — 0", we know
that t = 1/x — =, so

lim e'* = lime' = o
0t pes

and this shows that x = 0 is a vertical asymptote. As x — 0, we have
t=1/x—> —=®, s0

lim ¢ = lim ¢' =0

x—0" t—>—x

As x — *o, we have 1/x — 0 and so

lim e/*=¢" =1

x—to

This shows that y = 1 is a horizontal asymptote.
Now let’s compute the derivative. The Chain Rule gives

el/x

flx) = ——;
X
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Since ¢/* > 0 and x2 > 0 for all x # 0, we have f'(x) < 0 for all x # 0. Thus, f is
decreasing on (—o°, 0) and on (0, ). There is no critical number, so the function has
no maximum or minimum. The second derivative is

P = — x2eV¥(—1/x?) — e"*(2x) _ e"(2x + 1)

X X

Since e¢'* > 0 and x* > 0, we have f"(x) > 0 when x > —3 (x # 0) and f"(x) < 0
when x < —3. So the curve is concave downward on (—OO, —%) and concave upward
on (—3,0) and on (0, ). The inflection point is (—3, 7).

To sketch the graph of f we first draw the horizontal asymptote y = 1 (as a
dashed line), together with the parts of the curve near the asymptotes in a prelimi-
nary sketch [Figure 2(a)]. These parts reflect the information concerning limits and
the fact that f is decreasing on both (—o°, 0) and (0, «). Notice that we have indi-
cated that f(x) — 0 as x — 0~ even though f(0) does not exist. In Figure 2(b) we
finish the sketch by incorporating the information concerning concavity and the
inflection point. In Figure 2(c) we check our work with a graphing device.

4
inflection
point \\
OT X 0
(b) Finished sketch (c) Computer confirmation

EXAMPLE C A population of honeybees raised in an apiary started with 50 bees at
time ¢ = 0 and was modeled by the function

75,200

P(t) = ——— s
O = T3 15030 0

where ¢ is the time in weeks, 0 < ¢ < 25. Use a graph to estimate the time at which
the bee population was growing fastest. Then use derivatives to give a more accurate
estimate.

SOLUTION The population grows fastest when the population curve y = P(¢) has
the steepest tangent line. From the graph of P in Figure 3, we estimate that the
steepest tangent occurs when ¢ = 12, so the bee population was growing most rap-
idly after about 12 weeks.

For a better estimate we calculate the derivative P’(¢), which is the rate of
increase of the bee population:

67,046,785.92¢ 3%

P'(t) = — (1 + 1503¢ 0221y

We graph P’ in Figure 4 and observe that P’ has its maximum value when ¢ = 12.3.
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To get a still better estimate we note that f has its maximum value when f’
changes from increasing to decreasing. This happens when f changes from concave
upward to concave downward, that is, when f has an inflection point. So we ask a
CAS to compute the second derivative:

119555093 144¢ 156 39772153 0%

P’/ ~ _
g (1 + 1503¢029321)3 (1 + 1503¢ 0393212

We could plot this function to see where it changes from positive to negative, but
instead let’s have the CAS solve the equation P"(¢) = 0. It gives the answer
t = 12.3318. |

EXAMPLE D Investigate the family of functions given by f(x) = cx + sin x. What
features do the members of this family have in common? How do they differ?

SOLUTION The derivative is f'(x) = ¢ + cos x. If ¢ > 1, then f’(x) > 0 for all x
(since cos x = —1), so f is always increasing. If ¢ = 1, then f'(x) = 0 when x is an
odd multiple of 7, but f just has horizontal tangents there and is still an increasing
function. Similarly, if ¢ =< —1, then f is always decreasing. If —1 < ¢ < 1, then the
equation ¢ + cos x = 0 has infinitely many solutions [x = 2n7 * cos™'(—c)] and f
has infinitely many minima and maxima.

The second derivative is f”(x) = —sin x, which is negative when 0 < x < 7 and,
in general, when 2nm < x < (2n + 1), where n is any integer. Thus, all members
of the family are concave downward on (0, ), (27, 37), ... and concave upward
on (1, 2), (3, 41r), . ... This is illustrated by several members of the family in
Figure 5.
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