A CATALOG OF ESSENTIAL FUNCTIONS

A Click here for answers.

1.2

1–2 • Match each equation with its graph. Explain your choices. (Don't use a computer or graphing calculator.)

3–18 Graph each function, not by plotting points, but by starting with the graph of one of the standard functions given in Section 1.2, and then applying the appropriate transformations.

3. $y = -1/x$	4. $y = 2 - \cos x$
5. $y = \tan 2x$	6. $y = \sqrt[3]{x+2}$
7. $y = \cos(x/2)$	8. $y = x^2 + 2x + 3$
9. $y = \frac{1}{x-3}$	10. $y = -2 \sin \pi x$
$II. \ y = \frac{1}{3}\sin\left(x - \frac{\pi}{6}\right)$	12. $y = 2 + \frac{1}{x+1}$
13. $y = 1 + 2x - x^2$	14. $y = \frac{1}{2}\sqrt{x+4} - 3$
15. $y = 2 - \sqrt{x+1}$	16. $y = (x - 1)^3 + 2$
17. $y = x - 1 $	18. $y = \cos x $

19–25 Find the functions $f \circ g$, $g \circ f$, $f \circ f$, and $g \circ g$ and their domains.

19.
$$f(x) = \sqrt{x-1}, \quad g(x) = x^2$$

S Click here for solutions.

20.	$f(x) = 1/x, g(x) = x^3 + 2x$
21. ე	$f(x) = \frac{1}{x-1}, g(x) = \frac{x-1}{x+1}$
22.	$f(x) = \sqrt{x^2 - 1}, g(x) = \sqrt{1 - x}$
23.	$f(x) = \sqrt[3]{x}, g(x) = 1 - \sqrt{x}$
24.	$f(x) = \frac{x+2}{2x+1}, g(x) = \frac{x}{x-2}$
25.	$f(x) = \frac{1}{\sqrt{x}}$ $g(x) = x^2 - 4x$
•	
26–2	9 Find $f \circ g \circ h$.
26.	$f(x) = x - 1$, $g(x) = \sqrt{x}$, $h(x) = x - 1$
27.	$f(x) = \frac{1}{x}, g(x) = x^3, h(x) = x^2 + 2$
28 . ၂	$f(x) = x^4 + 1$, $g(x) = x - 5$, $h(x) = \sqrt{x}$
29.	$f(x) = \sqrt{x}, g(x) = \frac{x}{x-1}, h(x) = \sqrt[3]{x}$
•	
30-3	31 • Express the function in the form $f \circ g$.

- **32.** Suppose we are given the graphs of *f* and *g*, as in the figure, and we want to find the point on the graph of $h = f \circ g$ that corresponds to x = a. We start at the point (a, 0) and draw a vertical line that intersects the graph of *g* at the point *P*. Then we draw a horizontal line from *P* to the point *Q* on the line y = x.
 - (a) What are the coordinates of P and of Q?
 - (b) If we now draw a vertical line from *Q* to the point *R* on the graph of *f*, what are the coordinates of *R*?
 - (c) If we now draw a horizontal line from *R* to the point *S* on the line x = a, show that *S* lies on the graph of *h*.
 - (d) By carrying out the construction of the path *PQRS* for several values of *a*, sketch the graph of *h*.

2 • SECTION I.2 A CATALOG OF ESSENTIAL FUNCTIONS

33. If *f* is the function whose graph is shown, use the method of Problem 32 to sketch the graph of *f* ∘ *f*. Start by using the construction for *a* = 0, 0.5, 1, 1.5, and 2. Sketch a rough graph for 0 ≤ *x* ≤ 2. Then use the result of Exercise 66 in Section 1.2 to complete the graph.

1.2 ANSWERS

S Click here for solutions.

19. $(f \circ g)(x) = f(x^2) = \sqrt{x^2 - 1}, (-\infty, -1] \cup [1, \infty)$ $(g \circ f)(x) = x - 1, [1, \infty)$ $(f \circ f)(x) = \sqrt{\sqrt{x - 1 - 1}}, [2, \infty)$ $(g \circ g)(x) = x^4, (-\infty, \infty)$ **20.** $(f \circ g)(x) = 1/(x^3 + 2x), \{x \mid x \neq 0\}$ $(g \circ f)(x) = 1/x^3 + 2/x, \{x \mid x \neq 0\}$ $(f \circ f)(x) = x, \{x \mid x \neq 0\}$ $(g \circ g)(x) = x^9 + 6x^7 + 12x^5 + 10x^3 + 4x, (-\infty, \infty)$

21.
$$(f \circ g)(x) = \frac{-x-1}{2}, \{x \mid x \neq -1\}$$

 $(g \circ f)(x) = \frac{2-x}{x}, \{x \mid x \neq 0, 1\}$
 $(f \circ f)(x) = \frac{x-1}{2-x}, \{x \mid x \neq 1, 2\}$
 $(g \circ g)(x) = -\frac{1}{x}, \{x \mid x \neq 0, -1\}$
22. $(f \circ g)(x) = \sqrt{-x}, (-\infty, 0]$
 $(g \circ f)(x) = \sqrt{1-\sqrt{x^2-1}}, [-\sqrt{2}, -1] \cup [1, \sqrt{2}]$
 $(f \circ f)(x) = \sqrt{x^2-2}, (-\infty, -\sqrt{2}] \cup [\sqrt{2}, \infty)$
 $(g \circ g)(x) = \sqrt{1-\sqrt{1-x}}, [0, 1]$
23. $(f \circ g)(x) = \sqrt[3]{1-\sqrt{x}}, [0, \infty)$
 $(f \circ f)(x) = \sqrt[9]{x}, (-\infty, \infty)$
 $(g \circ f)(x) = 1 - \sqrt[6]{x}, [0, \infty)$
 $(f \circ f)(x) = \sqrt[9]{x}, (-\infty, \infty)$
 $(g \circ g)(x) = 1 - \sqrt{1-\sqrt{x}}, [0, 1]$
24. $(f \circ g)(x) = \frac{3x-4}{3x-2}, \{x \mid x \neq 2, \frac{2}{3}\}$
 $(g \circ f)(x) = \frac{-x-2}{3x}, \{x \mid x \neq 0, -\frac{1}{2}\}$
 $(f \circ f)(x) = \frac{5x+4}{4x+5}, \{x \mid x \neq -\frac{1}{2}, -\frac{5}{4}\}$
 $(g \circ g)(x) = \frac{x}{4-x}, \{x \mid x \neq 2, 4\}$
25. $(f \circ g)(x) = 1/\sqrt{x^2-4x}, (-\infty, 0) \cup (4, \infty)$
 $(g \circ f)(x) = \frac{1}{x} - \frac{4}{\sqrt{x}}, (0, \infty)$
 $(f \circ f)(x) = x^{1/4}, (0, \infty)$
 $(g \circ g)(x) = x^4 - 8x^3 + 12x^2 + 16x, (-\infty, \infty)$

26.
$$(f \circ g \circ h)(x) = \sqrt{x - 1} - 1$$

27. $(f \circ g \circ h)(x) = 1/(x^2 + 2)^3$
28. $(f \circ g \circ h)(x) = (\sqrt{x} - 5)^4 + 1$
29. $(f \circ g \circ h)(x) = \sqrt{\frac{3\sqrt{x}}{\sqrt{x} - 1}}$
30. $g(x) = x - 9, f(x) = x^5$
31. $g(t) = \pi t, f(t) = \tan t$
32. (a) $P(a, g(a)), Q(g(a), g(a))$ (b) $(g(a), f(g(a)))$
(d) $y = \int_{1}^{1} \int_{$

SOLUTIONS

🖪 Click here for exercises.

1.2

- (a) The graph of y = x⁸ must be the graph labelled g, because g is the graph of a power function of even degree, as shown in Figure 7.
 - (b) The graph of y = log₈ x must be the graph labelled h, because h is a graph similar to the graphs of logarithmic functions shown in Figure 14.
 - (c) The graph of $y = 2 + \sin 2x$ must be the graph labelled f, because f is the graph of a periodic function.
- (a) The graph of y = x⁷ must be the graph labelled G, because G passes through the origin.
 - (b) The graph of y = 7^x must be the graph labelled F, because F appears to be an exponential function with y-intercept 1, increasing, and horizontal asymptote y = 0.
 - (c) The graph of y = -1/x must be the graph labelled g, because g has a vertical asymptote at x = 0.
 - (d) The graph of $y = \sqrt[4]{x-2}$ must be the graph labelled f, because f has domain $[2, \infty)$.
- **3.** y = -1/x: Start with the graph of y = 1/x and reflect about the *x*-axis.

4. $y = 2 - \cos x$: Start with the graph of $y = \cos x$, reflect about the x-axis, and then shift 2 units upward.

5. $y = \tan 2x$: Start with the graph of $y = \tan x$ and compress horizontally by a factor of 2.

6. $y = \sqrt[3]{x+2}$: Start with the graph of $y = \sqrt[3]{x}$ and shift 2 units to the left.

7. $y = \cos(x/2)$: Start with the graph of $y = \cos x$ and stretch horizontally by a factor of 2.

8. $y = x^2 + 2x + 3 = (x^2 + 2x + 1) + 2 = (x + 1)^2 + 2$: Start with the graph of $y = x^2$, shift 1 unit left, and then shift 2 units upward.

9. $y = \frac{1}{x-3}$: Start with the graph of y = 1/x and shift 3 units to the right.

10. $y = -2 \sin \pi x$: Start with the graph of $y = \sin x$, compress horizontally by a factor of π , stretch vertically by a factor of 2, and then reflect about the *x*-axis.

11. $y = \frac{1}{3} \sin \left(x - \frac{\pi}{6}\right)$: Start with the graph of $y = \sin x$, shift $\frac{\pi}{6}$ units to the right, and then compress vertically by a factor of 3.

12. $y = 2 + \frac{1}{x+1}$: Start with the graph of y = 1/x, shift 1 unit left, and then shift 2 units upward.

13. $y = 1 + 2x - x^2 = -x^2 + 2x + 1 = -(x^2 - 2x + 1) + 1 + 1 = -(x - 1)^2 + 2$: Start with the graph of $y = x^2$, shift 1 unit right, reflect about the *x*-axis, and then shift 2 units upward.

14. $y = \frac{1}{2}\sqrt{x+4} - 3$: Start with the graph of $y = \sqrt{x}$, shift 4 units to the left and compress vertically by a factor of 2, and then shift 3 units downward.

15. $y = 2 - \sqrt{x+1}$: Start with the graph of $y = \sqrt{x}$, reflect about the *x*-axis, shift 1 unit to the left, and then shift 2 units upward.

16. $y = (x - 1)^3 + 2$: Start with the graph of $y = x^3$, shift 1 unit to the right, and then shift 2 units upward.

17. y = ||x| - 1|: Start with the graph of y = |x|, shift 1 unit downward, and then reflect the part of the graph from

18. $y = |\cos x|$: Start with the graph of $y = \cos x$ and reflect the parts of the graph that lie below the *x*-axis about the *x*-axis.

$$\begin{aligned} & \text{19. } f\left(x\right) = \sqrt{x-1}, \, D = [1,\infty); \, g\left(x\right) = x^2, \, D = \mathbb{R}. \\ & \left(f \circ g\right)(x) = f\left(g\left(x\right)\right) = f\left(x^2\right) = \sqrt{x^2 - 1}, \\ & D = \{x \in \mathbb{R} \mid g\left(x\right) \in [1,\infty)\} = (-\infty, -1] \cup [1,\infty). \\ & \left(g \circ f\right)(x) = g\left(f\left(x\right)\right) = g\left(\sqrt{x-1}\right) \\ & = \left(\sqrt{x-1}\right)^2 = x - 1, \, D = [1,\infty). \\ & \left(f \circ f\right)(x) = f\left(f\left(x\right)\right) = f\left(\sqrt{x-1}\right) = \sqrt{\sqrt{x-1} - 1}, \\ & D = \left\{x \in [1,\infty) \mid \sqrt{x-1} \ge 1\right\} = [2,\infty). \\ & \left(g \circ g\right)(x) = g\left(g\left(x\right)\right) = g\left(x^2\right) = \left(x^2\right)^2 = x^4, \, D = \mathbb{R}. \end{aligned}$$

20.
$$f(x) = 1/x, D = \{x \mid x \neq 0\}; g(x) = x^3 + 2x, D = \mathbb{R}$$

 $(f \circ g)(x) = f(g(x)) = f(x^3 + 2x) = 1/(x^3 + 2x),$
 $D = \{x \mid x^3 + 2x \neq 0\} = \{x \mid x \neq 0\}.$
 $(g \circ f)(x) = g(f(x)) = g(1/x) = 1/x^3 + 2/x,$
 $D = \{x \mid x \neq 0\}.$
 $(f \circ f)(x) = f(f(x)) = f(1/x) = \frac{1}{1/x} = x,$
 $D = \{x \mid x \neq 0\}.$
 $(g \circ g)(x) = g(g(x)) = g(x^3 + 2x)$
 $= (x^3 + 2x)^3 + 2(x^3 + 2x)$
 $= x^9 + 6x^7 + 12x^5 + 10x^3 + 4x, D = \mathbb{R}.$

21.
$$f(x) = \frac{1}{x-1}, D = \{x \mid x \neq 1\}; g(x) = \frac{x-1}{x+1}, D = \{x \mid x \neq -1\}.$$

 $(f \circ g)(x) = f\left(\frac{x-1}{x+1}\right) = \left(\frac{x-1}{x+1} - 1\right)^{-1}$
 $= \left(\frac{-2}{x+1}\right)^{-1} = \frac{-x-1}{2}, D = \{x \mid x \neq -1\}.$

$$(g \circ f)(x) = g\left(\frac{1}{x-1}\right) = \frac{1/(x-1)-1}{1/(x-1)+1} = \frac{2-x}{x},$$

$$D = \{x \mid x \neq 0, 1\}.$$

$$(f \circ f)(x) = f\left(\frac{1}{x-1}\right) = \frac{1}{1/(x-1)-1} = \frac{x-1}{2-x},$$

$$D = \{x \mid x \neq 1, 2\}.$$

$$(g \circ g)(x) = g\left(\frac{x-1}{x+1}\right) = \frac{(x-1)/(x+1)-1}{(x-1)/(x+1)+1} = -\frac{1}{x},$$

$$D = \{x \mid x \neq 0, -1\}.$$

22. $f(x) = \sqrt{x^2 - 1}, D = (-\infty, -1] \cup [1, \infty);$

$$g(x) = \sqrt{1-x}, D = (-\infty, 1].$$

$$(f \circ g)(x) = f(g(x)) = f(\sqrt{1-x})$$

$$= \sqrt{(\sqrt{1-x})^2 - 1} = \sqrt{-x}.$$

To find the domain of $(f \circ g)(x)$, we must find the values of x that are in the domain of g such that g(x)is in the domain of f. In symbols, we have $D = \{ x \in (-\infty, 1] \mid \sqrt{1 - x} \in (-\infty, -1] \cup [1, \infty) \}.$ First, we concentrate on the requirement that $\sqrt{1-x} \in (-\infty, -1] \cup [1, \infty)$. Because $\sqrt{1-x} \ge 0$, $\sqrt{1-x}$ is not in $(-\infty, -1]$. If $\sqrt{1-x}$ is in $[1, \infty)$, then we must have $\sqrt{1-x} \ge 1 \implies 1-x \ge 1 \implies x \le 0$. Combining the restrictions $x \leq 0$ and $x \in (-\infty, 1]$, we obtain $D = (-\infty, 0]$. $(g \circ f)(x) = g(f(x)) = g(\sqrt{x^2 - 1}) = \sqrt{1 - \sqrt{x^2 - 1}},$ $D = \{ x \in (-\infty, -1] \cup [1, \infty) \mid \sqrt{x^2 - 1} \in (-\infty, 1] \}.$ Now $\sqrt{x^2 - 1} \le 1 \implies x^2 - 1 \le 1 \implies x^2 \le 2 \implies$ $|x| \leq \sqrt{2} \Rightarrow -\sqrt{2} \leq x \leq \sqrt{2}$. Combining this restriction with $x \in (-\infty, -1] \cup [1, \infty)$, we obtain $D = \left[-\sqrt{2}, -1\right] \cup \left[1, \sqrt{2}\right].$ $(f \circ f)(x) = f(f(x)) = f(\sqrt{x^2 - 1})$ $=\sqrt{\left(\sqrt{x^2-1}
ight)^2-1}=\sqrt{x^2-2},$ $D = \{ x \in (-\infty, -1] \cup [1, \infty) \mid \sqrt{x^2 - 1} \in (-\infty, -1] \cup [1, \infty) \}.$ Now $\sqrt{x^2 - 1} \ge 1 \implies x^2 - 1 \ge 1 \implies x^2 \ge 2 \implies$ $|x| \ge \sqrt{2} \implies x \ge \sqrt{2}$ or $x \le -\sqrt{2}$. Combining this restriction with $x \in (-\infty, -1] \cup [1, \infty)$, we obtain $D = (-\infty, -\sqrt{2}] \cup [\sqrt{2}, \infty).$ $(g \circ g)(x) = g(g(x)) = g(\sqrt{1-x}) = \sqrt{1-\sqrt{1-x}},$ $D = \{x \in (-\infty, 1] \mid \sqrt{1 - x} \in (-\infty, 1]\}.$ Now $\sqrt{1-x} \le 1 \implies 1-x \le 1 \implies x \ge 0$. Combining this restriction with $x \in (-\infty, 1]$, we obtain D = [0, 1].

$$\begin{aligned} \textbf{23. } f(x) &= \sqrt[3]{x}, D = \mathbb{R}; \ g(x) = 1 - \sqrt{x}, D = [0, \infty). \\ (f \circ g)(x) &= f(g(x)) = f(1 - \sqrt{x}) = \sqrt[3]{1 - \sqrt{x}}, \\ D &= [0, \infty). \\ (g \circ g)(x) &= f(f(x)) = f(\sqrt[3]{x}) = x^{1/9}, D = \mathbb{R}. \\ (g \circ g)(x) &= g(g(x)) = g(1 - \sqrt{x}) = 1 - \sqrt{1 - \sqrt{x}}, \\ D &= \{x \ge 0 \mid 1 - \sqrt{x} \ge 0\} = [0, 1]. \end{aligned} \\ \begin{aligned} \textbf{24. } f(x) &= \frac{x + 2}{2x + 1}, D = \{x \mid x \ne -\frac{1}{2}\}; \ g(x) = \frac{x}{x - 2}, \\ D &= \{x \mid x \ne 2\}. \\ (f \circ g)(x) &= f(g(x)) \\ &= f\left(\frac{x}{x - 2}\right) = \frac{x/(x - 2) + 2}{2x/(x - 2) + 1} \\ &= \frac{3x - 4}{3x - 2}, D = \{x \mid x \ne 2, \frac{2}{3}\}. \\ (g \circ f)(x) &= g(f(x)) \\ &= g\left(\frac{x + 2}{2x + 1}\right) = \frac{(x + 2)/(2x + 1)}{(x + 2)/(2x + 1) - 2} \\ &= \frac{-x - 2}{3x}, D = \{x \mid x \ne 0, -\frac{1}{2}\}. \\ (f \circ f)(x) &= f(f(x)) \\ &= f\left(\frac{x + 2}{2x + 1}\right) = \frac{(x + 2)/(2x + 1) + 2}{2(x + 2)/(2x + 1) + 1} \\ &= \frac{5x + 4}{4x + 5}, D = \{x \mid x \ne -\frac{1}{2}, -\frac{5}{4}\}. \\ (g \circ g)(x) &= g(g(x)) \\ &= g\left(\frac{x}{x - 2}\right) = \frac{x/(x - 2)}{x/(x - 2) - 2} \\ &= \frac{x}{4 - x}, D = \{x \mid x \ne 2, 4\}. \end{aligned}$$

25.
$$f(x) = 1/\sqrt{x}, D = (0, \infty); g(x) = x^2 - 4x, D = \mathbb{R}.$$

 $(f \circ g)(x) = f(g(x)) = f(x^2 - 4x) = 1/\sqrt{x^2 - 4x},$
 $D = \{x \mid x^2 - 4x > 0\} = (-\infty, 0) \cup (4, \infty).$
 $(g \circ f)(x) = g(f(x)) = g\left(\frac{1}{\sqrt{x}}\right) = \frac{1}{x} - \frac{4}{\sqrt{x}},$
 $D = (0, \infty).$
 $(f \circ f)(x) = f(f(x)) = f\left(\frac{1}{\sqrt{x}}\right) = \frac{1}{\sqrt{1/\sqrt{x}}} = x^{1/4},$
 $D = (0, \infty).$
 $(g \circ g)(x) = g(g(x)) = g(x^2 - 4x)$
 $= (x^2 - 4x)^2 - 4(x^2 - 4x)$
 $= x^4 - 8x^3 + 12x^2 + 16x, D = \mathbb{R}.$
26. $(f \circ g \circ h)(x) = f(g(h(x))) = f(g(x - 1))$
 $= f(\sqrt{x - 1}) = \sqrt{x - 1} - 1$
27. $(f \circ g \circ h)(x) = f(g(h(x))) = f(g(x^2 + 2))$
 $= f\left((x^2 + 2)^3\right) = 1/(x^2 + 2)^3$

28.
$$(f \circ g \circ h)(x) = f(g(h(x))) = f(g(\sqrt{x}))$$

 $= f(\sqrt{x} - 5) = (\sqrt{x} - 5)^4 + 1$
29. $(f \circ g \circ h)(x) = f(g(h(x))) = f(g(\sqrt[3]{x}))$
 $= f\left(\frac{\sqrt[3]{x}}{\sqrt[3]{x} - 1}\right) = \sqrt{\frac{\sqrt[3]{x}}{\sqrt[3]{x} - 1}}$

- **30.** Let g(x) = x 9 and $f(x) = x^5$. Then $(f \circ g)(x) = (x 9)^5 = F(x)$.
- **31.** Let $g(t) = \pi t$ and $f(t) = \tan t$. Then $(f \circ g)(t) = \tan \pi t = u(t)$.
- **32.** (a) P = (a, g(a)) and Q = (g(a), g(a)) because Q has the same y-value as P and it is on the line y = x.
 - (b) The x-value of Q is g(a); this is also the x-value of R. The y-value of R is therefore f(x-value), that is, f(g(a)). Hence, R = (g(a), f(g(a))).
 - (c) The coordinates of S are (a, f(g(a))) or, equivalently, (a, h(a)).

33. We need to plot points only for the first quadrant since we can see that f is an odd function, and we then know that $f \circ f$ is an odd function, and hence, symmetric with respect to the origin.

