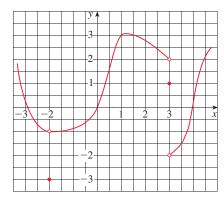
1.3 THE LIMIT OF A FUNCTION

A Click here for answers.

- **1.** For the function f whose graph is given, state the value of the given quantity, if it exists. If it does not exist, explain why.
 - (a) $\lim_{x \to 1} f(x)$
- (b) $\lim_{x \to 3^{-}} f(x)$
- (c) $\lim_{x \to 3^+} f(x)$

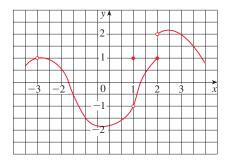
- (d) $\lim_{x \to a} f(x)$
- (e) f(3)
- (f) $\lim_{x \to -2^{-}} f(x)$

- (g) $\lim_{x \to -2^+} f(x)$
- (h) $\lim_{x \to -2} f(x)$
- (i) f(-2)

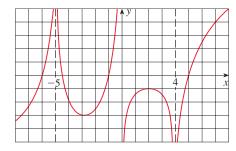


- **2.** For the function f whose graph is given, state the value of the limit, if it exists. If it does not exist, explain why.
 - (a) $\lim_{x \to a} f(x)$
- (b) $\lim_{x \to 1} f(x)$
- (c) $\lim_{x \to a} f(x)$

- (d) $\lim_{x \to 2^{-}} f(x)$
- (e) $\lim_{x \to 2^+} f(x)$
- (f) $\lim_{x \to 2} f(x)$

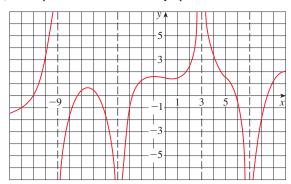


- **3.** For the function g whose graph is shown, state the following.
 - (a) $\lim_{x \to a} g(x)$
- (b) $\lim_{x\to 0^-} g(x)$
- (c) $\lim_{x \to 0^+} g(x)$
- (d) $\lim_{x \to 4} g(x)$
- (e) The equations of the vertical asymptotes.



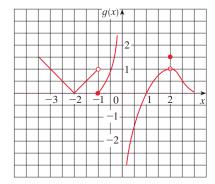
S Click here for solutions.

- **4.** For the function f whose graph is shown, state the following.
 - (a) $\lim_{x \to a} f(x)$
- (b) $\lim_{x \to 7} f(x)$
- (c) $\lim_{x \to -4} f(x)$
- (d) $\lim_{x \to 0^-} f(x)$
- (e) $\lim_{x \to 0^+} f(x)$
- (f) The equations of the vertical asymptotes



- 5. State the value of the limit, if it exists, from the given graph.
 - (a) $\lim_{x \to a} g(x)$
- (b) $\lim_{x\to 0} g(x)$
- (c) $\lim_{x \to 0} g(x)$

- (d) $\lim_{x \to -2} g(x)$
- (e) $\lim_{x \to -1^{-}} g(x)$
- (f) $\lim_{x \to -1} g(x)$



6–11 • Evaluate the function at the given numbers (correct to six decimal places). Use the results to guess the value of the limit, or explain why it does not exist.

6.
$$g(x) = \frac{x-1}{x^3-1}$$
;

x = 0.2, 0.4, 0.6, 0.8, 0.9, 0.99, 1.8, 1.6, 1.4, 1.2, 1.1, 1.01;

$$\lim_{x\to 1}\frac{x-1}{x^3-1}$$

7.
$$g(x) = \frac{1 - x^2}{x^2 + 3x - 10}$$
;

x = 3, 2.1, 2.01, 2.001, 2.0001, 2.00001;

$$\lim_{x \to 2^+} \frac{1 - x^2}{x^2 + 3x - 10}$$

9.
$$F(t) = \frac{\sqrt[3]{t} - 1}{\sqrt{t} - 1};$$

$$t = 1.5, 1.2, 1.1, 1.01, 1.001;$$

$$\lim_{t \to 1} \frac{\sqrt[3]{t} - 1}{\sqrt{t} - 1}$$

10.
$$f(x) = \frac{1 - \cos x}{x^2}$$
;
 $x = 1, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.01$;
 $\lim_{x \to 0} \frac{1 - \cos x}{x^2}$

II.
$$g(x) = \sqrt{x} \ln x;$$

 $x = 1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001;$
 $\lim_{x \to 0^+} \sqrt{x} \ln x$

12–13 ■ Determine the infinite limit.

12.
$$\lim_{x\to 3} \frac{1}{(x-3)^8}$$
 13. $\lim_{x\to 1^+} \frac{x+1}{x\sin \pi x}$

14. (a) By graphing the function $f(x) = (\tan 4x)/x$ and zooming in

- 14. (a) By graphing the function $f(x) = (\tan 4x)/x$ and zooming in toward the point where the graph crosses the y-axis, estimate the value of $\lim_{x\to 0} f(x)$.
 - (b) Check your answer in part (a) by evaluating f(x) for values of x that approach 0.
- 15. (a) Estimate the value of

$$\lim_{x\to 0}\frac{6^x-2^x}{x}$$

by graphing the function $y = (6^x - 2^x)/x$. State your answer correct to two decimal places.

(b) Check your answer in part (a) by evaluating f(x) for values of x that approach 0.

1.3 ANSWERS

E Click here for exercises.

- **I.** (a) 3 (b) 2 (c) -2 (d) Does not exist (e) 1 (f) -1 (g) -1 (h) -1 (i) -3
- **2.** (a) 2 (b) -1 (c) 1 (d) 1
- (e) 2 (f) Does not exist
- **3.** (a) 0 (b) ∞ (c) $-\infty$ (d) $-\infty$
- (e) x = -5, x = 0, x = 4
- **4.** (a) ∞ (b) $-\infty$ (c) $-\infty$ (d) ∞ (e) $-\infty$ (e) x = -9, x = -4, x = 3, x = 7
- **5.** (a) 0 (b) Does not exist (c) 1 (d) 0 (e) 1 (f) Does not exist

S Click here for solutions.

- **6.** 0.806452, 0.641026, 0.510204, 0.409836, 0.369004, 0.336689, 0.165563, 0.193798, 0.229358, 0.274725, 0.302115, 0.330022; $\frac{1}{3}$
- **7.** -1, -4.8028, -43.368, -429.08, -4286.2, -42858; $-\infty$
- **8.** -0.003884, -0.003941, -0.003988, -0.003994, -0.003999, -0.004124, -0.004061, -0.004012, -0.004006, -0.004001; -0.004
- **9.** 0.643905, 0.656488, 0.661358, 0.666114, 0.666611; $\frac{2}{3}$
- **10.** 0.459698, 0.489670, 0.493369, 0.496261, 0.498336, 0.499583, 0.499896, 0.499996; 0.5
- **11.** 0, -0.490129, -0.728141, -0.669866, -0.460517, -0.374648, -0.218442; 0
- **12.** ∞ **13.** $-\infty$ **14.** 4 **15.** (a) 1.10s

1.3

SOLUTIONS

E Click here for exercises.

1. (a)
$$\lim_{x \to a} f(x) = 3$$

(b)
$$\lim_{x \to a^{-}} f(x) = 2$$

(c)
$$\lim_{x \to 3^+} f(x) = -2$$

(d) $\lim_{x\to 3} f(x)$ doesn't exist because the limits in part (b) and part (c) are not equal.

(e)
$$f(3) = 1$$

$$\text{(f)} \lim_{x \to -2^-} f(x) = -1$$

$$(g) \lim_{x \to -2^+} f(x) = -1$$

(h)
$$\lim_{x \to -2} f(x) = -1$$

(i)
$$f(-2) = -3$$

2. (a)
$$\lim_{x \to a} f(x) = 2$$

(b)
$$\lim_{x \to 1} f(x) = -1$$

(c)
$$\lim_{x \to -3} f(x) = 1$$

$$\text{(d)} \lim_{x \to 2^{-}} f\left(x\right) = 1$$

$$(e) \lim_{x \to 2^{+}} f(x) = 2$$

(f) $\lim_{x\to 2} f(x)$ doesn't exist because the limits in part (d) and part (e) are not equal.

3. (a)
$$\lim_{x \to -6} g(x) = 0$$

(b)
$$\lim_{x\to 0^-} g(x) = \infty$$

(c)
$$\lim_{x\to 0^+} g(x) = -\infty$$

(d)
$$\lim_{x \to A} g(x) = -\infty$$

(e) The equations of the vertical asymptotes: x=-5, x=0, x=4

4. (a)
$$\lim_{x\to 3} f(x) = \infty$$

(b)
$$\lim_{x \to 7} f(x) = -\infty$$

(c)
$$\lim_{x \to -4} f(x) = -\infty$$

(d)
$$\lim_{x \to 0^-} f(x) = \infty$$

(e)
$$\lim_{x \to -0^+} f(x) = -\infty$$

(f) The equations of the vertical asymptotes: x = -9, x = -4, x = 3, x = 7

5. (a)
$$\lim_{x \to 1} g(x) = 0$$

(b) $\lim_{x\to 0} g(x)$ does not exist

(c)
$$\lim_{x \to 2} g(x) = 1$$

(d)
$$\lim_{x \to 0} g(x) = 0$$

(e)
$$\lim_{x \to -1^{-}} g(x) = 1$$

(f) $\lim_{x \to -1} g(x)$ does not exist

6. For
$$g(x) = \frac{x-1}{x^3-1}$$
:

x	$g\left(x\right)$
0.2	0.806452
0.4	0.641026
0.6	0.510204
0.8	0.409836
0.9	0.369004
0.99	0.336689

x	$g\left(x\right)$
1.8	0.165563
1.6	0.193798
1.4	0.229358
1.2	0.274725
1.1	0.302115
1.01	0.330022

It appears that $\lim_{x\to 1} \frac{x-1}{x^3-1} = 0.\overline{3} = \frac{1}{3}$.

7. For
$$g(x) = \frac{1 - x^2}{x^2 + 3x - 10}$$
:

x	$g\left(x\right)$
3	-1
2.1	-4.8028
2.01	-43.368
2.001	-429.08
2.0001	-4286.2
2.00001	-42858

It appears that $\lim_{x \to 2^+} \frac{1-x^2}{x^2+3x-10} = -\infty$.

8. For
$$F(x) = \frac{(1/\sqrt{x}) - \frac{1}{5}}{x - 25}$$
:

x	$F\left(x\right)$
26	-0.003884
25.5	-0.003941
25.1	-0.003988
25.05	-0.003994
25.01	-0.003999

x	$F\left(x\right)$
24	-0.004124
24.5	-0.004061
24.9	-0.004012
24.95	-0.004006
24.99	-0.004001

It appears that $\lim_{x\to 25} F(x) = -0.004$

9. For $F(t) = \frac{\sqrt[3]{t} - 1}{\sqrt{t} - 1}$:

t	$F\left(t\right)$
1.5	0.643905
1.2	0.656488
1.1	0.661358
1.01	0.666114
1.001	0.666611

It appears that $\lim_{t \to 1} \frac{\sqrt[3]{t} - 1}{\sqrt{t} - 1} = 0.\overline{6} = \frac{2}{3}.$

10. For $f(x) = \frac{1 - \cos x}{x^2}$:

x	f(x)
1	0.459698
0.5	0.489670
0.4	0.493369
0.3	0.496261
0.2	0.498336
0.1	0.499583
0.05	0.499896
0.01	0.499996

It appears that $\lim_{x\to 0} \frac{1-\cos x}{x^2} = 0.5$.

11. For $g(x) = \sqrt{x} \ln x$:

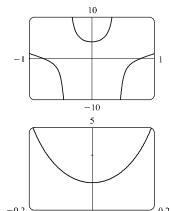
x	$g\left(x\right)$
1	0
0.5	-0.490129
0.1	-0.728141
0.05	-0.669866
0.01	-0.460517
0.005	-0.374648
0.001	-0.218442

As x gets smaller, $g\left(x\right)$ is increasing through negative values and slowly approaches 0. It appears that $\lim_{x\to0^+}\sqrt{x}\ln x=0$.

- 12. $\lim_{x\to 3} \frac{1}{(x-3)^8} = \infty$ since $(x-3)\to 0$ as $x\to 3$ and $\frac{1}{(x-3)^8}>0$.
- 13. $\lim_{x\to 1^+}\frac{x+1}{x\sin\pi x}=-\infty$ since $\frac{x+1}{x}\to 2$ as $x\to 1^+$ and $\sin\pi x\to 0$ through negative values as $x\to 1^+$.

14. (a) From the following graphs, it seems that

$$\lim_{x \to 0} \frac{\tan(4x)}{x} = 4.$$

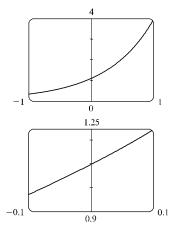


(b)

x	f(x)
±0.1	4.227932
± 0.01	4.002135
± 0.001	4.000021
± 0.0001	4.000000

15. (a) From the following graphs, it seems that

$$\lim_{x \to 0} \frac{6^x - 2^x}{x} \approx 1.10.$$



(b)

x	f(x)
-0.01	1.085052
-0.001	1.097248
-0.0001	1.098476
0.0001	1.098749
0.001	1.099978
0.01	1.112353