2.7 RELATED RATES

A Click here for answers.

- S Click here for solutions.
- **I.** If xy = 1 and dx/dt = 4, find dy/dt when x = 2.
- **2.** If $x^2 + 3xy + y^2 = 1$ and dy/dt = 2, find dx/dt when y = 1.
- **3.** A spherical snowball is melting in such a way that its volume is decreasing at a rate of 1 cm³/min. At what rate is the diameter decreasing when the diameter is 10 cm?

2.7

ANSWERS

Click here for exercises.

S Click here for solutions.

I. −1

2.
$$-\frac{4}{3}$$
 (if $x = 0$), $-\frac{14}{3}$ (if $x = -3$)

3. $1/(50\pi)$ cm/min

2.7 SOLUTIONS

[Click here for exercises.

1.
$$xy=1 \Rightarrow x\frac{dy}{dt} + y\frac{dx}{dt} = 0$$
. If $\frac{dx}{dt} = 4$ and $x=2$, then $y=\frac{1}{2}$, so $\frac{dy}{dt} = -\frac{y}{x}\frac{dx}{dt} = -\frac{1/2}{2}$ (4) $= -1$.

2.
$$x^2 + 3xy + y^2 = 1 \implies$$

$$2x\frac{dx}{dt} + 3y\frac{dx}{dt} + 3x\frac{dy}{dt} + 2y\frac{dy}{dt} = 0 \implies$$

$$\frac{dx}{dt} = -\frac{3x + 2y}{2x + 3y}\frac{dy}{dt}. \text{ When } y = 1, \text{ we have } x^2 + 3x = 0$$

$$\implies x = 0 \text{ or } -3. \text{ If } \frac{dy}{dt} = 2 \text{ and } x = 0 \text{ and } y = 1, \text{ then }$$

$$\frac{dx}{dt} = -\frac{3(0) + 2(1)}{2(0) + 3(1)}(2) = -\frac{4}{3}. \text{ If } x = -3, \text{ then }$$

$$\frac{dx}{dt} = -\frac{3(-3) + 2(1)}{2(-3) + 3(1)}(2) = -\frac{14}{3}.$$

3. If the radius is
$$r$$
 and the diameter x , then $V=\frac{4}{3}\pi r^3=\frac{\pi}{6}x^3$ $\Rightarrow -1=\frac{dV}{dt}=\frac{\pi}{2}x^2\frac{dx}{dt} \Rightarrow \frac{dx}{dt}=-\frac{2}{\pi x^2}$. When $x=10, \frac{dx}{dt}=-\frac{2}{\pi\left(100\right)}=-\frac{1}{50\pi}$. So the rate of decrease is $\frac{1}{50\pi}\frac{\mathrm{cm}}{\mathrm{min}}$.