APPLICATIONS TO PHYSICS AND ENGINEERING

A Click here for answers.

7.6

- 1. A particle is moved along the *x*-axis by a force that measures $5x^2 + 1$ pounds at a point *x* feet from the origin. Find the work done in moving the particle from the origin to a distance of 10 ft.
- **2.** A uniform cable hanging over the edge of a tall building is 40 ft long and weighs 60 lb. How much work is required to pull 10 ft of the cable to the top?

3–5 The end of a tank containing water is vertical and has the indicated shape. Explain how to approximate the hydrostatic force against the end of the tank by a Riemann sum. Then express the force as an integral and evaluate it.

S Click here for solutions.

6. The masses $m_1 = 4$ and $m_2 = 8$ are located at the points $P_1(-1, 2)$ and $P_2(2, 4)$. Find the moments M_x and M_y and the center of mass of the system.

7–8 Sketch the region bounded by the curves, and visually estimate the location of the centroid. Then find the exact coordinates of the centroid.

7.
$$y = x^2$$
, $y = 0$, $x = 2$
8. $y = \sqrt{x}$, $y = 0$, $x = 9$

9–10 Find the centroid of the region bounded by the curves.

9.
$$y = \sin 2x$$
, $y = 0$, $x = 0$, $x = \pi/2$

10.
$$y = \ln x$$
, $y = 0$, $x = e$

7.6 SOLUTIONS

E Click here for exercises.

1. By Equation 4,

$$W = \int_{a}^{b} f(x) dx$$

= $\int_{0}^{10} (5x^{2} + 1) dx$
= $\left[\frac{5}{3}x^{3} + x\right]_{0}^{10} = \frac{5000}{3} + 10$
= $\frac{5030}{3}$ ft-lb

2. Each part of the top 10 ft of cable is lifted a distance x_i^* equal to its distance from the top. The cable weighs $\frac{60}{40} = 1.5 \text{ lb/ft}$, so the work done on the *i*th subinterval is $\frac{3}{2}x_i^*\Delta x$. The remaining 30 ft of cable is lifted 10 ft. Thus,

$$W = \lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{3}{2} x_{i}^{*} \Delta x + \frac{3}{2} \cdot 10 \Delta x \right)$$
$$= \int_{0}^{10} \frac{3}{2} x \, dx + \int_{10}^{40} \frac{3}{2} \cdot 10 \, dx$$
$$= \left[\frac{3}{4} x^{2} \right]_{0}^{10} + [15x]_{10}^{40}$$
$$= \frac{3}{4} (100) + 15 (30)$$
$$= 75 + 450$$
$$= 525 \text{ ft-lb}$$

3. In the middle of the figure, draw a vertical *x*-axis that increases in the downward direction. The area of the *i*th rectangular strip is $2\sqrt{100 - (x_i^*)^2} \Delta x$ and the pressure on the strip is $\rho g (x_i^* - 5) [\rho = 1000 \text{ kg/m}^3$ and $g = 9.8 \text{ m/s}^2$]. Thus, the hydrostatic force on the *i*th strip is the product $\rho g (x_i^* - 5) 2\sqrt{100 - (x_i^*)^2} \Delta x$. $F = \lim_{n \to \infty} \sum_{i=1}^n \rho g (x_i^* - 5) 2\sqrt{100 - (x_i^*)^2} \Delta x$ $= \int_5^{10} \rho g (x - 5) \cdot 2\sqrt{100 - x^2} dx$ $= \rho g \int_5^{10} 2x\sqrt{100 - x^2} dx - 10\rho g \int_5^{10} \sqrt{100 - x^2} dx$ $\frac{30}{2} - \rho g \left[\frac{2}{3} (100 - x^2)^{3/2} \right]_5^{10}$ $- 10\rho g \left[\frac{1}{2}x\sqrt{100 - x^2} + 50 \sin^{-1} (x/10) \right]_5^{10}$ $= \frac{2}{3}\rho g (75)^{3/2} - 10\rho g \left[50 \left(\frac{\pi}{2}\right) - \frac{5}{2}\sqrt{75} - 50 \left(\frac{\pi}{6}\right) \right]$ $= 250\rho g \left(\frac{3\sqrt{3}}{2} - \frac{2\pi}{3} \right) \approx 1.23 \times 10^6 \text{ N}$ 4. Place an x-axis as in Problem 3. Using similar

triangles, $\frac{4 \text{ ft wide}}{6 \text{ ft high}} = \frac{w \text{ ft wide}}{x_i^* \text{ ft high}}$, so $w = \frac{4}{6}x_i^*$ and the area of the *i*th rectangular strip is $\frac{4}{6}x_i^*\Delta x$. The pressure on the strip is $\delta(x_i^* - 2) [\delta = \rho g = 62.5 \text{ lb/ft}^3]$ and the hydrostatic force is $\delta(x_i^* - 2) \frac{4}{6}x_i^*\Delta x$.

$$F = \lim_{n \to \infty} \sum_{i=1}^{n} \delta(x_{i}^{*} - 2) \frac{4}{6} x_{i}^{*} \Delta x = \int_{2}^{6} \delta(x - 2) \frac{2}{3} x \, dx$$
$$= \frac{2}{3} \delta \int_{2}^{6} (x^{2} - 2x) \, dx = \frac{2}{3} \delta \left[\frac{1}{3} x^{3} - x^{2}\right]_{2}^{6}$$
$$= \frac{2}{3} \delta \left[36 - \left(-\frac{4}{3}\right)\right] = \frac{224}{9} \delta \approx 1.56 \times 10^{3} \text{ lb}$$

5. This is like Problem 4, except that the area of the *i*th rectangular strip is $\frac{b}{h}x_i^*\Delta x$ and the pressure on the strip is δx_i^* .

$$F = \lim_{n \to \infty} \sum_{i=1}^{n} \rho g x_i^* \frac{b}{h} x_i^* \Delta x = \int_0^h \rho g x \cdot \frac{b}{h} x \, dx$$
$$= \left[\frac{\rho g b}{3h} x^3 \right]_0^h = \frac{1}{3} \rho g b h^2$$

6.
$$m_1 = 4, m_2 = 8; P_1(-1,2), P_2(2,4).$$

 $m = \sum_{i=1}^2 m_i = m_1 + m_2 = 12.$
 $M_x = \sum_{i=1}^2 m_i y_i = 4 \cdot 2 + 8 \cdot 4 = 40;$
 $M_y = \sum_{i=1}^2 m_i x_i = 4 \cdot (-1) + 8 \cdot 2 = 12;$
 $\overline{x} = M_y/m = 1 \text{ and } \overline{y} = M_x/m = \frac{10}{3}, \text{ so the center of mass of the system is } (\overline{x}, \overline{y}) = (1, \frac{10}{3}).$

7.
$$A = \int_0^2 x^2 dx = \left[\frac{1}{3}x^3\right]_0^2 = \frac{8}{3},$$

 $\overline{x} = A^{-1} \int_0^2 x \cdot x^2 dx = \frac{3}{8} \left[\frac{1}{4}x^4\right]_0^2 = \frac{3}{8} \cdot 4 = \frac{3}{2},$
 $\overline{y} = A^{-1} \int_0^2 \frac{1}{2} \left(x^2\right)^2 dx = \frac{3}{8} \cdot \frac{1}{2} \left[\frac{1}{5}x^5\right]_0^2 = \frac{3}{16} \cdot \frac{32}{5} = \frac{6}{5}$
Centroid $(\overline{x}, \overline{y}) = \left(\frac{3}{2}, \frac{6}{5}\right) = (1.5, 1.2)$

$$\begin{aligned} \mathbf{8.} \ A &= \int_0^9 \sqrt{x} \, dx = \left[\frac{2}{3}x^{3/2}\right]_0^9 = \frac{2}{3} \cdot 27 = 18, \\ \overline{x} &= \frac{1}{A} \int_0^9 x \sqrt{x} \, dx = \frac{1}{18} \left[\frac{2}{5}x^{5/2}\right]_0^9 = \frac{1}{18} \cdot \frac{2}{5} \cdot 243 = \frac{27}{5}, \\ \overline{y} &= \frac{1}{A} \int_0^9 \frac{1}{2} \left(\sqrt{x}\right)^2 \, dx = \frac{1}{18} \cdot \frac{1}{2} \left[\frac{1}{2}x^2\right]_0^9 = \frac{81}{72} = \frac{9}{8}. \\ \text{Centroid} \ (\overline{x}, \overline{y}) &= \left(\frac{27}{5}, \frac{9}{8}\right) = (5.4, 1.125) \end{aligned}$$

9. From the figure we see that $\overline{x} = \frac{\pi}{4}$ (halfway from x = 0 to $\frac{\pi}{2}$). Now $A = \int_0^{\pi/2} \sin 2x \, dx = -\frac{1}{2} \left[\cos 2x \right]_0^{\pi/2} = -\frac{1}{2} \left(-1 - 1 \right) = 1$ $\overline{y} = \frac{1}{A} \int_0^{\pi/2} \frac{1}{2} \sin^2 2x \, dx = \frac{1}{1} \int_0^{\pi/2} \frac{1}{2} \cdot \frac{1}{2} \left(1 - \cos 4x\right) dx$ $= \frac{1}{4} \left[x - \frac{1}{4} \sin 4x \right]_0^{\pi/2} = \frac{\pi}{8}.$ Centroid $(\overline{x}, \overline{y}) = (\frac{\pi}{4}, \frac{\pi}{8}).$ $(\overline{x}, \overline{y}) = \left(\frac{\pi}{4}, \frac{\pi}{8}\right)$ 10. $A = \int_{1}^{e} \ln x \, dx = [x \ln x - x]_{1}^{e} = 0 - (-1) = 1,$ $\overline{x} = \frac{1}{A} \int_{1}^{e} x \ln x \, dx = \left[\frac{1}{2}x^{2} \ln x - \frac{1}{4}x^{2}\right]_{1}^{e}$ $= \left(\frac{1}{2}e^2 - \frac{1}{4}e^2\right) - \left(-\frac{1}{4}\right) = \frac{e^2 + 1}{4}$ $\overline{y} = \frac{1}{A} \int_{1}^{e} \frac{(\ln x)^2}{2} dx = \frac{1}{2} \int_{1}^{e} (\ln x)^2 dx.$ To evaluate $\int (\ln x)^2 dx$, take $u = \ln x$ and $dv = \ln x dx$, so that $du = 1/x \, dx$ and $v = x \ln x - x$. Then $\int (\ln x)^2 \, dx = x (\ln x)^2 - x (\ln x) - \int (x \ln x - x) \frac{1}{x} \, dx$ $= x (\ln x)^{2} - x (\ln x) - \int (\ln x - 1) dx$ $= x(\ln x)^{2} - x\ln x - x\ln x + x + x + C$ $= x(\ln x)^2 - 2x\ln x + 2x + C$ Thus $\overline{y} = \frac{1}{2} \left[x (\ln x)^2 - 2x \ln x + 2x \right]_{1}^{e}$ $= \frac{1}{2} \left[(e - 2e + 2e) - (0 - 0 + 2) \right] = \frac{e - 2}{2}$

So $(\overline{x}, \overline{y}) = \left(\frac{e^2 + 1}{4}, \frac{e - 2}{2}\right).$