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SECTION 8.3 THE INTEGRAL AND COMPARISON TESTS

8.3 | THE INTEGRAL AND COMPARISON TESTS

B Click here for answers.

I. Use the Integral Test to determine whether the series
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2 = SECTION 8.3 THE INTEGRAL AND COMPARISON TESTS

8.3 | ANSWERS

A Click here for exercises.
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Bl Click here for solutions.
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8.3 | SOLUTIONS

SECTION 8.3 THE INTEGRAL AND COMPARISON TESTS = 3

A Click here for exercises.
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The function f (z) = T is positive, continuous, and

4x
decreasing on [1, 00), so the Integral Test applies.

*  dx . b dx . 1 b
[ =t 5 = e - ),

:bllrrolO [$In(4b—1) — $In3] = 00

so the improper integral diverges, and so does the series.

2. 52 o (1/n"%%") is a p-series, p = 1.0001 > 1, so it

converges.
3.3 n %% =3 (1/n°) which diverges since
p=099 < 1.
© 92 > 1 L . 1 ;
4 Y —==2> 1/B,Whlchlsap-serles,p: 5 <1,soit
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diverges.
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which are convergent p-series because 2 5>1land3 > 1,50
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3 by Th 8i
; (”\/ﬁ + n3> converges by Lheorem o n

Section 8.2.
> 1 =1
6. ZTH = Zﬁ is a p-series, p = 2 > 1, so it
=47 =
converges.
1
7. = is positive, continuous, and
f (=) 2+ 3 P

decreasing on [1, 00), so applying the Integral Test,
t

o dx 1 o
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[0, 00) we can apply the Integral Test.

/ \/_de_ lim [2/7 - 2In (v7 +1)]|

[using the substitution u = \/z + 1, so dz = 2 (u — 1) du]

= lim ([2v%—2In(VE+1)] - (2-2In2))

NG
e
Now 2v/t —2In (v/t+1) =2In and so
vt (Vi+1) (x/z'f + 1)
tlim [2vt — 2In (vt + 1)] = oo (using I’Hospital’s Rule)

so both the integral and the original series diverge.

is divergent.

8. Since

is continuous, positive, and decreasing on

12. f(z) =

9. f(z) =
[2, 00), so applying the Integral Test,
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] is positive, continuous, and decreasing on

=1

2. . »
10. f (z) = xze™™ is continuous and positive on [1, 00), and

since f' (z) = e~ (1-22°) <Oforz > 1, fis

decreasing as well. Thus, we can use the Integral Test:
t
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Since the integral converges, the series converges.

11. f(z) = = is positive and continuous on [1, 00), and since

—xIn2
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eventually decreasing, so we can apply the Integral Test.

< 0 when x > L ~ 1.44, fis
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Integrating by parts, we get
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L 28 S " In2 27 1n2

;+;
2In2 * 2(ln2)*

t . -
since lirgo 5 = 0 by I’Hospital’s Rule, and so ; 2%
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4902—1—&—1 is continuous, positive and
decreasing on [1, 00), so applying the Integral Test,
< dr L. arctan2z ]’ _m arctan2
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so the series converges.
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13. f(x) = ai(:rif is continuous and positive on [1, c0).
1-2 t
f(z) = M < 0 forz > 1, since
(14 22)?

2rarctanx > 5 > 1forx > 1. So f is decreasing and we
can use the Integral Test.

e t .
/1 AT dr = Jim. [$ (arctan x)Z]tl

1+ x2
_ (/2 (/4?37

2 2 32
so the series converges.
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Inz . . ..
f(z)= —- is continuous and positive for 2 > 2, and
z

2lnz

£ @)=

< 0 forx > 2, so f is decreasing.

1 1 17"
/ n—fdx: lim {—2 — —} (by parts) 4. Thus,
s T t—o0 x x
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Inn = Inn

— = Z —5- converges by the Integral Test.

n=1 n n=2 n
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22 +2x 42
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and f' (z) = *Lz <Oforz >1,s0 fis

(22 422 +2)

decreasing and we can use the Integral Test.
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= tlim [arctan (z + 1)]}

is continuous and positive on [1, c0),
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so the series converges as well.
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o >4_n_(Z) . ngo(z) is a divergent
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geometric series (|r| = g >1)so Y, + diverges by
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Use the Limit Comparison Test with
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