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8.4 | OTHER CONVERGENCE TESTS

SECTION 8.4 OTHER CONVERGENCE TESTS

B Click here for answers.

1-14 = Test the series for convergence or divergence.
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15-18 = Approximate the sum of the series to the indicated
accuracy.
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B Click here for solutions.

19-38 = Determine whether the series is absolutely convergent,
conditionally convergent, or divergent.
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2 = SECTION 8.4 OTHER CONVERGENCE TESTS

8.4 | ANSWERS

A Click here for exercises. B Click here for solutions.
1. Convergent 20. Divergent
2. Convergent 21. Absolutely convergent
3. Divergent 22. Absolutely convergent
4. Convergent 23. Absolutely convergent
5. Convergent 24. Absolutely convergent
6. Divergent 25. Divergent
7. Convergent 26. Divergent
8. Convergent 27. Absolutely convergent
9. Divergent 28. Divergent
10. Divergent 29. Absolutely convergent
11. Divergent 30. Absolutely convergent
12. Convergent 31. Absolutely convergent
13. Convergent 32. Absolutely convergent
14. Convergent 33. Divergent
15. 0.8415 34. Absolutely convergent
16. 0.5403 35. Divergent
17. 0.6065 36. Absolutely convergent
18. 0.98555 37. Absolutely convergent

19. Absolutely convergent 38. Divergent
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8.4 | SOLUTIONS

SECTION 8.4 OTHER CONVERGENCETESTS = 3

A Click here for exercises.
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192

S0 the given series is absolutely convergent.

20.

21.

25.

26.

SECTION 8.4 OTHER CONVERGENCE TESTS

~ 0.000022 < 0.0001, so

n

~ 0.6065.

bs = 1/86 ~ 0.0000038 < 0.00001 and
_ 1 1 1
st=1- 11T 729 — 096 T 15,625 46,656 + 117,649

~ 0.9855537

S Vi

so correct to five decimal places, Z 5 ~ 0.98555.
n
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Z is a convergent p-series (p = 5 > 1),

Using the Ratio Test,
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the series is absolutely convergent.
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so the series diverges by the Ratio Test.
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the given series converges absolutely by the Comparison
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so the series diverges by the Ratio Test.
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so the series diverges by the Ratio Test.
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