8.5 **POWER SERIES**

A Click here for answers.

I−19 • Find the radius of convergence and interval of convergence of the series.

$$1. \sum_{n=0}^{\infty} \frac{x^n}{n+2}$$

2.
$$\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{\sqrt[3]{n}}$$

3.
$$\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n 2^n}$$

$$4. \sum_{n=1}^{\infty} n 5^n x^n$$

$$5. \sum_{n=0}^{\infty} nx^n$$

$$6. \sum_{n=1}^{\infty} \frac{x^n}{n^2}$$

7.
$$\sum_{n=0}^{\infty} \frac{3^n x^n}{(n+1)^2}$$

8.
$$\sum_{n=0}^{\infty} \frac{n^2 x^n}{10^n}$$

$$9. \sum_{n=2}^{\infty} \frac{x^n}{\ln n}$$

10.
$$\sum_{n=1}^{\infty} \frac{(-1)^n x^{2n-1}}{(2n-1)!}$$

S Click here for solutions.

11.
$$\sum_{n=0}^{\infty} \frac{2^n (x-3)^n}{n+3}$$
 12. $\sum_{n=1}^{\infty} \frac{(x+1)^n}{n(n+1)}$

12.
$$\sum_{n=1}^{\infty} \frac{(x+1)^n}{n(n+1)}$$

13.
$$\sum_{n=0}^{\infty} \sqrt{n} (3x+2)^n$$
 14. $\sum_{n=0}^{\infty} \frac{n}{4^n} (2x-1)^n$

14.
$$\sum_{n=0}^{\infty} \frac{n}{4^n} (2x-1)^n$$

15.
$$\sum_{n=1}^{\infty} (-1)^n \frac{(x-1)^n}{\sqrt{n}}$$
 16. $\sum_{n=1}^{\infty} \frac{(x-4)^n}{n5^n}$

16.
$$\sum_{n=1}^{\infty} \frac{(x-4)^n}{n5^n}$$

17.
$$\sum_{n=0}^{\infty} \frac{(-3)^n (x-1)^n}{\sqrt{n+1}}$$
 18.
$$\sum_{n=1}^{\infty} \frac{(2x-1)^n}{n^3}$$

18.
$$\sum_{n=1}^{\infty} \frac{(2x-1)^n}{n^3}$$

19.
$$\sum_{n=1}^{\infty} \frac{nx^n}{1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2n-1)}$$

8.5 A

ANSWERS

E Click here for exercises.

- 1. 1, [-1, 1)
- **2.** 1, (-1, 1]
- 3. 2, (-2, 2]
- **4.** $\frac{1}{5}$, $\left(-\frac{1}{5}, \frac{1}{5}\right)$
- 5. 1, (-1, 1)
- **6.** 1, [-1, 1]
- **7.** $\frac{1}{3}$, $\left[-\frac{1}{3}, \frac{1}{3}\right]$
- **8.** 10, (-10, 10)
- **9.** 1, [-1, 1)
- 10. ∞ , $(-\infty, \infty)$

S Click here for solutions.

- 11. $\frac{1}{2}$, $\left[\frac{5}{2}, \frac{7}{2}\right)$
- **12.** 1, [-2, 0]
- **13.** $\frac{1}{3}$, $\left(-1, -\frac{1}{3}\right)$
- **14.** 2, $\left(-\frac{3}{2}, \frac{5}{2}\right)$
- **15.** 1, (0, 2]
- **16.** 5, [-1, 9)
- 17. $\frac{1}{3}$, $\left(\frac{2}{3}, \frac{4}{3}\right]$
- **18.** $\frac{1}{2}$, [0,1]
- 19. ∞ , $(-\infty, \infty)$

E Click here for exercises

"R" stands for "radius of convergence" and "I" stands for "interval of convergence" in this section.

1. If
$$a_n = \frac{x^n}{n+2}$$
, then

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{x^{n+1}}{n+3} \cdot \frac{n+2}{x^n} \right|$$
$$= |x| \lim_{n \to \infty} \frac{n+2}{n+3} = |x| < 1$$

 $=|x|\lim_{n\to\infty}\frac{n+2}{n+3}=|x|<1$ for convergence (by the Ratio Test). So R=1. When x=1, the series is $\sum_{n=1}^{\infty} \frac{1}{n+2}$ which diverges (Integral Test or

Comparison Test), and when x = -1, it is $\sum_{n=1}^{\infty} \frac{(-1)^n}{n+2}$ which converges (Alternating Series Test), so I = [-1, 1).

2. If
$$a_n = \frac{(-1)^n x^n}{\sqrt[3]{n}}$$
, then

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = |x| \lim_{n \to \infty} \left(\frac{n}{n+1} \right)^{1/3} = |x| < 1 \text{ for}$$
convergence (by the Ratio Test) and $R = 1$. When $x = 1$

 $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[3]{n}}$ which is a convergent alternating

series, but when $x=-1, \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{n^{1/3}}$ which is a

divergent p-series $(p = \frac{1}{3} < 1)$, so I = (-1, 1].

3. If
$$a_n = \frac{(-1)^n x^n}{n2^n}$$
, then

$$\begin{split} \lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| &= \lim_{n\to\infty} \left| \frac{x^{n+1} \left/ \left[(n+1) \, 2^{n+1} \right]}{x^n \left/ (n2^n)} \right| \\ &= \left| \frac{x}{2} \right| \lim_{n\to\infty} \frac{n}{n+1} = \left| \frac{x}{2} \right| < 1 \\ \text{for convergence, so } |x| < 2 \text{ and } R = 2. \text{ When } x = 2, \end{split}$$

$$\sum_{n=1}^{\infty} \frac{(-1)^n \, x^n}{n 2^n} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \text{ which converges by }$$

$$\sum_{n=1}^{\infty}\frac{\left(-1\right)^nx^n}{n2^n}=\sum_{n=1}^{\infty}\frac{1}{n} \text{ which diverges (harmonic series),}$$
 so $I=(-2,2].$

4. If
$$a_{-} = n5^n x^n$$
 then

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=5\left|x\right|\lim_{n\to\infty}\frac{n+1}{n}=5\left|x\right|<1 \text{ for }$$
 convergence (by the Ratio Test), so $R=\frac{1}{5}$. If $x=\pm\frac{1}{5}$,

 $|a_n|=n o\infty$ as $n o\infty$, so $\sum\limits_{n=1}^\infty a_n$ diverges by the Test

for Divergence and $I = \left(-\frac{1}{5}, \frac{1}{5}\right)$.

5. If
$$a_n = nx^n$$
, then

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)x^{n+1}}{nx^n} \right|$$
$$= |x| \lim_{n \to \infty} \frac{n+1}{n} = |x| < 1$$

for convergence (by the Ratio Test). So R=1. When $x=1 \text{ or } -1, \lim_{n \to \infty} nx^n \text{ does not exist, so } \sum_{n=0}^{\infty} nx^n \text{ diverges}$ for $x = \pm 1$. So I = (-1, 1)

6. If
$$a_n = \frac{x^n}{n^2}$$
 then

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=|x|\lim_{n\to\infty}\left(\frac{n}{n+1}\right)^2=|x|<1 \text{ for }$$

convergence (by the Ratio Test), so R = 1. If $x = \pm 1$,

$$\sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{\infty} \frac{1}{n^2}, \text{ which converges } (p=2>1), \text{ so } I=[-1,1].$$

7. If
$$a_n = \frac{3^n x^n}{(n+1)^2}$$
, then

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{3^{n+1} x^{n+1}}{(n+2)^2} \cdot \frac{(n+1)^2}{3^n x^n} \right|$$

$$= 3 |x| \lim_{n \to \infty} \left(\frac{n+1}{n+2} \right)^2 = 3 |x| < 1$$

for convergence, so $|x| < \frac{1}{3}$ and $R = \frac{1}{3}$. When $x = \frac{1}{3}$,

$$\sum_{n=0}^{\infty} \frac{3^n x^n}{(n+1)^2} = \sum_{n=0}^{\infty} \frac{1}{(n+1)^2} = \sum_{n=1}^{\infty} \frac{1}{n^2}, \text{ which is a}$$

convergent p-series (p=2>1). When $x=-\frac{1}{3}$,

$$\sum_{n=0}^{\infty}\frac{3^nx^n}{(n+1)^2}=\sum_{n=0}^{\infty}\frac{\left(-1\right)^n}{\left(n+1\right)^2}, \text{ which converges by the }$$

Alternating Series Test, so $I = \begin{bmatrix} -\frac{1}{3}, \frac{1}{3} \end{bmatrix}$.

8. If
$$a_n = \frac{n^2 x^n}{10^n}$$
, then

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\frac{|x|}{10}\lim_{n\to\infty}\left(\frac{n+1}{n}\right)^2=\frac{|x|}{10}<1 \text{ for }$$

convergence (by the Ratio Test), so R = 10. If $x = \pm 10$,

$$|a_n|=n^2 o \infty$$
 as $n o \infty$, so $\sum\limits_{n=0}^{\infty} a_n$ diverges (Test for

Divergence) and I = (-10, 10).

10. If
$$a_n = \frac{(-1)^n x^{2n-1}}{(2n-1)!}$$
, then
$$\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = \lim_{n\to\infty} \frac{x^2}{(2n+1)\,2n} = 0 < 1 \text{ for all } x. \text{ By}$$
 the Ratio Test the series converges for all x , so $R=\infty$ and $I=(-\infty,\infty)$.

11. If
$$a_n = \frac{2^n (x-3)^n}{n+3}$$
, then
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{2^{n+1} (x-3)^{n+1}}{n+4} \cdot \frac{n+3}{2^n (x-3)^n} \right|$$

$$= 2 |x-3| \lim_{n \to \infty} \frac{n+3}{n+4} = 2 |x-3| < 1$$
for convergence, or $|x-3| < \frac{1}{2} \iff \frac{5}{2} < x < \frac{7}{2}$, and
$$R = \frac{1}{2}. \text{ When } x = \frac{5}{2}, \sum_{n=0}^{\infty} \frac{2^n (x-3)^n}{n+3} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+3},$$
 which converges by the Alternating Series Test. When
$$x = \frac{7}{2}, \sum_{n=0}^{\infty} \frac{2^n (x-3)^n}{n+3} = \sum_{n=0}^{\infty} \frac{1}{n+3}, \text{ similar to the}$$
 harmonic series, which diverges. So $I = \left[\frac{5}{2}, \frac{7}{2}\right)$.

12. If
$$a_n = \frac{(x+1)^n}{n(n+1)}$$
, then
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = |x+1| \lim_{n \to \infty} \frac{n}{n+2} = |x+1| < 1 \text{ for convergence, or } -2 < x < 0 \text{ and } R = 1. \text{ If } x = -2 \text{ or } 0,$$
 then $|a_n| = \frac{1}{n^2 + n} < \frac{1}{n^2}$, so $\sum_{n=1}^{\infty} |a_n|$ converges since
$$\sum_{n=1}^{\infty} \frac{1}{n^2} \text{ does } (p=2 > 1), \text{ and } I = [-2, 0].$$

13. If $a_n = \sqrt{n} \ (3x+2)^n$, then $\left|\frac{a_{n+1}}{a_n}\right| = \left|\frac{\sqrt{n+1} \ (3x+2)^{n+1}}{\sqrt{n} \ (3x+2)^n}\right|$ $= \left|\sqrt{1+\frac{1}{n}} \cdot (3x+2)\right| \to |3x+2| \text{ as } n \to \infty$ so for convergence, $|3x+2| < 1 \ \Rightarrow \ |x+\frac{2}{3}| < \frac{1}{3} \text{ so }$ $R = \frac{1}{3} \text{ and } -1 < x < -\frac{1}{3}. \text{ If } x = -1, \text{ the series becomes }$ $\sum_{n=0}^{\infty} (-1)^n \sqrt{n} \text{ which is divergent by the Test for Divergence.}$ If $x = -\frac{1}{3}$, the series is $\sum_{n=0}^{\infty} \sqrt{n}$ which is also divergent by the Test for Divergence. So $I = \left(-1, -\frac{1}{3}\right)$.

14. If
$$a_n=\frac{n}{4^n}\left(2x-1\right)^n$$
, then
$$\left|\frac{a_{n+1}}{a_n}\right|=\left|\frac{(n+1)\left(2x-1\right)^{n+1}}{4^{n+1}}\cdot\frac{4^n}{n\left(2x-1\right)^n}\right|$$

$$=\left|\frac{2x-1}{4}\left(1+\frac{1}{n}\right)\right|\rightarrow\frac{1}{2}\left|x-\frac{1}{2}\right|\text{ as }n\rightarrow\infty.$$
 For convergence, $\frac{1}{2}\left|x-\frac{1}{2}\right|<1\Rightarrow\left|x-\frac{1}{2}\right|<2\Rightarrow$ $R=2$ and $-2< x-\frac{1}{2}<2\Rightarrow-\frac{3}{2}< x<\frac{5}{2}.$ If $x=-\frac{3}{2}$, the series becomes $\sum_{n=0}^{\infty}\frac{n}{4^n}\left(-4\right)^n=\sum_{n=0}^{\infty}\left(-1\right)^nn$ which is divergent by the Test for Divergence. If $x=\frac{5}{2}$, the series is $\sum_{n=0}^{\infty}\frac{n}{4^n}4^n=\sum_{n=0}^{\infty}n$, also divergent by the Test for Divergence. So $I=\left(-\frac{3}{2},\frac{5}{2}\right)$.

15. If
$$a_n = \frac{(-1)^n (x-1)^n}{\sqrt{n}}$$
, then
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(x-1)^{n+1}}{\sqrt{n+1}} \cdot \frac{\sqrt{n}}{(x-1)^n} \right|$$

$$= |x-1| \lim_{n \to \infty} \sqrt{\frac{n}{n+1}} = |x-1| < 1$$
for convergence, or $0 < x < 2$, and $R = 1$. When $x = 0$,
$$\sum_{n=1}^{\infty} \frac{(-1)^n (x-1)^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \text{ which is a divergent}$$

$$p\text{-series } (p = \frac{1}{2} < 1). \text{ When } x = 2 \text{, the series is } \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$
which converges by the Alternating Series Test. So
$$I = (0, 2].$$

16. If
$$a_n = \frac{(x-4)^n}{n5^n}$$
 then
$$\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = \frac{|x-4|}{5} \lim_{n\to\infty} \frac{n}{n+1} = \frac{|x-4|}{5} < 1 \text{ for convergence, or } -1 < x < 9 \text{ and } R = 5. \text{ When } x = 9,$$

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{n} \text{ which diverges (harmonic series), and when } x = -1, \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \text{ which converges by the }$$
 Alternating Series Test, so $I = [-1, 9)$.

17. If
$$a_n = \frac{(-3)^n (x-1)^n}{\sqrt{n+1}}$$
 then

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 3|x - 1| \lim_{n \to \infty} \left(\frac{n+1}{n+2} \right)^{1/2}$$

$$= 3|x - 1| < 1$$

for convergence, or $\frac{2}{3} < x < \frac{4}{3}$ and $R = \frac{1}{3}$. When $x = \frac{4}{3}$,

$$\sum_{n=0}^{\infty}a_n=\sum_{n=0}^{\infty}\frac{(-1)^n}{\sqrt{n+1}}$$
 which is a convergent alternating

series, and when
$$x=\frac{2}{3},$$
 $\sum_{n=0}^{\infty}a_{n}=\sum_{n=0}^{\infty}\frac{1}{\sqrt{n+1}}$ which is a

divergent *p*-series $(p = \frac{1}{2} < 1)$, so $I = (\frac{2}{3}, \frac{4}{3}]$.

18. If
$$a_n = \frac{(2x-1)^n}{n^3}$$
, then

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=|2x-1|\lim_{n\to\infty}\left(\frac{n}{n+1}\right)^3=|2x-1|<1$$

for convergence, so $\left|x - \frac{1}{2}\right| < \frac{1}{2} \iff 0 < x < 1$, and

$$R=\frac{1}{2}.$$
 The series $\sum_{n=1}^{\infty}\frac{\left(2x-1\right)^{n}}{n^{3}}$ converges both for $x=0$

and x = 1 (in the first case because of the Alternating Series Test and in the second case because we get a p-series with p = 3 > 1). So I = [0, 1].

19. If
$$a_n = \frac{nx^n}{1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2n-1)}$$
, then

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=|x|\lim_{n\to\infty}\frac{n+1}{n\left(2n+1\right)}=0 \text{ for all } x. \text{ So the series converges for all } x \ \Rightarrow \ R=\infty \text{ and } I=(-\infty,\infty).$$