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8.5

POWER SERIES

SECTION 8.5 POWER SERIES

B Click here for answers.

1-19 = Find the radius of convergence and interval of convergence

of the series.
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B Click here for solutions.
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2 = SECTION 8.5 POWER SERIES

8.5 | ANSWERS

A Clich here for exercises. B Clich here for solufions.
. 1,[-1,1) n 1[50
2. 1,(—1,1] 12. 1, [-2,0]
3.2,(-2,2| 131 (-1,-1)
43 (-573) 1. 2, (—2,8)
5.1, (—1,1) 15. 1, (0,2]
6. 1, [—1,1] 16. 5, [—1,9)
73 [-33] 171 (2,4]
8. 10, (—10, 10) 18 1,[0,1]
9. 1,[-1,1) 19. 00, (—00, )

10. 00, (—00, 00)
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8.5 | SOLUTIONS

SECTION 8.5 POWER SERIES =

A Clich here for exercises.
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for convergence (by the Ratio Test). So R = 1. Whenz =1,

=lz| <1

the series is Z L which diverges (Integral Test or
="

Comparison Test), and when x = —1, it is Z 1) which

n=0
converges (Alternating Series Test), so I = [—1, 1).
. Ifan = 37\/7_1, then
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convergence (by the Ratio Test), and R = 1. When x = 1,
=&y
an = which is a convergent alternating
‘ - — 1 i
series, but when z = —1, Z an = Z eV which is a
n=1 n=1

divergent p-series (p = % <1),s0l=(-1,1].
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for convergence, so |z| < 2 and R = 2. When z = 2,

I YV
Z = ~——— which converges by
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the Alternating Series Test. When z = —2,

Z % = Z % which diverges (harmonic series),
n=1 n=1

sol =(-2,2].
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convergence (by the Ratio Test), so R = % Ifx = :I:%,

o=}
|an| =n — coasn — 00,50 Y an, diverges by the Test

n=1

for Divergence and I = (—3, £).

“R” stands for “radius of convergence”” and ““I”’ stands for “interval of convergence™ in this section.
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forx =+1. Sol =(-1,1).
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e 3ngen oo 1 oo 1
= = —, which is a

;(nJrl)2 nZ:O(nJrl)2 ;n2

convergent p-series (p = 2 > 1) . Whenz = _%,
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Alternating Series Test, so I = [—3, 3].
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SECTION 8.5 POWER SERIES
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which converges by the Alternating Series Test.
Sol=[-1,1).
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= (22— 1)
R= % The series Z % converges both for z = 0
n=1
and x = 1 (in the first case because of the Alternating Series
Test and in the second case because we get a p-series with
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