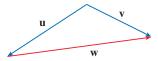
10.2 VECTORS

A Click here for answers.

1. Express \mathbf{w} in terms of the vectors \mathbf{u} and \mathbf{v} in the figure.



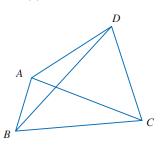
2. Write each combination of vectors as a single vector.

(a)
$$\overrightarrow{AB} + \overrightarrow{BC}$$

(b)
$$\overrightarrow{CD} + \overrightarrow{DA}$$

(c)
$$\overrightarrow{BC} - \overrightarrow{DC}$$

(d)
$$\overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DA}$$



3–5 ■ Find a vector **a** with representation given by the directed line segment \overrightarrow{AB} . Draw \overrightarrow{AB} and the equivalent representation starting at the origin.

3.
$$A(1,3)$$
, $B(4,4)$

4.
$$A(4, -1)$$
, $B(1, 2)$

5.
$$A(1, -2, 0), B(1, -2, 3)$$

.

S Click here for solutions.

6–9 ■ Find the sum of the given vectors and illustrate geometrically.

6.
$$(2,3)$$
, $(3,-4)$

7.
$$\langle -1, 2 \rangle$$
, $\langle 5, 3 \rangle$

8.
$$\langle 1, 0, 1 \rangle$$
, $\langle 0, 0, 1 \rangle$

9.
$$(0,3,2)$$
, $(1,0,-3)$

10–15 • Find a unit vector that has the same direction as the given vector.

10.
$$(1, 2)$$

II.
$$(3, -5)$$

12.
$$\langle -2, 4, 3 \rangle$$

13.
$$\langle 1, -4, 8 \rangle$$

$$14. \ i + j$$

15.
$$2i - 4j + 7k$$

16. A quadrilateral has one pair of opposite sides parallel and of equal length. Use vectors to prove that the other pair of opposite sides is parallel and of equal length.

10.2

ANSWERS

E Click here for exercises.

1. $\mathbf{w} = \mathbf{v} - \mathbf{u}$

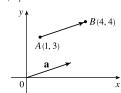
2. (a)
$$\overrightarrow{AC}$$

(b)
$$\overrightarrow{CA}$$

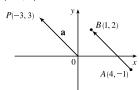
(c)
$$\overrightarrow{BD}$$

(d)
$$\overrightarrow{BA}$$

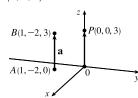
3.
$$(3,1)$$



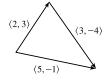
4. $\langle -3, 3 \rangle$



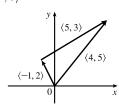
5.
$$\langle 0, 0, 3 \rangle$$



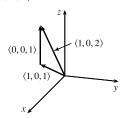
6. $\langle 5, -1 \rangle$



7. $\langle 4, 5 \rangle$

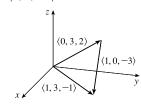


8. $\langle 1,0,2 \rangle$



S Click here for solutions.

9. $\langle 1, 3, -1 \rangle$



10.
$$\left\langle \frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}} \right\rangle$$

11.
$$\left< \frac{3}{\sqrt{34}}, -\frac{5}{\sqrt{34}} \right>$$

12.
$$\left\langle -\frac{2}{\sqrt{29}}, \frac{4}{\sqrt{29}}, \frac{3}{\sqrt{29}} \right\rangle$$

13.
$$(\frac{1}{9}, -\frac{4}{9}, \frac{8}{9})$$

14.
$$\frac{1}{\sqrt{2}}$$
 i $+\frac{1}{\sqrt{2}}$ j

15.
$$\frac{2}{\sqrt{69}}$$
 i $-\frac{4}{\sqrt{69}}$ j $+\frac{7}{\sqrt{69}}$ k

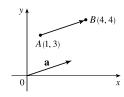
10.2 **SOLUTIONS**

Click here for exercises.

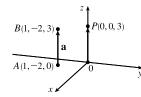
- 1. Geometrically, by the Triangle Law, we can see that $\mathbf{u} + \mathbf{w} = \mathbf{v}$, thus $\mathbf{w} = \mathbf{v} - \mathbf{u}$. Alternately, \mathbf{w} can be visualized directly as the difference of v and u (see Figure 8 in the text).
- **2.** (a) By the Triangle Law, $\overrightarrow{AB} + \overrightarrow{BC}$ is the vector with initial point A and terminal point C, namely \overrightarrow{AC} .
 - (b) By the Triangle Law, $\overrightarrow{CD} + \overrightarrow{DA}$ is the vector with initial point C and terminal point A, namely \overrightarrow{CA} .
 - (c) First we consider $\overrightarrow{BC} \overrightarrow{DC}$ as $\overrightarrow{BC} + \left(-\overrightarrow{DC}\right)$. Then since $-\overrightarrow{DC}$ has the same length as \overrightarrow{CD} but points in the opposite direction, we have $-\overrightarrow{DC} = \overrightarrow{CD}$ and so $\overrightarrow{BC} - \overrightarrow{DC} = \overrightarrow{BC} + \overrightarrow{CD} = \overrightarrow{BD}.$
 - (d) We use the Triangle Law twice:

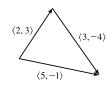
$$\overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DA} = \left(\overrightarrow{BC} + \overrightarrow{CD} \right) + \overrightarrow{DA}$$
$$= \overrightarrow{BD} + \overrightarrow{DA} = \overrightarrow{BA}$$

3. $\mathbf{a} = \langle 4 - 1, 4 - 3 \rangle = \langle 3, 1 \rangle$ **4.** $\mathbf{a} = \langle 1 - 4, 2 + 1 \rangle$

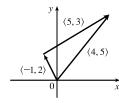


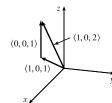
- **5.** $\mathbf{a} = \langle 1 1, -2 + 2, 3 0 \rangle$ **6.** $\langle 2, 3 \rangle + \langle 3, -4 \rangle = \langle 5, -1 \rangle$ $=\langle 0,0,3\rangle$
- (using position vectors and the parallelogram law)





- **7.** $\langle -1, 2 \rangle + \langle 5, 3 \rangle$
- **8.** $\langle 1, 0, 1 \rangle + \langle 0, 0, 1 \rangle$ $= \langle 1+0, 0+0, 1+1 \rangle$ $=\langle 1,0,2\rangle$





- **9.** (0,3,2) + (1,0,-3) = (1,3,-1)
- **10.** $|\langle 1, 2 \rangle| = \sqrt{1^2 + 2^2} = \sqrt{5}$. Thus $\mathbf{u} = \frac{1}{\sqrt{5}} \langle 1, 2 \rangle = \left\langle \frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}} \right\rangle.$
- 11. $|\langle 3, -5 \rangle| = \sqrt{3^2 + (-5)^2} = \sqrt{34}$. Thus $\mathbf{u} = \frac{1}{\sqrt{34}} \langle 3, -5 \rangle = \left\langle \frac{3}{\sqrt{34}}, -\frac{5}{\sqrt{34}} \right\rangle.$
- 12. $|\langle -2, 4, 3 \rangle| = \sqrt{(-2)^2 + 4^2 + 3^2} = \sqrt{29}$. Thus $\mathbf{u} = \frac{1}{\sqrt{29}} \langle -2, 4, 3 \rangle = \left\langle -\frac{2}{\sqrt{29}}, \frac{4}{\sqrt{29}}, \frac{3}{\sqrt{29}} \right\rangle.$
- **13.** $|\langle 1, -4, 8 \rangle| = \sqrt{1^2 + (-4)^2 + 8^2} = \sqrt{81} = 9$. Thus $\mathbf{u} = \frac{1}{9} \langle 1, -4, 8 \rangle = \langle \frac{1}{9}, -\frac{4}{9}, \frac{8}{9} \rangle.$
- 14. $|\mathbf{i} + \mathbf{j}| = \sqrt{1^2 + 1^2} = \sqrt{2}$. Thus $\mathbf{u} = \frac{1}{\sqrt{2}} \left(\mathbf{i} + \mathbf{j} \right) = \frac{1}{\sqrt{2}} \mathbf{i} + \frac{1}{\sqrt{2}} \mathbf{j}.$
- **15.** $|2\mathbf{i} 4\mathbf{j} + 7\mathbf{k}| = \sqrt{2^2 + (-4)^2 + 7^2} = \sqrt{69}$. Thus $\mathbf{u} = \frac{1}{\sqrt{69}} (2 \mathbf{i} - 4 \mathbf{j} + 7 \mathbf{k}) = \frac{2}{\sqrt{69}} \mathbf{i} - \frac{4}{\sqrt{69}} \mathbf{j} + \frac{7}{\sqrt{69}} \mathbf{k}.$
- **16.** Consider quadrilateral ABCD with sides AB and CDparallel and of equal length; that is, $\overrightarrow{AB} = \overrightarrow{DC}$. Thus $\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{DC} + \overrightarrow{BD} \text{ (since } \overrightarrow{AB} = \overrightarrow{DC} \text{)}$ $=\overrightarrow{BD}+\overrightarrow{DC}=\overrightarrow{BC}$

This shows that sides AD and BC are parallel and have equal lengths.