10.6 **CYLINDERS AND QUADRIC SURFACES**

A Click here for answers.

1–5 • Find the traces of the given surface in the planes x = k, y = k, z = k. Then identify the surface and sketch it.

1.
$$x = y^2 + z^2$$

2.
$$2x^2 + z^2 = 4$$

3.
$$x^2 - y^2 + z^2 = 1$$

4.
$$4z^2 - x^2 - y^2 = 1$$

5.
$$9x^2 - y^2 - z^2 = 9$$

6–13 ■ Reduce the equation to one of the standard forms, classify the surface, and sketch it.

6.
$$z^2 = 3x^2 + 4y^2 - 12$$

6.
$$z^2 = 3x^2 + 4y^2 - 12$$
 7. $4x^2 - 9y^2 + z^2 + 36 = 0$

S Click here for solutions.

8.
$$z = x^2 + y^2 + 1$$

9.
$$x^2 + 4y^2 + z^2 - 2x = 0$$

10.
$$x^2 + y^2 - 4z^2 + 4x - 6y - 8z = 13$$

11.
$$4x = y^2 - 2z^2$$

12.
$$x^2 - y^2 + 4y + z = 4$$

13.
$$9x^2 + y^2 - z^2 - 2y + 2z = 0$$

10.6

ANSWERS

E Click here for exercises.

1. x=k, $y^2+z^2=k$, circle (k>0); y=k, $x-k^2=z^2$, parabola; z=k, $x-k^2=y^2$, parabola Circular paraboloid with axis the x-axis

2. $x=k, z=\pm\sqrt{4-2k^2}$, two parallel lines $(|k|<\sqrt{2})$; $y=k, 2x^2+z^2=4$, ellipse; $z=k, x=\pm\sqrt{2-(k^2/2)}$, two parallel lines (|k|<2) Elliptic cylinder with axis the *y*-axis

3. x=k, $z^2-y^2=1-k^2$, hyperbola; y=k, $x^2+z^2=1+k^2$, circle; z=k, $x^2-y^2=1-k^2$, hyperbola Hyperboloid of one sheet with axis the y-axis

4. x=k, $4z^2-y^2=1+k^2$, hyperbola; y=k, $4z^2-x^2=1+k^2$, hyperbola; z=k, $x^2+y^2=4k^2-1$, circle $(|k|>\frac{1}{2})$ Hyperboloid of two sheets with axis the z-axis

S Click here for solutions.

5. x=k, $y^2+z^2=9$ (k^2-1) , circle (|k|>1); y=k, $9x^2-z^2=9+k^2$, hyperbola; z=k, $9x^2-y^2=9+k^2$, hyperbola Hyperboloid of two sheets with axis the x-axis

6. $\frac{x^2}{4} + \frac{y^2}{3} - \frac{z^2}{12} = 1$ Hyperboloid of one sheet with axis the z-axis

7. $-\frac{x^2}{3^2} + \frac{y^2}{2^2} - \frac{z^2}{6^2} = 1$

Hyperboloid of two sheets with axis the y-axis

8. $z-1=x^2+y^2$

Circular paraboloid with axis the z-axis

9. $(x-1)^2 + 4y^2 + z^2 = 1$ Ellipsoid

10.
$$(x+2)^2 + (y-3)^2 - 4(z+1)^2 = 22$$

Hyperboloid of one sheet with center (-2,3,-1) and axis parallel to the z-axis

11.
$$x = \frac{y^2}{2^2} - \frac{z^2}{\left(\sqrt{2}\right)^2}$$

Hyperbolic paraboloid with saddle point (0, 0, 0)

12.
$$z = (y-2)^2 - x^2$$

Hyperbolic paraboloid with center (0, 2, 0)

13.
$$(z-1)^2 = \frac{x^2}{(1/3)^2} + (y-1)^2$$

Elliptic cone with axis parallel to the z-axis

10.6

SOLUTIONS

E Click here for exercises.

1. Traces: $x=k, y^2+z^2=k$, a circle for k>0; y=k, $x-k^2=z^2$, a parabola; $z=k, x-k^2=y^2$, a parabola. Thus the surface is a circular paraboloid (a paraboloid of revolution) with axis the x-axis and vertex at (0,0,0).

2. Traces: x=k, $z^2=4-2k^2$ or $z=\pm\sqrt{4-2k^2}$, two parallel lines for $|k|<\sqrt{2}$; y=k, $2x^2+z^2=4$, an ellipse; z=k, $2x^2=4-k^2$ or $x=\pm\sqrt{2-(k^2/2)}$, two parallel lines for |k|<2. Thus the surface is an elliptic cylinder with axis the y-axis.

3. The trace in any plane x=k is given by $z^2-y^2=1-k^2$, x=k whose graph is a hyperbola. The trace in any plane y=k is the circle given by $x^2+z^2=1+k^2$, y=k, and the trace in any plane z=k is the hyperbola given by $x^2-y^2=1-k^2$, z=k. Thus the surface is a hyperboloid of one sheet with axis the y-axis.

4. Traces: x=k, $4z^2-y^2=1+k^2$, a hyperbola; y=k, $4z^2-x^2=1+k^2$, a hyperbola; z=k, $-x^2-y^2=1-4k^2$ or $x^2+y^2=4k^2-1$, a circle for $k>\frac{1}{2}$ or $k<-\frac{1}{2}$. Thus the surface is a hyperboloid of two sheets with axis the z-axis.

5. Traces: x=k, $y^2+z^2=9$ $\left(k^2-1\right)$, a circle for |k|>1; y=k, $9x^2-z^2=9+k^2$, a hyperbola; z=k, $9x^2-y^2=9+k^2$, a hyperbola. Thus the surface is a hyperboloid of two sheets with axis the x-axis.

6. $z^2 = 3x^2 + 4y^2 - 12$ or $3x^2 + 4y^2 - z^2 = 12$ or $\frac{x^2}{4} + \frac{y^2}{3} - \frac{z^2}{12} = 1$ or $\frac{x^2}{2^2} + \frac{y^2}{\left(\sqrt{3}\right)^2} - \frac{z^2}{\left(\sqrt{12}\right)^2} = 1$

represents a hyperboloid of one sheet with axis the z-axis.

7. $4x^2 - 9y^2 + z^2 + 36 = 0$ or $-4x^2 + 9y^2 - z^2 = 36$ or $-\frac{x^2}{3^2} + \frac{y^2}{2^2} - \frac{z^2}{6^2} = 1$, a hyperboloid of two sheets with axis the y-axis.

9. Completing the square in x gives $(x-1)^2 + 4y^2 + z^2 = 1$ or $(x-1)^2 + \frac{y^2}{(1/2)^2} + z^2 = 1$, an ellipsoid with center (1,0,0) and intercepts (0,0,0), (2,0,0).

10. Completing the square in all three variables gives $(x+2)^2+(y-3)^2-4(z+1)^2=13+9 \text{ or }$ $\frac{(x+2)^2}{\left(\sqrt{22}\right)^2}+\frac{(y-3)^2}{\left(\sqrt{22}\right)^2}-\frac{(z+1)^2}{\left(\frac{1}{2}\sqrt{22}\right)^2}=1, \text{ a hyperboloid of }$ one sheet with center (-2,3,-1) and axis the vertical line $y=3,\,x=-2.$

11. $4x=y^2-2z^2$ or $x=\frac{y^2}{2^2}-\frac{z^2}{\left(\sqrt{2}\right)^2}$, a hyperbolic paraboloid with saddle point (0,0,0). The traces in the xy-, yz-, and xz-planes are respectively $x=\frac{y^2}{2^2}$ (a parabola), $\frac{y^2}{2^2}=\frac{z^2}{\left(\sqrt{2}\right)^2}$ (two intersecting lines), and $x=-\frac{z^2}{\left(\sqrt{2}\right)^2}$ (a parabola).

12. Completing the square in y gives $x^2 - (y-2)^2 + z = 4 - 4 = 0$ or $z = (y-2)^2 - x^2$, a hyperbolic paraboloid with center at (0, 2, 0).

13. Completing the squares in y and z gives $9x^2 + (y-1)^2 - (z-1)^2 = 1 - 1 = 0 \text{ or}$ $(z-1)^2 = \frac{x^2}{(1/3)^2} + (y-1)^2, \text{ an elliptic cone with axis}$ parallel to the z-axis and vertex (0, 1, 1).

