11.2

LIMITS AND CONTINUITY

A Click here for answers.

I-22 • Find the limit, if it exists, or show that the limit does not exist.

1. $\lim_{(x,y)\to(2,3)} (x^2y^2 - 2xy^5 + 3y)$ **2.** $\lim_{(x,y)\to(-3,4)} (x^3 + 3x^2y^2 - 5y^3 + 1)$ **3.** $\lim_{(x,y)\to(0,0)} \frac{x^2y^3 + x^3y^2 - 5}{2 - xy}$ **4.** $\lim_{(x,y)\to(-2,1)} \frac{x^2 + xy + y^2}{x^2 - y^2}$ **5.** $\lim_{(x, y) \to (\pi, \pi)} x \sin\left(\frac{x + y}{4}\right)$ **6.** $\lim_{(x, y) \to (1, 4)} e^{\sqrt{x + 2y}}$ **7.** $\lim_{(x,y)\to(0,0)} \frac{x-y}{x^2+y^2}$ **8.** $\lim_{(x,y)\to(0,0)} \frac{2xy}{x^2+2y^2}$ 9. $\lim_{(x,y)\to(0,0)} \frac{(x+y)^2}{x^2+y^2}$ 10. $\lim_{(x,y)\to(0,0)} \frac{8x^2y^2}{x^4+y^4}$ **II.** $\lim_{(x, y) \to (0, 0)} \frac{x^3 + xy^2}{x^2 + y^2}$ **I2.** $\lim_{(x, y) \to (0, 0)} \frac{xy + 1}{x^2 + y^2 + 1}$ **13.** $\lim_{(x,y)\to(0,0)} \frac{x^3y^2}{x^2+y^2}$ 14. $\lim_{(x,y)\to(2,0)} \frac{xy-2y}{x^2+y^2-4x+4}$ **15.** $\lim_{(x, y) \to (0, 0)} \frac{\sqrt{x^2 y^2 + 1} - 1}{x^2 + y^2}$ 16. $\lim_{(x,y)\to(0,1)} \frac{xy-x}{x^2+y^2-2y+1}$ 17. $\lim_{(x,y)\to(1,-1)}\frac{x^2+y^2-2x-2y}{x^2+y^2-2x+2y+2}$ **18.** $\lim_{(x, y, z) \to (1, 2, 3)} \frac{xz^2 - y^2z}{xyz - 1}$ 19. $\lim_{(x, y, z) \to (2, 3, 0)} [xe^{z} + \ln(2x - y)]$ **20.** $\lim_{(x, y, z) \to (0, 0, 0)} \frac{x^2 - y^2 - z^2}{x^2 + v^2 + z^2}$ **21.** $\lim_{(x, y, z) \to (0, 0, 0)} \frac{xy + yz + zx}{x^2 + y^2 + z^2}$ **22.** $\lim_{(x, y, z) \to (0, 0, 0)} \frac{x^2 y^2 z^2}{x^2 + y^2 + z^2}$

S Click here for solutions.

23–24 Find h(x, y) = g(f(x, y)) and the set on which *h* is continuous.

23.
$$g(t) = e^{-t} \cos t$$
, $f(x, y) = x^4 + x^2 y^2 + y^4$

24. $g(z) = \sin z$, $f(x, y) = y \ln x$

25–38 Determine the set of points at which the function is continuous.

- 25. $F(x, y) = \frac{x^2 + y^2 + 1}{x^2 + y^2 1}$ 26. $F(x, y) = \frac{x^6 + x^3y^3 + y^6}{x^3 + y^3}$ 27. $F(x, y) = \tan(x^4 - y^4)$ 28. $G(x, y) = e^{xy} \sin(x + y)$ 29. $F(x, y) = \frac{1}{x^2 - y}$ 30. $F(x, y) = \ln(2x + 3y)$ 31. $G(x, y) = \sqrt{x + y} - \sqrt{x - y}$ 32. $f(x, y, z) = \frac{xyz}{x^2 + y^2 - z}$ 33. $G(x, y) = 2^{x \tan y}$ 34. $f(x, y, z) = x \ln(yz)$ 35. $f(x, y, z) = x + y\sqrt{x + z}$ 36. $f(x, y) = \begin{cases} \frac{2x^2 - y^2}{2x^2 + y^2} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{if } (x, y) = (0, 0) \end{cases}$ 37. $f(x, y) = \begin{cases} \frac{x^2y^3}{2x^2 + y^2} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{if } (x, y) = (0, 0) \end{cases}$ 38. $f(x, y) = \begin{cases} \frac{xy}{x^2 + xy + y^2} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{if } (x, y) = (0, 0) \end{cases}$ 39. Prove, using Definition 1, that
 - (a) $\lim_{x \to a} x = a$ (b) $\lim_{x \to b} y = b$

(c)
$$\lim_{(x,y)\to(a,b)} c = c$$

40. Use polar coordinates to find

$$\lim_{(x, y)\to(0, 0)} \frac{\sin(x^2 + y^2)}{x^2 + y^2}$$

[If (r, θ) are polar coordinates of the point (x, y) with $r \ge o$, note that $r \to 0^+$ as $(x, y) \to (0, 0)$.]

11.2 ANS	WERS	
E Click here for exercises.		S Click here for solutions.
1. -927	2. 86	26. $\{(x,y) \mid y \neq -x\}$
3. $-\frac{5}{2}$	4. 1	27. $\{(x,y) \mid x^4 - y^4 \neq (2n+1) \frac{\pi}{2}, n \text{ an integer}\}$
5. <i>π</i>	6. e^3	28. \mathbb{R}^2
7. Does not exist	8. Does not exist	29. $\{(x,y) \mid y \neq x^2\}$
9. Does not exist	10. Does not exist	30. $\{(x,y) \mid 2x + 3y > 0\}$
11. 0	12. 1	31. $\{(x,y) \mid y \le x\}$
13. 0	14. Does not exist	32. $\{(x, y, z) \mid z \neq x^2 + y^2\}$
15. 0	16. Does not exist	33. $\{(x,y) \mid y \neq (2n+1) \frac{\pi}{2}, n \text{ an integer}\}$
17. Does not exist	18. $-\frac{3}{5}$	34. $\{(x, y, z) \mid yz > 0\}$
19. 2	20. Does not exist	35. $\{(x, y, z) \mid x + z \ge 0\}$
21. Does not exist	22. 0	36. $\{(x,y) \mid (x,y) \neq (0,0)\}$
23 $h(r, y) = e^{-(x^4 + x^2y^2 + y^4)} \cos(r^4 + r^2y^2 + y^4) \mathbb{R}^2$		37. ℝ ²
24 $h(x,y) = \sin(y \ln x) \{(x,y) \mid x > 0\}$		38. $\{(x,y) \mid (x,y) \neq (0,0)\}$
$a_{1}, (x, y) = a_{1}(y = x), ((x, y) = x > 0)$		40. 1
25. $\{(x,y) \mid x^2 + y^2 - 1\}$	<i>≠</i> ∪}	

SOLUTIONS

E Click here for exercises.

11.2

- 1. The function is a polynomial, so the limit equals $(2^2)(3^2) 2(2)(3^5) + 3(3) = -927.$
- 2. The function is a polynomial, so the limit equals $(-3)^3 + 3(-3)^2 (4)^2 5(4)^3 + 1 = 86.$
- **3.** Since this is a rational function defined at (0, 0), the limit equals $(0 + 0 5) / (2 0) = -\frac{5}{2}$.
- 4. This is a rational function defined at (-2, 1), so the limit equals (4 2 + 1)/(4 1) = 1.
- 5. The product of two functions continuous at (π, π) , so the limit equals $\pi \sin \frac{\pi + \pi}{4} = \pi$.
- 6. The composition of two continuous functions, so the limit equals $e^{\sqrt{1+8}} = e^3$.
- 7. Let $f(x, y) = \frac{x y}{x^2 + y^2}$. First approach (0, 0) along the x-axis. Then $f(x, 0) = \frac{x}{x^2} = \frac{1}{x}$ and $\lim_{x \to 0} f(x, 0)$ doesn't exist. Thus $\lim_{(x, y) \to (0, 0)} f(x, y)$ doesn't exist.
- 8. Let $f(x, y) = \frac{2xy}{x^2 + 2y^2}$. As $(x, y) \to (0, 0)$ along the x-axis, $f(x, y) \to 0$. But as $(x, y) \to (0, 0)$ along the line y = x, $f(x, x) = \frac{2x^2}{3x^2}$, so $f(x, y) \to \frac{2}{3}$ as $(x, y) \to (0, 0)$ along this line. So the limit doesn't exist.
- 9. $f(x,y) = \frac{(x+y)^2}{x^2+y^2}$. As $(x,y) \to (0,0)$ along the x-axis, $f(x,y) \to 1$. But as $(x,y) \to (0,0)$ along the line y = x, $f(x,x) = \frac{4x^2}{2x^2} = 2$ for $x \neq 0$, so $f(x,y) \to 2$. Thus, the limit does not exist.
- **10.** $f(x, y) = \frac{8x^2y^2}{x^4 + y^4}$. Approaching (0, 0) along the *x*-axis gives $f(x, y) \to 0$. Approaching (0, 0) along the line y = x, $f(x, x) = \frac{8x^4}{2x^4} = 4$ for $x \neq 0$, so along this line $f(x, y) \to 4$ as $(x, y) \to (0, 0)$. Thus the limit doesn't exist. **11.** $\lim_{(x,y)\to(0,0)} \frac{x^3 + xy^2}{x^2 + y^2} = \lim_{(x,y)\to(0,0)} x = 0$
- 12. Since $\frac{xy+1}{x^2+y^2+1}$ is a rational function defined at (0,0) the limit is $\frac{0+1}{0+0+1} = 1$.

13.
$$f(x,y) = \frac{x^3y^2}{x^2 + y^2}$$
. We use the Squeeze Theorem:
 $0 \le \frac{|x^3y^2|}{x^2 + y^2} \le |x^3|$ since $y^2 \le x^2 + y^2$, and $|x^3| \to 0$ as
 $(x,y) \to (0,0)$. So $\lim_{(x,y)\to(0,0)} f(x,y) = 0$.

14.
$$f(x,y) = \frac{xy - 2y}{x^2 + y^2 - 4x + 4} = \frac{y(x-2)}{y^2 + (x-2)^2}$$
. Then
 $f(x,0) = 0$ for $x \neq 2$, so $f(x,y) \to 0$ as
 $(x,y) \to (2,0)$ along the x-axis. But
 $f(x,x-2) = \frac{(x-2)(x-2)}{(x-2)^2 + (x-2)^2} = \frac{(x-2)^2}{2(x-2)^2} = \frac{1}{2}$ for
 $x \neq 2$, so $f(x,y) \to \frac{1}{2}$ as $(x,y) \to (2,0)$ along the line
 $y = x - 2$ ($x \neq 2$). Thus, the limit doesn't exist.

15. We have

$$0 \leq \frac{\sqrt{x^2y^2 + 1} - 1}{x^2 + y^2}$$

$$= \frac{x^2y^2}{(x^2 + y^2)\left(\sqrt{x^2 + y^2 + 1} + 1\right)} \text{ (rationalize)}$$

$$\leq \frac{x^2y^2}{2(x^2 + y^2)} \leq x^2 \text{ [since } y^2 \leq 2(x^2 + y^2)\text{]}$$
But $\lim_{(x,y) \to (0,0)} x^2 = 0$, so, by the Squeeze Theorem,
 $\lim_{(x,y) \to (0,0)} \frac{\sqrt{x^2y^2 + 1} - 1}{x^2 + y^2} = 0.$

16. Let $f(x, y) = \frac{xy - x}{x^2 + y^2 - 2y + 1}$. Then f(0, y) = 0 for $y \neq 1$, so $f(x, y) \to 0$ as $(x, y) \to (0, 1)$ along the y-axis. But $f(x, x + 1) = \frac{x(x + 1 - 1)}{x^2 + (x + 1 - 1)^2} = \frac{1}{2}$ for $x \neq 0$ so $f(x, y) \to \frac{1}{2}$ as $(x, y) \to (0, 1)$ along the line y = x + 1. Thus, the limit doesn't exist.

17. Let

$$f(x,y) = \frac{x^2 + y^2 - 2x - 2y}{x^2 + y^2 - 2x + 2y + 2}$$

= $\frac{(x-1)^2 + (y-1)^2 - 2}{(x-1)^2 + (y+1)^2}$
Then $f(1,y) = \frac{(y-1)^2 - 2}{(y+1)^2}$. Thus, as $(x,y) \to (1,-1)$

along the line x = 1, the limit of f(x, y) doesn't exist and so the limit doesn't exist.

- **18.** $\lim_{(x,y,z)\to(1,2,3)} \frac{xz^2 y^2z}{xyz 1} = \frac{1 \cdot 3^2 2^2 \cdot 3}{1 \cdot 2 \cdot 3 1} = -\frac{3}{5}$ since the function is continuous at (1, 2, 3).
- 19. $\lim_{(x,y,z)\to(2,3,0)} [xe^z + \ln(2x-y)]$

$$(2) (e^0) + \ln (4-3) = 2$$

since the function is continuous at (2, 3, 0).

20. Let $f(x, y, z) = \frac{x^2 - y^2 - z^2}{x^2 + y^2 + z^2}$. Then f(x, 0, 0) = 1 for $x \neq 0$ and f(0, y, 0) = -1 for $y \neq 0$, so as $(x, y, z) \to (0, 0, 0)$ along the x-axis, $f(x, y, z) \to 1$ but as $(x, y, z) \to (0, 0, 0)$ along the y-axis, $f(x, y, z) \to -1$. Thus the limit doesn't exist.

- **21.** Let $f(x, y, z) = \frac{xy + yz + zx}{x^2 + y^2 + z^2}$. Then f(x, 0, 0) = 0 for $x \neq 0$, so as $(x, y, z) \to (0, 0, 0)$ along the x-axis, $f(x, y, z) \to 0$. But $f(x, x, 0) = x^2 / (2x^2) = \frac{1}{2}$ for $x \neq 0$, so as $(x, y, z) \to (0, 0, 0)$ along the line $y = x, z = 0, f(x, y, z) \to \frac{1}{2}$. Thus the limit doesn't exist.
- 22. We can show that the limit along any line through the origin is 0 and thus suspect that this limit exists and equals 0. Let ε > 0 be given. We need to
 - $$\begin{split} & \text{find } \delta > 0 \text{ such that } \left| \frac{x^2 y^2 z^2}{x^2 + y^2 + z^2} 0 \right| < \varepsilon \\ & \text{whenever } 0 < \sqrt{x^2 + y^2 + z^2} < \delta \text{ or equivalently} \\ & \frac{x^2 y^2 z^2}{x^2 + y^2 + z^2} < \varepsilon \text{ whenever } 0 < \sqrt{x^2 + y^2 + z^2} < \delta. \text{ But} \\ & x^2 \le x^2 + y^2 + z^2 \text{ and similarly for } y^2 \text{ and } z^2, \text{ so} \\ & \frac{x^2 y^2 z^2}{x^2 + y^2 + z^2} \le \frac{(x^2 + y^2 + z^2)^3}{x^2 + y^2 + z^2} = (x^2 + y^2 + z^2)^2 \text{ for} \\ & x^2 + y^2 + z^2 \ne 0. \text{ Thus choose } \delta = \varepsilon^{1/4} \text{ and let} \\ & 0 < \sqrt{x^2 + y^2 + z^2} < \delta. \text{ Then} \\ & \left| \frac{x^2 y^2 z^2}{x^2 + y^2 + z^2} 0 \right| \le (x^2 + y^2 + z^2)^2 \\ & = \left(\sqrt{x^2 + y^2 + z^2} \right)^4 < \delta^4 = \left(\varepsilon^{1/4} \right)^4 = \varepsilon \\ & \text{Hence by definition } \lim_{(x,y,z) \to (0,0,0)} \frac{x^2 y^2 z^2}{x^2 + y^2 + z^2} = 0. \\ & Or: \text{ Use the Squeeze Theorem: } 0 \le \frac{x^2 y^2 z^2}{x^2 + y^2 + z^2} \le x^2 y^2 \end{split}$$
 - since $z^2 \le x^2 + y^2 + z^2$, and $x^2 y^2 \to 0$ as $(x, y, z) \to (0, 0, 0)$.
- **23.** $h(x,y) = g(f(x,y)) = g(x^4 + x^2y^2 + y^4)$ = $e^{-(x^4 + x^2y^2 + y^4)} \cos(x^4 + x^2y^2 + y^4)$

Since f is a polynomial it is continuous throughout \mathbb{R}^2 and g is the product of two functions, both of which are continuous on \mathbb{R} , h is continuous on \mathbb{R}^2 .

- 24. h (x, y) = g (f (x, y)) = sin (y ln x). Since f (x, y) = y ln x it is continuous on its domain {(x, y) | x > 0} and g is continuous throughout ℝ. Thus h is continuous on its domain D = {(x, y) | x > 0}, the right half-plane excluding the y-axis.
- 25. F (x, y) is a rational function and thus is continuous on its domain D = {(x, y) | x² + y² − 1 ≠ 0}, that is, F is continuous except on the circle x² + y² = 1.
- **26.** F(x, y) is a rational function and thus is continuous on its domain

 $D = \{(x, y) \mid x^3 + y^3 \neq 0\} = \{(x, y) \mid y \neq -x\}, \mathbb{R}^2$ except the line y = -x.

- 27. F(x, y) = g(f(x, y)) where $f(x, y) = x^4 y^4$, a polynomial so continuous on \mathbb{R}^2 and $g(t) = \tan t$, continuous on its domain $\{t \mid t \neq (2n+1) \frac{\pi}{2}, n \text{ an integer}\}$. Thus *F* is continuous on its domain $D = \{(x, y) \mid x^4 - y^4 \neq (2n+1) \frac{\pi}{2}, n \text{ an integer}\}.$
- 28. G (x, y) = g (x, y) f (x, y) where g (x, y) = e^{xy} and f (x, y) = sin (x + y) both of which are continuous on ℝ². Thus G is continuous on ℝ².
- **29.** $F(x, y) = \frac{1}{x^2 y}$ is a rational function and thus is continuous on its domain $\{(x, y) \mid x^2 - y \neq 0\} = \{(x, y) \mid y \neq x^2\}$, so *F* is continuous on \mathbb{R}^2 except the parabola $y = x^2$.
- **30.** $F(x, y) = \ln (2x + 3y) = g(f(x, y))$ where f(x, y) = 2x + 3y, continuous on \mathbb{R}^2 and $g(t) = \ln t$, continuous on its domain $\{t \mid t > 0\}$. Thus F is continuous on its domain $D = \{(x, y) \mid 2x + 3y > 0\}$.
- **31.** $G(x, y) = g_1(f_1(x, y)) g_2(f_2(x, y))$ where $f_1(x, y) = x + y$ and $f_2(x, y) = x - y$, both of which are polynomials so continuous on \mathbb{R}^2 , and $g_1(t) = \sqrt{t}$, $g_2(s) = \sqrt{s}$, both of which are continuous on their respective domains $\{t \mid t \ge 0\}$ and $\{s \mid s \ge 0\}$. Thus $g_1 \circ f_1$ is continuous on its domain $D_1 = \{(x, y) \mid x + y \ge 0\} = \{(x, y) \mid y \ge -x\}$ and $g_2 \circ f_2$ is continuous on its domain $D_2 = \{(x, y) \mid x - y \ge 0\} = \{(x, y) \mid y \le x\}$. Then *G*, being the difference of these two composite functions, is continuous on its domain $D = D_1 \cap D_2 = \{(x, y) \mid -x \le y \le x\}$

$$= \{(x, y) \mid |y| \le x\}$$

- **32.** $f(x, y, z) = \frac{xyz}{x^2 + y^2 z}$ is a rational function and thus is continuous on its domain $\{(x, y, z) \mid x^2 + y^2 - z \neq 0\} = \{(x, y, z) \mid z \neq x^2 + y^2\},$ so *f* is continuous on \mathbb{R}^3 except on the circular paraboloid $z = x^2 + y^2$.
- **33.** G(x, y) = g(f(x, y)) where $f(x, y) = x \tan y$ which is continuous on its domain $\{(x, y) \mid y \neq (2n+1) \frac{\pi}{2}, n \text{ an integer}\}$ and $g(t) = 2^t$ which is continuous on \mathbb{R} . Thus G(x, y) is continuous on its domain $D = \{(x, y) \mid y \neq (2n+1) \frac{\pi}{2}, n \text{ an integer}\}.$
- 34. f (x, y, z) = xg (f (y, z)) where f (y, z) = yz, continuous on R² and g (t) = ln t, continuous on its domain {t | t > 0}. Since h (x) = x is continuous on R, f (x, y, z) is continuous on its domain D = {(x, y, z) | yz > 0}.

35. f(x, y, z) = h(x) + k(y) g(f(x, z)) where h(x) = x and k(y) = y, both continuous on \mathbb{R} and f(x, z) = x + z, continuous on \mathbb{R}^2 , $g(t) = \sqrt{t}$ continuous on its domain $D = \{t \mid t \ge 0\}$. Thus f is continuous on its domain $D = \{(x, y, z) \mid x + z \ge 0\}$.

In Problems 36–38, each f is a piecewise defined function whose first piece is a rational function defined everywhere except at the origin. Thus each f is continuous on \mathbb{R}^2 except possibly at the origin. So for each we need only check $\lim_{(x,y)\to(0,0)} f(x,y)$.

- **36.** Letting $z = \sqrt{2}x$, $\lim_{(x,y)\to(0,0)} \frac{2x^2 - y^2}{2x^2 + y^2} = \lim_{(z,y)\to(0,0)} \frac{z^2 - y^2}{z^2 + y^2}$ which doesn't exist by Example 1. Thus f is not continuous at (0,0) and the largest set on which f is continuous is $\{(x,y) \mid (x,y) \neq (0,0)\}.$
- **37.** Since $x^2 \leq 2x^2 + y^2$, we have $\left|\frac{x^2y^3}{2x^2 + y^2}\right| \leq |y^3|$. We know that $|y^3| \to 0$ as $(x, y) \to (0, 0)$. So, by the Squeeze Theorem, $\lim_{(x,y)\to(0,0)} f(x, y) = \lim_{(x,y)\to(0,0)} \frac{x^2y^3}{2x^2 + y^2} = 0$. Also f(0,0) = 0, so f is continuous at (0,0). For $(x,y) \neq (0,0)$, f(x,y) is equal to a rational function and is therefore continuous. Thus f is continuous throughout \mathbb{R}^2 .
- **38.** Let $g(x, y) = \frac{xy}{x^2 + xy + y^2}$. Then $g(x, 0) = 0/x^2 = 0$ for $x \neq 0$, so $g(x, y) \to 0$ as $(x, y) \to (0, 0)$ along the x-axis. But $g(x, x) = \frac{x^2}{3x^2} = \frac{1}{3}$ for $x \neq 0$, so $g(x, y) \to \frac{1}{3}$ as $(x, y) \to (0, 0)$ along the line y = x. Thus $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2 + xy + y^2}$ doesn't exist, so f is not continuous at (0, 0) and the largest set on which f is continuous is $\{(x, y) \mid (x, y) \neq (0, 0)\}$.

- **39.** (a) Let $\varepsilon > 0$ be given. We need to find $\delta > 0$ such that $|x-a| < \varepsilon$ whenever $0 < \sqrt{(x-a)^2 + (y-b)^2} < \delta$. But $|x-a| = \sqrt{(x-a)^2} \le \sqrt{(x-a)^2 + (y-b)^2}$. Thus setting $\delta = \varepsilon$ and letting $0 < \sqrt{(x-a)^2 + (y-b)^2} < \delta$, we have $|x-a| \le \sqrt{(x-a)^2 + (y-b)^2} < \delta = \varepsilon$. Hence, by Definition 1, $\lim_{(x,y)\to(a,b)} x = a$.
 - (b) The argument is the same as in (a) with the roles of x and y interchanged.

(c) Let
$$\varepsilon > 0$$
 be given and set $\delta = \varepsilon$. Then

$$\begin{split} |f(x,y) - L| &= |c - c| = 0\\ &\leq \sqrt{(x-a)^2 + (y-b)^2} < \delta = \varepsilon\\ \text{whenever } 0 < \sqrt{(x-a)^2 + (y-b)^2} < \delta. \text{ Thus, by}\\ \text{Definition 1, } \lim_{(x,y) \to (a,b)} c = c. \end{split}$$

40. $\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2} = \lim_{r\to 0^+} \frac{\sin(r^2)}{r^2}$, which is an indeterminate form of type $\frac{0}{0}$. Using l'Hospital's Rule, we get $\sin(r^2) = 2r\cos(r^2)$

$$\lim_{r \to 0^+} \frac{\sin(r)}{r^2} = \lim_{r \to 0^+} \frac{2r\cos(r)}{2r}$$
$$= \lim_{r \to 0^+} \cos(r^2) = 1$$
$$Or: \text{ Use the fact that } \lim_{\theta \to 0} \frac{\sin\theta}{\theta} = 1.$$