12.6 TRIPLE INTEGRALS IN CYLINDRICAL COORDINATES

A Click here for answers.

1–2 ■ Plot the point whose cylindrical coordinates are given. Then find the rectangular coordinates of the point.

1.
$$(3, \pi/2, 1)$$

2.
$$(\sqrt{2}, \pi/4, \sqrt{2})$$

3-8 • Change from rectangular to cylindrical coordinates.

3.
$$(-1, 0, 0)$$

5.
$$(\sqrt{3}, 1, 4)$$

6.
$$(-\sqrt{2}, \sqrt{2}, 0)$$

8.
$$(-1, \sqrt{3}, 2)$$

9–12 • Write the equation in cylindrical coordinates.

9.
$$x^2 + y^2 + z^2 = 16$$

10.
$$x^2 + y^2 - z^2 = 16$$

11.
$$x + 2y + 3z = 6$$

12.
$$x^2 + y^2 = 2z$$

S Click here for solutions.

13–14 ■ Sketch the solid whose volume is given by the integral and evaluate the integral.

13.
$$\int_0^{2\pi} \int_0^2 \int_0^{4-r^2} r \, dz \, dr \, d\theta$$
 14. $\int_1^3 \int_0^{\pi/2} \int_r^3 r \, dz \, d\theta \, dr$

14.
$$\int_{1}^{3} \int_{0}^{\pi/2} \int_{r}^{3} r \, dz \, d\theta \, dr$$

15. Evaluate $\iiint_E (x^2 + y^2) dV$, where *E* is the region bounded by the cylinder $x^2 + y^2 = 4$ and the planes z = -1 and z = 2.

16. Evaluate $\iiint_E \sqrt{x^2 + y^2} \, dV$, where *E* is the solid bounded by the paraboloid $z = 9 - x^2 - y^2$ and the *xy*-plane.

17. Evaluate $\iiint_E y \, dV$, where *E* is the solid that lies between the cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$, above the *xy*-plane, and below the plane z = x + 2.

18. Evaluate $\iiint_E xz \, dV$, where E is bounded by the planes z = 0, z = y, and the cylinder $x^2 + y^2 = 1$ in the half-space $y \ge 0$.

12.6

ANSWERS

E Click here for exercises.

1.

2

3.
$$(1, \pi, 0)$$

4.
$$(\sqrt{2}, \frac{\pi}{4}, 1)$$

5.
$$(2, \frac{\pi}{6}, 4)$$

6.
$$\left(2, \frac{3\pi}{4}, 0\right)$$

7.
$$(4\sqrt{2}, \frac{\pi}{4}, 4)$$

8.
$$\left(2, \frac{2\pi}{3}, 2\right)$$

9.
$$r^2 + z^2 = 16$$

10.
$$r^2 - z^2 = 16$$

11.
$$r\cos\theta + 2r\sin\theta + 3z = 6$$

12.
$$r^2 = 2z$$

S Click here for solutions.

13.

14.

 8π

15.
$$24\pi$$

16.
$$\frac{324\pi}{5}$$

12.6

SOLUTIONS

E Click here for exercises.

1.

2.

$$x=\sqrt{2}\cos\frac{\pi}{4}=1,$$
 $y=\sqrt{2}\sin\frac{\pi}{4}=1,$ $z=\sqrt{2},$ so the point is $(1,1,\sqrt{2})$ in rectangular coordinates.

3.
$$r^2=(-1)^2+(0)^2=1$$
 so $r=1; z=0; \tan\theta=0$ so $\theta=0$ or π . But $x=-1$ so $\theta=\pi$ and the point is $(1,\pi,0)$.

4.
$$r^2=1^2+1^2=2$$
 or $r=\sqrt{2}$, $\tan\theta=\frac{1}{1}$ so $\theta=\frac{\pi}{4}$ and $z=1$. Thus in cylindrical coordinates the point is $(\sqrt{2},\frac{\pi}{4},1)$.

5.
$$r^2=4$$
 so $r=2$, $\tan\theta=\frac{1}{\sqrt{3}}$ so $\theta=\frac{\pi}{6}$ and $z=4$. Thus the point in cylindrical coordinates is $(2,\frac{\pi}{6},4)$.

6.
$$r^2=4$$
 so $r=2$; $\tan\theta=\sqrt{2}/\left(-\sqrt{2}\right)=-1$ and the point $\left(-\sqrt{2},\sqrt{2}\right)$ is in the second quadrant of the xy -plane so $\theta=\frac{3\pi}{4}; z=0$. The point is $\left(2,\frac{3\pi}{4},0\right)$.

7.
$$r=\sqrt{4^2+4^2}=4\sqrt{2}; z=4; \tan\theta=\frac{4}{4}, \text{ so }\theta=\frac{\pi}{4} \text{ or }\theta=\frac{5\pi}{4}, \text{ but both } x \text{ and } y \text{ are positive, so }\theta=\frac{\pi}{4} \text{ and the point is } \left(4\sqrt{2},\frac{\pi}{4},4\right).$$

8.
$$r=\sqrt{1+3}=2$$
; $\tan\theta=-\frac{\sqrt{3}}{1}$, so $\theta=\frac{2\pi}{3}$ or $\theta=\frac{5\pi}{3}$, but x is negative and y is positive, so $\theta=\frac{2\pi}{3}$ and the point is $(2,\frac{2\pi}{3},2)$.

9.
$$r^2 = x^2 + y^2$$
, so $r^2 + z^2 = 16$.

10.
$$r^2 - z^2 = 16$$

11.
$$r\cos\theta + 2r\sin\theta + 3z = 6$$

12.
$$r^2 = 2z$$

13. The region of integration is given in cylindrical coordinates by $E = \left\{ (r,\theta,z) \mid 0 \leq \theta \leq 2\pi, 0 \leq r \leq 2, 0 \leq z \leq 4-r^2 \right\}.$ This represents the solid region bounded above by $z = 4-r^2 = 4-x^2-y^2, \text{ a paraboloid, and below by the } xy\text{-plane.}$

$$\begin{split} &\int_0^{2\pi} \int_0^2 \int_0^{4-r^2} r \, dz \, dr \, d\theta = \int_0^{2\pi} \int_0^2 \left(4r - r^3\right) dr \, d\theta \\ &= \int_0^{2\pi} \left[2r^2 - \frac{1}{4}r^4\right]_{r=0}^{r=2} \, d\theta = \int_0^{2\pi} \left(8 - 4\right) d\theta = 4\theta \Big]_0^{2\pi} = 8\pi \end{split}$$

14. The region of integration is given in cylindrical coordinates by $E=\left\{(r,\theta,z)\mid 0\leq\theta\leq\frac{\pi}{2}, 1\leq r\leq 3, r\leq z\leq 3\right\}$. This represents the solid in the first octant between the cylinders r=1 and r=3 and bounded below by $z=r=\sqrt{x^2+y^2},$ a cone, and above by the plane z=3.

$$\begin{split} \int_{1}^{3} \int_{0}^{\pi/2} \int_{r}^{3} r \, dz \, d\theta \, dr &= \int_{1}^{3} \int_{0}^{\pi/2} \left(3r - r^{2} \right) d\theta \, dr \\ &= \int_{1}^{3} \frac{\pi}{2} \left(3r - r^{2} \right) dr = \frac{\pi}{2} \left[\frac{3}{2} r^{2} - \frac{1}{3} r^{3} \right]_{1}^{3} \\ &= \frac{\pi}{2} \left(\frac{27}{2} - \frac{27}{3} - \frac{3}{2} + \frac{1}{3} \right) = \frac{5\pi}{3} \end{split}$$

15.
$$\iiint_E (x^2 + y^2) \ dV = \int_{-1}^2 \int_0^{2\pi} \int_0^2 (r^2) r \, dr \, d\theta \, dz$$
$$= (3) (2\pi) \left[\frac{1}{4} r^4 \right]_0^2 = 24\pi$$

16.
$$\iiint_E \sqrt{x^2 + y^2} \, dV = \int_0^{2\pi} \int_0^3 \int_0^{9-r^2} r^2 \, dz \, dr \, d\theta$$
$$= 2\pi \int_0^3 \left(9r^2 - r^4\right) \, dr = 2\pi \left(81 - \frac{243}{5}\right) = \frac{324\pi}{5}$$

17. In cylindrical coordinates E is bounded by the cylinders r=1 and r=2, the plane $z=x+2=r\cos\theta+2$, and the xy-plane, so E is given by $\{(r,\theta,z)\mid 0\leq\theta\leq 2\pi, 1\leq r\leq 2, 0\leq z\leq r\cos\theta+2\}.$

$$\iiint_{E} y \, dV = \int_{0}^{2\pi} \int_{1}^{2} \int_{0}^{2+r\cos\theta} (r\sin\theta) \, r \, dz \, dr \, d\theta
= \int_{0}^{2\pi} \int_{1}^{2} r^{2} \sin\theta \, [z]_{z=0}^{z=2+r\cos\theta} \, dr \, d\theta
= \int_{0}^{2\pi} \int_{1}^{2} (2r^{2} + r^{3}\cos\theta) \sin\theta \, dr \, d\theta
= \int_{0}^{2\pi} \left[\frac{2}{3}r^{3} + \frac{1}{4}r^{4}\cos\theta \right]_{r=1}^{r=2} \sin\theta \, d\theta
= \int_{0}^{2\pi} \left(\frac{14}{3} + \frac{15}{4}\cos\theta \right) \sin\theta \, d\theta
= \left[-\frac{14}{3}\cos\theta - \frac{15}{8}\cos^{2}\theta \right]_{0}^{2\pi} = 0$$

18. In cylindrical coordinates, E is bounded by the cylinder r=1 and the planes $z=0, z=y=r\sin\theta$ with $y\geq 0 \Rightarrow 0\leq \theta\leq \pi$, so E is given by $\{(r,\theta,z)\mid 0\leq \theta\leq \pi, 0\leq r\leq 1, 0\leq z\leq r\sin\theta\}$. Thus $\iiint_E xz\,dV=\int_0^\pi\int_0^1\int_0^1r^{\sin\theta}\,r^2z\cos\theta\,dz\,dr\,d\theta$ $=\int_0^\pi\int_0^1\left[\frac{1}{2}z^2\right]_{z=0}^{z=r\sin\theta}\,r^2\cos\theta\,dr\,d\theta$ $=\frac{1}{2}\int_0^\pi\int_0^1r^4\sin^2\theta\cos\theta\,dr\,d\theta$ $=\frac{1}{2}\int_0^\pi\left[\frac{1}{5}r^5\right]_{r=0}^{r=1}\sin^2\theta\cos\theta\,d\theta$ $=\frac{1}{10}\int_0^\pi\left(\sin^2\theta\cos\theta\right)d\theta=\frac{1}{30}\sin^3\theta\right]_0^\pi=0$