13.1 VECTOR FIELDS

A Click here for answers.

I–5 • Sketch the vector field ${\bf F}$ by drawing a diagram like Figure 4 or Figure 8.

1.
$$F(x, y) = x i + y j$$

2.
$$\mathbf{F}(x, y) = x \, \mathbf{i} - y \, \mathbf{j}$$

3.
$$F(x, y) = y i + j$$

4.
$$\mathbf{F}(x, y) = -x \, \mathbf{i} + 2y \, \mathbf{j}$$

5.
$$F(x, y, z) = j + k$$

6–8 ■ Match the vector fields **F** with the plots labeled I–III. Give reasons for your choices.

6.
$$\mathbf{F}(x, y) = \langle 2x - 3y, 2x + 3y \rangle$$

7.
$$\mathbf{F}(x, y) = \langle \sin x, \sin y \rangle$$

8.
$$\mathbf{F}(x, y) = \langle \ln(1 + x^2 + y^2), x \rangle$$

S Click here for solutions.

9–14 • Find the gradient vector field of f.

9.
$$f(x, y) = x^5 - 4x^2y^3$$

10.
$$f(x, y) = \sin(2x + 3y)$$

11.
$$f(x, y) = e^{3x} \cos 4y$$

12.
$$f(x, y, z) = xyz$$

13.
$$f(x, y, z) = xy^2 - yz^3$$

14.
$$f(x, y, z) = x \ln(y - z)$$

15–16 • Find the gradient vector field
$$\nabla f$$
 of f and sketch it.

15.
$$f(x, y) = x^2 - \frac{1}{2}y^2$$

16. $f(x, y) = \ln \sqrt{x^2 + y^2}$

.

13.1

ANSWERS

E Click here for exercises.

1.

2.

3.

4

5.

6. III

7. II

8. I

S Click here for solutions.

9.
$$(5x^4 - 8xy^3)$$
i $- (12x^2y^2)$ **j**

10.
$$2\cos(2x+3y)\mathbf{i} + 3\cos(2x+3y)\mathbf{j}$$

11.
$$\langle 3e^{3x}\cos 4y, -4e^{3x}\sin 4y \rangle$$

12.
$$\langle yz, xz, xy \rangle$$

13.
$$\langle y^2, 2xy - z^3, -3yz^2 \rangle$$

14.
$$\left\langle \ln\left(y-z\right), \frac{x}{y-z}, -\frac{x}{y-z} \right\rangle$$

15.
$$2x \, \mathbf{i} - y \, \mathbf{j}$$

16.
$$\frac{x \mathbf{i} + y \mathbf{j}}{x^2 + y^2}$$

13.1 SOLUTIONS

E Click here for exercises.

1. $\mathbf{F}(x,y) = x\,\mathbf{i} + y\,\mathbf{j}$. The length of the vector $x\,\mathbf{i} + y\,\mathbf{j}$ is the distance from (0,0) to (x,y). Each vector points away from the origin.

2. $\mathbf{F}(x,y) = x \mathbf{i} - y \mathbf{j}$. The length of the vector $x \mathbf{i} - y \mathbf{j}$ is the distance from (0,0) to (x,y). For each (x,y), $\mathbf{F}(x,y)$ terminates on the x-axis at the point (2x,0).

3. $\mathbf{F}(x,y) = y \, \mathbf{i} + \mathbf{j}$. The length of the vector $y \, \mathbf{i} + \mathbf{j}$ is $\sqrt{y^2 + 1}$. Vectors are tangent to parabolas opening about the x-axis.

4. $\mathbf{F}(x,y) = -x \mathbf{i} + 2y \mathbf{j}$. The length of the vector $-x \mathbf{i} + 2y \mathbf{j}$ is $\sqrt{x^2 + 4y^2}$. $\mathbf{F}(x,y)$ terminates on the y-axis at the point (0,3y).

5. $\mathbf{F}(x,y,z) = \mathbf{j} + \mathbf{k}$. The length of $\mathbf{F}(x,y,z)$ is $\sqrt{2}$. The graph is shown in the yz-plane because in parallel planes x=a, the graph is identical to this.

- **6.** $\mathbf{F}(x,y) = \langle 2x 3y, 2x + 3y \rangle$ corresponds to graph III, since as we move to the right (so x increases and y is constant), both the x- and the y-components of the vectors get larger, and as we move upward (so y increases and x is constant), the x-components decrease, while the y-components increase.
- **7.** $\mathbf{F}(x,y) = \langle \sin x, \sin y \rangle$ corresponds to graph II, since the vector field is the same on each square of the form $[2n\pi, 2(n+1)\pi] \times [2m\pi, 2(m+1)\pi]$, m, n any integers.
- **8.** $\mathbf{F}(x,y) = \langle \ln(1+x^2+y^2), x \rangle$ corresponds to graph I, since $\ln(1+x^2+y^2)$ is always positive, so all vectors point to the right.

- 9. $\nabla f(x,y) = f_x(x,y)\mathbf{i} + f_y(x,y)\mathbf{j}$ = $(5x^4 - 8xy^3)\mathbf{i} - (12x^2y^2)\mathbf{j}$
- 10. $\nabla f(x,y) = f_x(x,y) \mathbf{i} + f_y(x,y) \mathbf{j}$ = $2\cos(2x + 3y) \mathbf{i} + 3\cos(2x + 3y) \mathbf{j}$
- 11. $\nabla f(x,y) = \langle f_x, f_y \rangle = \langle 3e^{3x} \cos 4y, -4e^{3x} \sin 4y \rangle$
- 12. $\nabla f(x,y,z) = \langle f_x, f_y, f_z \rangle = \langle yz, xz, xy \rangle$
- 13. $\nabla f(x,y,z) = \langle f_x, f_y, f_z \rangle = \langle y^2, 2xy z^3, -3yz^2 \rangle$
- 14. $\nabla f(x, y, z) = \langle f_x, f_y, f_z \rangle$ $= \left\langle \ln(y z), \frac{x}{y z}, -\frac{x}{y z} \right\rangle$
- **15.** $f(x,y) = x^2 \frac{1}{2}y^2$, $\nabla f(x,y) = 2x \mathbf{i} y \mathbf{j}$. The length of $\nabla f(x,y)$ is $\sqrt{4x^2 + y^2}$, and $\nabla f(x,y)$ terminates on the x-axis at the point (3x,0).

16. $f(x,y) = \ln \sqrt{x^2 + y^2} = \frac{1}{2} \ln (x^2 + y^2) \implies \nabla f = \frac{1}{2} \nabla \ln (x^2 + y^2)$ $= \frac{x}{x^2 + y^2} \mathbf{i} + \frac{y}{x^2 + y^2} \mathbf{j} = \frac{x \mathbf{i} + y \mathbf{j}}{x^2 + y^2}$

The length of ∇f decreases as x and/or y increase and all the vectors "flow out" away from the origin.

